Blog

Contents

Chapter 1. WEICOME! ...ttt E bR b e R e s R R e e n e R st e e R b et st R b e bt e e bt e n bt s 5
Chapter 2. Frequently ASKEO QUESLIONS.........cu ittt re ettt e be e eaesee e ebeseeaesbe e eaeseeaesbeseebesee e ebe s ebesbenesbenserenaans 7
(@30T o1 1= g I L OSSR 8
(= 0T ST 8
Resources for 1earning DITA With OXYQEN......c.ccueueirieieiiieieesesiee sttt se e e e b seanas 8

Using DITA to Document & SOftWare PrOOUCL..........coiiirieierie ettt e e see e 55

Guided DITA Authoring Solution Overview......
Maintaining a Healthy DITA Project...............

DITA REUSE SITALOJIES.....cueiveueitiieiiitesietistetesteestestesestestetestessssessesessessstessesesseseasesaesssseseasesseseasassesessesessassasensasessensesessassasn 79
CrOSSBOOK LINKS.... etttk b b b e R bt e E bt b bt ne b b e b n e 88
DITA XML vs Markdown Syntax and CapabilitieS COMPEAITSON.........couerurereieriinirerieesiereee e seeseeaesee e seeseseeesseseenas 92
PUDIISNING CUSIOMIZBLIONS. ...ttt ettt b e e et a e et b et b et e e b e e e b e e he b e e e b e b e he s b et eb e b e st st e e ebesee st nee e aee 97
DITA WebHelp Publishing SOIUtioN AGVANTAGES..........ccuvuiieirieiiieiee ettt ste et ss e b sesesbe s etessesennan 98
Pttt bbbk bbb bbb £ bbb £ bbb £ bbb £ bbb b bbb b e bR E b b e b A b e b b e b b e b e b e A b b e b b ek b bbb b bbb b bt 99
Embedding Diagrams in DITA topicS USING PlanNtUML ..o 101
Embedding Diagrams in DITA TopicS USING MEIMAIT.........c.cceiirirerieirierieenieeie ettt
Presenting DITA Task SIERS @S DIGQIaAMS......cc.cuvuiiiiirieiieieei ettt ste st se st e e s e saesesbe e tesaesessensetessenessenes
Show Consecutive DITA Code Blocks in Separate Tabs
Show DITA Task Steps in SEparate TahS......ccocerererereeierereee e
Converting OpenAPI to DITA XML and Publishing to WebHelp (Experimental)............ccoceoevenreneinennienecnieennene 107
DITA 10 COMNFIUBNCE.......coviieieiiitetete e e b e b ne bbb ne s 108
Generating a list of Changes DEtWEEN FEIEBSES.........c.oo i 111
DITA Publishing CUSIOMIZAION OVENVIEW........ccuiiueuerieirierteeiteeeteseesessesesseseesessessssessenessesssssseenessessesesseneesessensssenessessens 112
DITA Open Toolkit Frequently Asked QUESLIONS (FAQ)......ciu ittt 113
Enhancing DITA Publishing With PIUGINS........cc.couiiriiiiiiineisesesiee ettt b st ss e sbanaenas 114
Adding support for embedding LaTeX equations in DITA CONENL.........oeiimieeieriieeereseiee e 116
USEFUI DITA OT PlUGINS. ...ttt ettt e st st e et e e ss e sese s e e ebessemeee e e ebeeEemesE e e eaeseeneebe e eaeseenesbeseeneseeneaseseenan 117
Creating asimple DITA Open Toolkit plugin to customize published HTML and PDF content...........c.ccoeecreeencnene. 118
Using Git client-side hooks to run DITA publishing PIPEliNES..........cooviiiieiiiieisees e 119
Creating Link Graphs From DITA IMEDS.......ceioiieiiiienieieeseriesetse ettt sttt ss e ss e s e seb e nesnenenis 121
Publishing DITA Content Using the MKDOCS Web Sit€ GENEIGLONc.couruirieerieneriesieeriesesieseeeseesesie e seeees 122
Creating PowerPoint Slides from DITA CONLENEcoiieeirieieiieeire st b e b sbesn e sean
Adding Labels to Topics in the WebHelp Responsive Outpi....
Displaying prolog details (author, creation date, read time)...............
Dynamically publishing a list with the MOSt reCeNt tOPICS.......ceiueireiei e

Dynamically Generating an RSS FEEA..........oouciiire ettt 129

Contents | iii

Generating Google Structured Data from YOUr DITA t8SKS.......cceiriieiiiisiecesneee s 131
Generating Google Structured Data from your DITA frequently asked qUESLIONS..........ccceererieireneierierse e 133
EditiNg CUSIOMIZALIONS........couieeiitierteieieste ettt ettt e et b e bt s e et et e e ehese e st e b e s e e h e e b e st ebeseeheeb et ebenbese e b e e ebeebeneebe e ebesnane 135
SEATUD DITA PrOJEC.....ocviieeiiieeci ettt b et st e et e s e se st et et e s s e st e b et e b e ssenssbe e eseebeneebesaenssteneebeseeneaee 135
Customizing the DITA Visual Editing EXPErTENCE.......ccoiriiirriereirreeieisesieiee st 137
Customizing the DITA Framework Using a Framework EXtENSION SCriPL.........coeiererereienieneneseesesese s 138

Controlled Attribute Values for your DITA Project.............
Converting Subject Scheme Map Vauesto a DITAVAL....

L1107 SO RTS
DITA For Small Technical DOCUMENEALiON TEAMS.......cciiueuirieiriereeic ettt b e b et b e be e nenens 150
UsiNg Git FOr TECNICAl WITTING......ciuiiiiiiciitisestesee ettt sttt b et se et e e be st e e e ba e esessesessensesesrans 154
Supporting the DITA OT Project as a Commercial COMPANY.......c.vueuerirrrueririreeieinesrereesessesesese e ssseenes 168
DITA MaD MELITCS EVOIULION.......eeieiieiiiteiee ettt sttt ae e et b e e s e b eseeae e e se s eneese s esensenensessenesean 170
Oxygen XML Editor DITA Editing SOIUtioN SIrONG POINES.........ceiiiiirieerieeresieesieesie e se e seenes 171
DITA Oriented TiPS AN TTICKS....ciuiiiiiieiiteieesiei st esee et e e e s e saesssse e s tesae st steseesesaesesbeseesessesessaseasessesessansesessasens 171
DITA ProjeCt ENNANCEMENTS......c.civireiiirerteieeeistet ettt se bt a e ne b bt s et st st s b s ene b et e b bt se b en e e s nnenis 175
Translating YOUE DITA PIOJECL......couceieeieieieeie ettt sttt sttt e b e s b e e e ae e e se s ene e s e s esesee e eeesseneseeneebeseeneneenen 176
DITA Map Validate and Check for COmMPIELENESS OVEIVIBIV.......c.ccuiiiieriirieenieeeiesiee st nnene 177
Schematron Checks to help TeChNiCal WIITING.......cooeiiieiieici ettt nennan 178
Implementing your own Style GUIde...........ccorevrirneeenneecenes e 180
Preprocessing DITA-OT PrOJECE FilES........oouciiieeeiee ettt sttt e e e et e e ae e e b e e enenes 182
Re: 10 reasons for moving away fromM DITA ...ttt s b e sn b nene 187
DITA 2.0 Specification SUPPOrt ChEAL SNEEL........ccciieiiicesees ettt saebe st seebesaens 189
REFACIONING. ... tev ettt sttt b bbb e Rt e R b e b a e 8 h s R b et e R b et s e b bt e e b b et ne b bt e e bt nnnas 191
SUMVEY ...ttt ettt ettt b e bt ae e st e ae e e e s e b e e b e eh e eheeh e e s e e R e e e e AR e AE e AR e SR e S Re S RE e RE e R e R e AR e AR e eReeReeReeRe e e e ReeEenEenEeeReereeneeeenenen 205
Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML CONtENt.........ccocevrereeiereneecrinnenn 216
Using ChatGPT in @ DITA XML PrOJECE......cccoiiiiiitisieiieiee ettt sa st st s aeseste e sbasaesssbeseebesaesessanens 221
Oxygen Al POSItroN ASSISIANT AGG-0N.......ouiuiiiieii bbbt b et neeneneas 230
Similarities Between Technical Doc Writers and Software ENQINEENS.........c.ovee e e 237

(@ T o1 4= g 1Y T | = = OO RO S R RT 245

Migrating to a Structured Standards-based DocumMENtation SOIULION............ccvvueiiirieiieieci e nas 245

Migrating Various Document FOrMatS t0 DITA ..ottt 246

HOW to Migrate from WO 10 DITA......o ettt ettt e et eeae e e e e b e e e st et e e eaeseenesbe e eaeeeeneebeseenesaenesnenseneabans 248
Migrating MS Word to DITA using the Batch DOCUMENLS CONVENEYc.corereeiriereeerieisie s 249

Batch converting HTML t0 XHTML.....ccooeovviiiiviceceeseeene

Migrating Unstructured Adobe FrameMaker Content to DITA...

Automation - Using DITA XML Topic Titles to Generate File NAmMES..........ccccoeiiorirrinierreree e 259

Chapter 5. SDK Development (PIUgiNS, FrameWorKs).... ..ottt 260

Customizing OXygen XML EQITOr (OVEINVIEW).......ccuciiieieiiieisieseeti et sae e st be s s e ssessesessassesessesessensesessenensenes 260

Document TYPE EXIENSION SNAITING. .. .c.cvireuiirireereiresiet sttt ettt se bt e skt b st s b s et e b b e e e b s e e 261

Sharing Schematron Validation RUIES.............ciiiiieeee ettt et eeae e et e e ae s e ese b e e esesbesesse e esesseneanan 262

Contents | iv

Public hosted Oxygen Plugin and Framework PrOJECES..........ceiriieieiriiieiirinieee s 263
Sharing New Custom File Templates for a SPecific VOCADUIANY...........cco it 264
COMPOSING AULNOT ACHIONS......cuiieieitiieieiteert ettt et e b e et e st e bt s e e st sb e e ehe s e e ae e b e seehese e s e ebeseeb e e b ese e b e e ebe s b e st e be s ebeebeneenan 265
Implementing a Custom Author Action t0 Split @ TabI€......c.civeiiiici e 267
Adding a Custom Author Action to the Content Completion Window
HOW SpeCial Paste WOIKS IN OXYOEN. .. .c.ciuiieierieieieieeie ettt st se et ee e ae e e e be e eaesseseebe e esesbesesse s eseaseneeseseseseaneesesseneaean
The Oxygen SDK (Part 1: Plugins)........cccceeeveereene.
The Oxygen SDK (Part 2: Frameworks)
YOUP FITSE OXYGEN AGU-0N.......oeiiiiiieee ettt b et b bt e bk e st b bt st b et e e b b et ne b s e e
()4 Yo 1< a0 0 TTa 0 SR @ V= oY= T OSSO 275
Adding CALS-table related functionality to your custom OXYgen framewWorK...........coerrereererreneiereseee s 277
Convert Code Templates to EXternal AULNOT ACHIONS........ccviiirieirieieiieei ettt e e se e saese e e se s sessenesrensesens 278
Chapter 6. MISCEIIANEOUS..........cueiririeteireit ettt bbbt e e e s b s e s e R et e R b et s e E R et e ne b et neer b ae e nrene s 281
OXYGEN XML ECOSYSIEIM. ...ttt ettt sttt ettt et e e e e e s e b e e Rt eheeheeheeae e e e e e ee e sEeeE e eEeeReeReeae e s e s e b e beerenbesrennennnenes 281
Add-ons For TechniCal DOCUMENTELION..........cvivireriiriireeiri e sr et ner e 281
BT oSN o I oGSOSR 282
Checking Terminology With OXYgen XML EITOr........ccoeiiiiieiieersieieesseeeese sttt 286
OPINIONS BDOUL USING OXYOEN. ...c.eeuetieeuerieertereesestesesseseesessesessessesesseaeesessasessansasessessssanesseseensseeneasessssessesessessesessesessessasesseessn 288
A set of rules for providing great tECh SUPPOIT.........co.cerieirieirie ettt b bbb n et enas
A SOOI SEOMY OF REUSE.... oottt ettt b e b e e b et e se e b e s e e be s b e s e e b e s e be s ese et en s et e st ene et e s esesaensnte s eneseeneane

Sharing Application Settings.
Collaboration for Documenting a Software Product using DITA....

Collaboration (Teams working on a common XML PrOJECL)........cueueriruirieerterieenieeriesie ettt ene e
Enable massive contributions with oXygen XML Web Author and GitHUD..............ccoiirieiiicinccee e 292
All ADOUL EQITOr VaArTAIIES.......oovceeieieiere ettt bbbkt b b e b bt ne e n e ne b 292
DS I I I 1 1 o OSSPSR 294
IVHESCEILBINEOUS. ...ttt h st b e e he bt h e s b e £ e bt b e s e b et e bt b e h e b e e e b e b e R e e b e e e bt b e n e e b e s ebe st e e et e seenenee s
Log4Shell - Oxygen XML Vulnerability ANalySiS FAQ.......oiiiiiiiierieisieiee ettt st s e a e b e nse e 294
Using Oxygen XML Editor in a Web Browser (EXperimental).........coueeirieeiineeenneeesesieeese s 296
Oxygen XML BlOg 2022 RELIOSPDECHIVE........ceruiiiriereeuiriereeteseeesteseeueseeesteseeaestesesseseesesse e esessesesseessessesessesesesenessensasessanessenes 298
(@ E=T o1 1= g o1 {1 o101 L] OO 300

resources/sampleGraphBlog.html
resources/sampleGraphBlog.html
resources/sampleGraphBlog.html
resources/sampleGraphBlog.html

Chapter 1. Welcome!

Our blog contains various useful articles and tutorials covering various aspects of editing, developing, and publishing using
Oxygen XML Editor with various XML technologies.

Sometimes (quite often actually) articles originally written for the blog are curated by our technical writers and end up being part
of our official documentation: https://www.oxygenxml.com/doc/ug-editor/. However, the blog alows us to deploy various small
articles faster, without the need to wait for documentation updates.

Follow us!
Y ou can use an RSS feed reader to follow the blog for new articles: https://blog.oxygenxml.com/rss.xml.

Or you can register to receive emails when new articles are posted.

History of the Oxygen XML Editor Blog

The blog was originally hosted by Google Blogs and the first articles on the blog appeared around 2007. Since Google Blogs did
not allow enough flexibility in creating the published content (for example, the inability to create atable of contents) the blog
was migrated to DITA XML content stored on GitHub and is now hosted both on the Oxygen XML Web site and on the Netlify
platform: https://oxygenxmlblog.netlify.com/.

How the Oxygen XML Editor Blog Works

The entire source code of the Oxygen XML Editor blog is stored in DITA content on a public GitHub repository: https://
github.com/oxygenxml/blog.

Thereisa Gradle build file that uses a special DITA Open Toolkit to produce WebHelp Responsive, EPUB and PDF outputs
from the DITA content. The following features are available in the published output:

* Color themes can be easily changed with CSS to modify how the output |ooks.

* Search functionality. Possibility to add index terms.

* RSS Feed is automatically generated from the entire list of topics.

* PDF output is automatically generated using Oxygen Chemistry Engine and can be customized with CSS.

* EPUB output is automatically generated using DITA For Publishers plugins.

» Each page has an Edit onlinelink allowing it to be edited in the Oxygen XML Web Author.

* Each page has a comments section build using the Oxygen Feedback platform.

» Each time content is added to the project there is a configured GitHub action which runs a validation report of the DITA
content (reporting for example broken links).

How You can Contributeto the Oxygen XML Editor Blog.

We want to encourage our end users and collaborators to start creating small Oxygen-related articles for our blog. To post your
own articles, follow these steps:

1. Create your own GitHub account, if you do not already have one.

2. Fork the contents of the Oxygen XML Editor GitHub repository in your own GitHub Repository: https://github.com/
oxygenxml/blog. More details about how to fork arepository: https://docs.github.com/en/get-started/quickstart/
contributing-to-projects.

3. Make changes to your forked project or to a branch from it.

o If you have the Oxygen XML Editor application installed, you can download our Git add-on that should allow
you to clone the fork, make changes, and then commit and push them to your repository.

o Asan dternative, you can use the Oxygen XML Web Author browser editing tool that has its own Git
connector: https:.//www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html.

o Please remember to add the name of the author and the created date for the topic in the DITA topic prolog
section like:

https://www.oxygenxml.com/doc/ug-editor/
https://blog.oxygenxml.com/rss.xml
https://blog.oxygenxml.com/
https://oxygenxmlblog.netlify.com/
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog/blob/master/build/build.gradle
https://www.oxygenxml.com/doc/ug-editor/topics/whr_generate_output.html
https://www.oxygenxml.com/oxygen_feedback.html
https://github.com/oxygenxml/blog/actions
https://github.com/
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog
https://docs.github.com/en/get-started/quickstart/contributing-to-projects
https://docs.github.com/en/get-started/quickstart/contributing-to-projects
https://github.com/oxygenxml/oxygen-git-plugin
https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html

Blog | 1 - Welcome! | 6

<pr ol og>
<aut hor >Radu Cor avu</ aut hor >
<critdates>
<created ="2020-01- 14"/ >
</critdates>
</ prol og>

This prolog section will be used to add in the published HTML output the author information after the topic title.
o Each commit message must include a sign off.

4. After all changes have been made to your fork of the project, you can create apull request to the Oxygen XML Editor
original GitHub project.

5. Thereis a GitHub action implemented in the project which will automatically run DITA validation on the entire project
branch and will report on the pull request if the validation is successful.

6. Wewill review your changes and if your pull requests is accepted, the blog web site will be automatically updated with
the new changes.

Technologies Used to Store, Build and Publish the Oxygen XML Blog

* The blog content is stored on a public GitHub repository.
* GitHub'sissueslist is used to organize the work and add new improvement ideas.
 Offline editing the blog is done using Oxygen XML Editor with its Git add-on installed.
* Online editing is done using Oxygen Web Author.
* A Gradle build fileis used to download a custom DITA Open Toolkit which contains the Oxygen WebHelp Responsive
and PDF CSS plugins pre-installed, then run the publishing and validation stages.
* The DITA Open Toolkit is used along with custom plugins to publish the DITA content.
o Oxygen WebHelp is used to publish the DITA content to HTML output. Publishing templates are used to
customize the published output.

o The Oxygen Feedback system is used for adding feedback forms to each page.
o Oxygen PDF Chemistry is used to produce PDF for the publishing platform.
o The DITA For Publishers plugins are used to produce the EPUB output.

* Oxygen DITA Validate and Check for Completenessis run as a GitHub action with the help of a special scripting
license.

* Netlify is used to connect to the repository, run Gradle and publish the WebSite.

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/managing-repository-settings/managing-the-commit-signoff-policy-for-your-repository
https://github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog/issues
https://www.oxygenxml.com/
https://www.oxygenxml.com/xml_web_author.html
https://github.com/oxygenxml/blog/blob/master/build/build.gradle
https://www.dita-ot.org/
https://www.oxygenxml.com/xml_editor/webhelp.html
https://www.oxygenxml.com/oxygen_feedback.html
https://www.oxygenxml.com/chemistry-html-to-pdf-converter.html
https://www.dita4publishers.org/
https://www.oxygenxml.com/doc/ug-editor/topics/dita-map-validate.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.netlify.com/

Chapter 2. Frequently Asked Questions

How do | register to receive notificationsfor new blog posts?

Each blog HTML page has at the end aform in which you can fill your email address if you want to be notified when new posts
are made.

Can | contributearticlesto the Oxygen XML Blog?

Yes, the procedure is listed here: How Y ou can Contribute to the Oxygen XML Editor Blog. (on page 5).
How do | learn DITA XML with Oxygen?
Read our Resources for learning DITA with Oxygen (on page 8) blog post.

How do | convert various output formatsto DITA XML?

Read our Migrating Various Document Formatsto DITA (on page 246) and How to Migrate from Word to DITA (on page
248) blog posts.

Arethere any productivity tips and tricks?

Our Tips And Tricks (on page 282) and DITA Oriented Tips And Tricks (on page 171) posts contains lots of interesting
productivity tips and tricks.

Chapter 3. DITA

Learning

There are lots of resources available for learning to work with the DITA XML standard both online and in on Oxygen XML
Editor user's manual and blog.

Resources for learning DITA with Oxygen

From time to time we get requests from beginners or from users migrating from other tools who want to start using Oxygen with
DITA and they need to know a set of useful resources.

Resour ces for editing DITA with Oxygen:

We have a getting started section in our user's manual: https://www.oxygenxml.com/doc/ug-editor/topi cs/eppo-first-dita-
topic.html and alarger section on DITA authoring: https://www.oxygenxml.com/doc/ug-editor/topi cs/author-dita.html .

We have alist of videos, some of them DITA-related here: https.//www.oxygenxml.com/videos.html and a series of past webinar
recordings about editing DITA with Oxygen.
Getting Started with Oxygen and DITA
https.//www.oxygenxml.com/events/2020/webinar_getting_started with_dita_using_oxygen xml_editor.html
Basic DITA Profiling and Reuse
https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html
Advanced DITA Profiling and Reuse

https://www.oxygenxml.com/events/2021/
webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html

Working with DITA in Oxygen - Customizing the Editing Experience

https://www.oxygenxml.com/events/2021/
webinar_working_with_dita_in_oxygen_customizing_the _editing_experience.html

Working with DITA in Oxygen - Quick start with the DITA Startup Project
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_startup_project.html
Working with DITA in Oxygen - Migrating to DITA and Refactoring

https://www.oxygenxml.com/events/2021/
webinar_working_with_dita_in_oxygen _migrating_to_dita and_refactoring.html

All these webinars above are also listed here: https.//www.oxygenxml.com/working_with_dita_in_oxygen.html.
Resourcesfor learning DITA:

If you want to start learning about DITA in general there isaweb site called Learning DITA.

DITA Introduction articles by Stefan Jung.

The free Oxygen Live Tutorials add-on contains various small tutorials for learning DITA.

The DITA 1.3 standard specification can be found here: https://www.oxygenxml.com/dita/1.3/specs/#introduction/dita-rel ease-
overview.html.

There are also anumber of good books like DITA For Practitioners and the DITA Style Guide.

https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-dita.html
https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/events/2020/webinar_getting_started_with_dita_using_oxygen_xml_editor.html
https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_startup_project.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html
https://www.oxygenxml.com/working_with_dita_in_oxygen.html
https://www.learningdita.com/
https://stefan-jung.org/dita-introduction/
https://www.oxygenxml.com/doc/ug-editor/topics/live-tutorials-addon.html
https://www.oxygenxml.com/dita/1.3/specs/#introduction/dita-release-overview.html
https://www.oxygenxml.com/dita/1.3/specs/#introduction/dita-release-overview.html
http://xmlpress.net/publications/dita/practitioners-1/
https://www.oxygenxml.com/dita/styleguide/

Blog |3 - DITA| 9

Resour ces for customizing the DITA output formats

Usually customizing the XHTML based outputs means creating your custom CSS selectors. If you generate WebHelp output
using Oxygen, we have a section explaining basic WebHelp customizations: https.//www.oxygenxml.com/doc/ug-editor/topics/
customize_webhelp.html.

For PDF-based outputs we recommend, support and maintain our CSS-based PDF publishing which is free to use from Oxygen
XML Editor. There are also a number of different choices to obtain PDF from DITA: Possihilities to obtain PDF from DITA (on
page 100).

Coursesfor learning DITA with Oxygen XML Editor

* Ryffine: https.//www.ryffine.com/.

* Udemy: https://www.udemy.com/course/technical-writing-how-to-write-using-dita-xml/.
* Hyperwrite: http://www.hyperwrite.com/Trai ning/crsoxygenintro.aspx.

* Mekon: http://mekon.com/news/dita-authoring-oxygen-author/

* French course by Tireme: http://ditatireme.fr/#definition/m2_session_adapter_dita.html

DITA Trivia

There are anumber of blogs on which you can read various DITA-related articles:

* Oxygen XML Blog: Welcome! (on page 5).

* Magda Caloian's Think DITA blog: http://think-dita.com/.

* Scriptorium Blog: http://www.scriptorium.com/blog/.

* Eliot Kimber's Blog: http://drmacros-xml-rants.blogspot.ro/.

* A larger selection of technical writing and DITA articles:http://idratherbewriting.com

* List of learning DITA blog posts from Mekon: http://mekon.com/bitesize-dita/

* DITA XML Benefits: https://technicallywewrite.com/2023/09/11/aboutdita

* Working with DITA projectsin Oxygen: https://technicallywewrite.com/2023/09/14/aboutoxygen

Community

The DITA Users List is probably the first place where you can register and ask for help with DITA-related issues. A bunch of
other community support forums for the publishing engine are a'so listed here: https://www.dita-ot.org/support.

Thereisalso aDITA Awareness Group on Linked In.
Learn DITA Editing with Oxygen with Small Clips

Short Clips - Insert Image References

Learn all waysto insert image referencesin DITA topics using small clips.

* Use Toolbar Action to Insert a Figure with an Image Reference (on page 9)

» Drag and Drop to Insert an Image Reference (on page 10)

* Copy/Paste to Insert an Image Reference (on page 10)

» Configure DITA Reusable Components/Media Tab Working Sets and Insert an Image Reference (on page 11)

Use Toolbar Action to Insert a Figure with an Image Reference

https://www.oxygenxml.com/doc/ug-editor/topics/customize_webhelp.html
https://www.oxygenxml.com/doc/ug-editor/topics/customize_webhelp.html
https://www.oxygenxml.com/doc/ug-editor/topics/pdf-css-customization.html
https://www.ryffine.com/
https://www.udemy.com/course/technical-writing-how-to-write-using-dita-xml/
http://www.hyperwrite.com/Training/crsoxygenintro.aspx
http://mekon.com/news/dita-authoring-oxygen-author/
http://dita.tireme.fr/#definition/m2_session_adapter_dita.html
http://think-dita.com/
http://www.scriptorium.com/blog/
http://drmacros-xml-rants.blogspot.ro/
http://idratherbewriting.com
http://mekon.com/bitesize-dita/
https://technicallywewrite.com/2023/09/11/aboutdita
https://technicallywewrite.com/2023/09/14/aboutoxygen
https://dita-users.groups.io/g/main
https://www.dita-ot.org/support
https://www.linkedin.com/groups/162465

Blog | 3- DITA | 10

Drag and Drop to Insert an I mage Reference

Copy/Pasteto Insert an Image Reference

Blog | 3- DITA| 11

Configure DITA Reusable Components/M edia Tab Working Sets and Insert an | mage Reference

Short Clips - Insert Links

Learn all waysto insert linksin DITA topics using small clips.

Blog | 3 - DITA| 12

* Use Toolbar Action to Insert a Cross Reference to Another Topic (on page 12)
* Use Toolbar Action to Insert a Cross Reference to a Table (on page 12)

» Drag and Drop to Insert a Cross Reference (on page 13)

* Copy/Paste to Insert a Cross Reference (on page 13)

* Copy Pasteto Insert a Cross Reference To a Table (on page 14)

» Use Toolbar Action to Insert a Related Link to Another Topic (on page 14)

* Use Toolbar Action to Insert aLink to a Web Site (on page 15)

* Use Toolbar Action to Insert aLink to a PDF (on page 15)

Use Toolbar Action to Insert a Cross Referenceto Another Topic

Use Toolbar Action to Insert a Cross Referenceto a Table

Blog | 3- DITA| 13

Drag and Drop to Insert a Cross Reference

Copy/Pasteto Insert a Cross Reference

Blog | 3 - DITA| 14

Copy Pasteto Insert a Cross Reference Toa Table

Use Toolbar Action to Insert a Related Link to Another Topic

Blog | 3- DITA | 15

Use Toolbar Actiontolnsert aLink toaWeb Site

Use Toolbar Actiontolnsert aLink toaPDF

Blog | 3- DITA| 16

Short Clips - Reuse Content

DefineaKey for a Product Name and Use It

Use an Already Defined Key for a Product Name Using The Toolbar Action

Blog | 3 - DITA| 17

Add a Content Referenceto a Reusable Note Using the Toolbar Actions

Add a Content Reference Using Copy/Special Paste Oper ations

Blog | 3- DITA| 18

Add a Content Reference Using the DITA Reusable Components View

DITA Perspectives

DITA isnot defined as aflat list of elements, but each element is either a base element or it derives as a specialized version of
another element. This hierarchy should actually decrease the cognitive complexity of avocabulary because it allows you to find

an element faster than working with aflat list.

Blog | 3 - DITA| 19

Inthisarticle, | want to show the hierarchy of elementsin DITA and then explore how you can take advantage of thisin
understanding the DITA architecture, learning DITA, document authoring, etc.

All the scripts | used to generate these diagrams can be found in the DITA Perspectives Github Project.

Overview of DITA

DITA Shells

DITA 1.3 defines multiple types of documents. Along with the generic topic and map, there are also many specialized topics
types and maps types. Each type of document is defined by a schemathat is marked asashel I schema, a schemathat should
be an entry point, the one that should be referred from an XML document. All the defined shells are presented in the following

diagram, grouped by the folder they are defined in:

Machinery Task
W

subjectScheme

subjectScheme

classifyMap | map

DITA Modules

The DITA specification mentions that each element hasacl ass attribute that encodes information about the type of that element,
for example:

<step ="- topic/li task/step">

and thisinformation includes:

https://github.com/oxygenxml/DITAPerspectives

Blog | 3 - DITA| 20

“ A sequence of one or more tokens of the form * modul enare/ t ypenane" , with each token separated by one or
more spaces, where nodul enane is the short name of the vocabulary module and t ypenane is the element type

name. Tokens are ordered left to right from most general to most specialized.”

By analyzing all the class values from all the elements defined in the schemas, | can identify the base modules (top level ones). In
this case, t opi ¢ and a hierarchy implied by how the elements are defined by this relation from more general to more specialized
modules, thus identifying how modules are specialized from others (in this example, t ask is specialized from t opi c).

The base DITA modules:

map

e Y
DITA

topic
~

The modules specialization hierarchy:

Blog | 3- DITA| 21

A

(smea)
:

glossgroup

.

DITA Elements

The total number of DITA elements defined in the schemas and how they are split into base elements, specialized element, and a
highlight of the duplicate elements, while having the same name but being defined on a different module can be observed here:

Blog | 3 - DITA| 22

G @
Cm) () (3 (o) (D
@O @ EEE
— | /7) (T
) (=) &)) ot) (0

(i)
EOEE) ()

AN

N
| o) (o)==

prodname | | titlealts | (longdescref \\ / 7/4“
~ \ cop' ea
\ |/ / X Iongquoteref},p(oomponmtj
copyrholder |, featnum || keyword |, \ N\ //"
{ vrm N —

S a———
ons related—linksj

9 [topicmeta = — T\
S / \ —
raft-comment i <) “ \ Ay
) et
2 s cref required-cleanup
(=)) (o0 R\
A

P
A

A
specialized elements
P
R 3
class = '- map/searchtitle'
4
class = - topic/searchtitle'
|4
class = "- topic/linktext' 4 A

class = "- map/linktext' class = "- topic/shortdesc'

|

class = '- map/shortdesc’

Blog | 3 - DITA| 23

Elements Split by Map and Topic Base

(i) () (o)
eg)=

: ﬁ‘m |) (=) (=)
\W = 1 ()

D ||| S e
@ | @o

DITA elements

ﬂ @R,
: CD E.B
(omamwdeness [7) (
tm \W @
sosidimirrqadenets
- n
- D
|
4 ‘\\\
\ \
=] I
!’ \\
. @ \
lopcrd

Topic Elements

The element information is projected on thet opi ¢ base module:

()) @

&),
Iongquoteref
=)
m
—
simpletable | ———

(cmmes)
—/

required-cleanup [~ i < t

Iongdes:ré
l

cite linl

specialized elements E
>

e ‘ \@
/
A m@
(=))) () D (D)

))) (D =)

Blog | 3 - DITA | 24

Map Elements

The element information is projected on the map base module:

searchtitle

[\

linktext
4

W,
(base el ements 14
oo p—
(D

ITA map}emﬁs 7

/ EC al\lj?é/el ements\
:

Y \

Defined in ../data/rng/bookmap/rng/bookmapMod.rng

bookmap

Blog | 3- DITA | 25

bookmapModule

-

AN
&

learningSummary

Defined in ../data/rng/learning/rng/learningSummaryMod.rng

Blog | 3 - DITA| 26

-F

Iearnl ngSummaryModule

N

Defined in ../data/rng/learning/rng/learningPlanM od.rng

=
==

-‘/

—

learningPlan

/
/
g

\/
\/

/\g

Blog | 3 - DITA| 27

learningOverview

Defined in ../datalrng/learning/rng/learningOverviewMod.rng

-/—

(Iearni ngOverviewModule
\:
Defined in ../data/rng/learning/rng/learningContentMod.rng

—/-

(Iearni ngContentM odule

-

learningContent

Blog | 3 - DITA| 28

learningObjectMap

Defined in ../datalrng/learning/rng/learningObjectMapMod.rng

(Iearni ngObjectM apM odul e)
A}

learningBase

Defined in ../data/rng/learning/rng/learningBaseM od.rng

learningBaseM odule

learningGroupM ap

Defined in ../data/rng/learning/rng/learningGroupMapMod.rng

(learningGroupM apM odul e]

Q

V
(I earningGroupM ap)

|earningA ssessment

Defined in ../data/rng/learning/rng/learningAssessmentMod.rng

(learningA ssessmentbody)

(Iearni ngBasebody)

(|earningA ssessmentM odule]

T
(Iearni ngBase)
»

(|earningA ssessment)

troubleshooting

Defined in ../data/rng/technical Content/rng/troubl eshootingMod.rng

Blog | 3 - DITA| 29

Blog | 3- DITA| 30

.\

(troubl eshootingM odule)

reference

Defined in ../data/rng/technical Content/rng/referenceM od.rng

Blog | 3- DITA | 31

./

task

Defined in ../data/rng/technical Content/rng/taskM od.rng

Blog | 3 - DITA| 32

(=)
[/
./.

& /.

glossentry

Defined in ../data/rng/technical Content/rng/glossentryMod.rng

Blog | 3-DITA |33

-?\- 3/.

[glossentryM odule

glossgroup
Defined in ../data/rng/technical Content/rng/glossgroupMod.rng

(gl ossgroupModul e)

concept

Defined in ../data/rng/techni cal Content/rng/conceptMod.rng

Blog | 3- DITA| 34

(conceptM odul e)

subjectScheme

Defined in ../data/rng/subjectScheme/rng/subjectSchemeMod.rng

Blog | 3- DITA |35

subjectSchemeM odul e)

DITA Domains

Some DITA elements are defined to be part of a domain that can be added on any DITA document type as a pluggable
component. A domain defines a number of semantic elements that are derived from other elements, providing a specialization of
the base elements but reflecting the semantics of adomain, such as programming, software, etc.

DITA Learning Interaction Base 2 Domain

N

Iearnl ngl nteractionBase2- d

Blog | 3- DITA| 36

DITA Learning Map Domain

[Iearni ngmap-d

Blog | 3- DITA | 37

DITA Learning Interaction Base Domain

(learningl nteracti onBase-d)

Blog | 3- DITA| 38

DITA Learning Metadata Domain

i

e

learningmeta-d

ITA Learning 2 Domain

DITA Abbreviated Form Domain

A\
term
V

[abbrevi a&ed-form)

DITA Markup Name Mention Next v Domain

V
(markupname)

DITA MathML Domain

Added locally

DITA SVG

V
(S/g-contai ner)

Blog | 3 - DITA| 41

Blog | 3 - DITA | 42

DITA User ADD Domain

DITA Equation Domain

Blog | 3 - DITA | 43

DITA Task Requirements Domain

Blog | 3 - DITA | 45

DITA XML Construct Domain

DITA Glossary Reference Domain

glossref-d

Blog | 3 - DITA | 46

DITA Software Domain

Blog | 3 - DITA | 47

DITA Release Management Domain

Blog | 3- DITA | 48

DITA XNAL Domain

DITAVAL Reference Domain

ditavalref-d

DITA Delay Resolution Domain

delay-d

DITA Indexing Domain

indexing-d

Blog | 3 - DITA | 49

Blog | 3- DITA |50

DITA Hazard Statement Domain

DITA Highlight Domain

DITA Map Group Domain

(mapgroup—d

DITA Utilities Domain

."r

Blog | 3 - DITA | 51

Blog | 3 - DITA | 52

DITA Subject Classification Domain

topicapply

(e}

subjectCell

A/

pl

[topi cSubjectTabl ej

[topi cSubjectHeader)

[topi cSubj ectRow]

Taking Advantage of DITA Element Hierarchy

Elementsin DITA are defined not as aflat list of elements, but instead as a hierarchy, similar to atype hierarchy, and elements
are either base elements or they are derived from another element. If we look at the analogy with atype system, the base elements
are similar to the primitive types and the other elements are equivalent to derived types.

Thisisrealized using values specified in the class attribute. These values specify the category and the name of the current
element and (if we talk about a derived element) also the name and category of its parent, aswell as all the ancestors up to the
base element.

For example, the @1 ass value for the <l cPl anTi t1 e> element is:

class="- topic/fig | earningBase/fig |earningPlan/lcPlanTitle"

This means that the current element is <l cPl anTi t | e> from the | ear ni ngPl an category and thisis derived from the <fi g> element
from the ear ni ngBase category, which in turn is defined from the <f i g> element from thet opi ¢ category.

We can take this information into account in some situations.

Blog | 3 - DITA| 53

Element Selection During Editing

To take advantage of the fact that elementsin DITA form ahierarchy, one possibility isto follow this hierarchy when we present
the user with the choice of an element to insert, so instead of presenting aflat list of choices, we can organize the elements
according to the hierarchy defined by the @| ass attribute values and thus, if the user selects an unordered list (element) to
insert (for example), we can further present all the elements specialized from the element that are valid in that position in
the document. Of course, this makes sense if the user is browsing for an element to insert, and the user already knows the element
and types its name, then we can just filter that name and eventually, if there are elements specializing the one identified by the
entered string, then we can show them further.

Another possibility is to present adrop-down for an element that has specialized elements, and those are valid at that |ocation,
and allow the user to move to a more specialized element by selecting it from that drop-down.

Automatic Markup Detection

If we first detect the base element and then determineiif it isin fact amore specialized one, it may help because it reduces the
number of choices.

Soft Generalization

To visualize how a document will look like when it is generalized but without really generalizing it (that is without replacing the
elements with more general ones), we implemented a CSS rendering to show the XML tags as if the document is generalized.

For example, an element on which we make the tags visible using CSS static content placed before and after the element looks
like this:

Generalized Intermediary Show tags Default

<ite>) Sample topic for soft generalization i)

Some highlights: (|Sample) test[<fi>].
(<p>| Use the (<uicontrol>|New </uicontrol>| action. </p>)
(<p>| This is an (<apiname> | XML </apiname>| element: (<xmlelement> | <topic>|</xmlelement>] (</p>|

If we generalize on level, showing the first derived element type, then this sample <xni el enent > will turn into <nar kupnane>:

Blog | 3 - DITA | 54

topic

Generalized Intermediary Show tags Default

<ite>) Sample topic for soft generalization i)

Some highlights: Sample test(<fi>).
(<p>|Use the (<uicontrol>) New </uicontrol>| action. [</p>|
(<p>|This is an (<apiname> XML </apiname>| element: (<markupname> <topic>(</markupname>| (</p>

If we generalize to show the base elements, then many of the tag names will change, as highlighted in the following screen shot:

topic

Generalized Intermediary Show tags Default

<ite>) Sample topic for soft generalization i)

(<p>|Some highlights: (<ph>]Sample|</ph>] (<ph>)zest(</ph>]. [</p>|
(<p>|Use the [<ph>|New action.
(<p>| This is an [<keyword>| XML [</keyword>| element: (<keyword>|<topic> </keyword>|

Exchanging DITA Documents

One advantage of using DITA isthat we can tag at semantic level. For this to work, we need to create a specialization that
exactly reflects the concepts the users of that specialization are familiar with. If onetriesto layer its actual needs over an existing
specialization (or one of the standard schemas), these may not exactly match the concepts of the audience and thusit will ook
like DITA is not the best fit.

However, the problem with a speciaization is how do we exchange it with other parties? We need to also provide them with our
specidization, and if they do not have our specialization, then what happens?

One approach isto export the DITA content as generalized content. Then import such a generalized package into an existing
DITA installation by specializing as much as possible, taking into account what is available on the target DITA installation.

How can this be achieved?

From the class of the root element, we can identify the possible specialized root elements and check if we have them defined in
aschemain the target DITA installation. Once we choose aroot element, then we need to analyze the domain attributes of the
root element and see what domains are defined in the target topic type and then specialize elements from those domains back.
Otherwise, if adomain is not present in the target schema, we need to leave the base element.

We have support for generalization, which is relatively easy to implement, and we can probably also obtain the export package
in ageneralized form. However, we are missing atool to take a generalized package, analyze a current DITA installation, and
specialize everything so that it matches what is available in that specific DITA installation.

Blog | 3 - DITA|55

Using DITA to Document a Software Product

Besides working on an XML editing tool with lots of DITA editing functionality we also use DITA internally for editing the
Oxygen User's Guide.

Inthisarticle | will try to give you an overview of our entire workflow as evidence that DI TA does work and that it can be used
and implemented without expensive solutions.

First here's an overview of our needs:

* OnlineHelp which is available as WebHelp Responsive on our web site. Our WebHelp Feedback integration allows
users to add comments and ratings to each topic. Those comments can later be used by us to rephrase and improve our
documentation.

* PDF containing the entire contents of the user's manual. The PDF output is styled using CSS and obtained from DITA
content using our Oxygen Publishing Engine. Nowadays most our users use the online WebHelp because it can be used
much easier for finding certain topics so in our case at least the PDF output is not popular anymore along users.

» Offline Help which is available inside the installed application. Oxygen is a multi-platform application so we need to
generate both HTML Help (CHM) for Windows and JavaHelp for the Mac OSX and Linux installations. Also for the
Oxygen Eclipse Plugin we need to generate Eclipse Help.

We have two main distributions (Standalone and Eclipse plugin) and three main products (Editor, Developer and Author). We
also have aweb editing tool, WebHelp generation plugin and publishing engines. So we need to produce more than 9 different
publications from the same DI TA content depending on the shipped product.

And here's an overview of the tools we use:

Git asa Version Control System

We store our DITA content in a private GitHub repository and we also made a public GitHub repository containing a copy
of our user manual's DITA content:https://github.com/oxygenxml/userguide. We use the free Oxygen Git client add-on for
collaborating on the project. Other external Git clients like SourceTree or Fork can also be used to check out, edit and push
changes to the Git repository. Our editing workflow is similar to what is described in this past webinar.

Oxygen XML Author

This may not come as a surprise but we use our own product to edit DITA content, partly because it's ours and partly because it
isavery good tool. During the last couple of years this has been a good opportunity to improve our product based on our own
feedback (feedback coming from our technical writers).

Oxygen is used by the technical writersto write DITA content but we also have colleagues who review content and propose
changes directly from the web browser.

Oxygen Content Fusion

The Content Fusion add-on for XML Author alows uploading the edited content to a cloud server and providing aweb editing
tool for people to provide feedback and review the DITA content directly in aweb browser: https://www.oxygenxml.com/
content_fusion.html.

Oxygen Publishing Engine

We use the Oxygen Publishing Engine (based on the DITA Open Toolkit) to publish DITA content to the outputs we are
interested in, mostly WebHelp Responsive, PDF and Windows Help.

Jenkinsintegration server

We have an automated script which builds all the user manual outputs every night.

https://www.oxygenxml.com/doc/ug-oxygen/
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-installing-feeback-oxygen.html
https://www.oxygenxml.com/publishing_engine.html
https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.oxygenxml.com/events/2020/webinar_using_dita_for_small_technical_documentation_teams.html
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion.html
https://www.oxygenxml.com/content_fusion.html
https://www.oxygenxml.com/publishing_engine.html

Blog | 3 - DITA | 56

Automated DITA Content Validation

ThereisaValidate and Check for Completeness script which runs on atest server and does various types of checks on the DITA
content (including checks for validation, filtering problems, broken links, etc).

Atlassian Jirafor Ticketing and Workflow

We use Atlassian Jira to provide aworkflow both for the issues which are related directly to our software product and for the
issues which are related exclusively with our user's manual. The JIRA isintegrated with both our SVN and GIT repositories so it
shows for a certain issue al resources which have been modified to fix it.

Guided DITA Authoring Solution Overview

We have some past blog posts about how Oxygen can be used to impose various editing behaviors for your team. In this one, will
try to bring all of these solutions together in a comprehensive overview.

Learningto Work with DITA and Oxygen

Y ou can find useful links for learning how to edit DITA using Oxygen in this previous blog post: Resources for learning DITA
with Oxygen (on page 8).

Migratingto DITA

There are multiple reasons why you would want to migrate from unstructured content to structured: Migrating to a Structured
Standards-based Documentation Solution (on page 245).

This older blog post details some possibilities of migrating Word documentsto DITA: How to Migrate from Word to DITA (on
page 248).

Y ou also have ways to migrate from XML -based standards (like DocBook or XHTML to DITA) using a set of predefined
transformation scenarios.

Restricting the Visual Editing Experience

The entire visual editing experience in Oxygen's Author editing mode is driven by CSS. Oxygen has support for defining various
CSS layers that can be applied when editing DITA content. For example, if you choose to create a Lightweight DITA topicin
Oxygen, it has a special editing layer that contributes a combination of buttons, hints, and form controls designed to assist and
guide the author. The following blog post details how a custom CSS that will be used to enhance the visual editing experience
can be created and shared with others: Customizing the DITA Visua Editing Experience (on page 137).

Implementing Your own Style Guide

Suppose you are ateam of technical writers collaborating on a DITA-based project and you have your own various best practices
in regards to which elements to use and when to use them. So, at some point you gather a set of HTML resources that explain
how various DITA elements should be used, you store them on an internal server, and you want all your team members to have
access to that set of HTML resources directly from Oxygen. This blog post provides more details and useful links to help you get
started: Implementing your own Style Guide (on page 180).

Imposing Controlled Attribute Values

If you want to impose DITA attribute values that need to be set for profiling or general use, this blog post should cover all you
need to know about this: Controlled Attribute Values for your DITA Project (on page 140).

Imposing Business Rules and Structure Restrictionsto the DITA Content

In most cases, instead of relying on people to memorize numerous internal documentation style rules, you can convert many

of these rules to Schematron and allow the application to automatically signal the content author when aruleisviolated. You
can also add quick fixes to provide authors various ways to rectify the problem. This blog post contains more details about this:
Schematron Checks to help Technical Writing (on page 178).

https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html

Blog | 3 - DITA| 57

The DITA framework can be extended to add new Schematron rules: Sharing Schematron Validation Rules (on page 262).

Running Batch Validation Checkson all of Your DITA Content

The Validate and Check For Completenesstool availableinthe DITA Maps Manager view performs alot of different
consistency checks on al your DITA topics. It can also be used to apply Schematron businessrules on al of your topics: DITA
Map Validate and Check for Completeness Overview (on page 177).

Sharing DITA Editing Customizationswith Your Team

Most of the custom editing behaviors, toolbar, and menu buttons that are available when editing DITA content are defined in
the DITA framework configuration. A framework configuration's general anatomy is described here: The Oxygen SDK (Part 2:
Frameworks) (on page 272).

The framework configuration can be shared with all of your team members. For example, here is away to restrict team members
from using certain DITA elements: Document Type Extension Sharing (on page 261).

Furthermore, hereisaway to distribute new DITA file templates to your team: Sharing New Custom File Templates for a
Specific Vocabulary (on page 264).

Sharing Global Application Settingswith Your Team

Suppose you want al of your team members to enable the automatic spell checker when writing documentation, or you want
all of them to use a custom term dictionary or a custom set of learned words. This older blog post offers some hints about how
global Oxygen settings can be distributed to your team members: Sharing Application Settings (on page 289).

Collaboration, Content Management, and Version Tracking

All mgjor Content Management Systems (CM Ss) have plugins that can be installed in Oxygen to provide access to the CMS:
https://www.oxygenxml.com/partners.html#cmssol utionpartners.

Even if you lack the funds to buy acommercial CM S, there are still plenty of open source version tracking solutions that provide
the possibility of collaboration on asingle DITA project: Collaboration (Teams working on acommon XML project) (on page
291). For example, the Oxygen User's Manual iswritten in DITA and we use a GitHub private repository to collaborate on it:
Collaboration for Documenting a Software Product using DITA (on page 290).

Allowing Subject Matter Expertsto Review Content

Many technical writers are interested in having their content reviewed by the subject matter experts who are directly involved in
building the tools. Oxygen has support for change tracking and adding comments directly in the edited content. Subject matter
experts do not necessarily need to have the standalone version of Oxygen installed. The Oxygen Web Author is an online editing
and reviewing solution that allows them to add comments and propose changes directly in the DITA content by using any device
with aweb browser (Iaptop, tablet, phone): https://www.oxygenxml.com/xml_web_author.html.

| hope this overview will help you to implement a complete guided authoring experience using Oxygen. As usual, if you have
any questions or suggestions, they are welcome.

https://www.oxygenxml.com/partners.html#cmssolutionpartners
https://www.oxygenxml.com/xml_web_author.html

Blog | 3- DITA |58

Maintaining a Healthy DITA Project

How should a Happy and Healthy Documentation Project L ook Like?

Do you have a Healthy Project?

* Focus on writing and not on workflow.

* Involve peer-reviews, SMEs and end users.

* Easy start for first-time contributors.

* Easier produce deliverables and correct errorsin older deliverables.

* Allow for future evolution: more writers, more outputs, more content, more products.
Why do big companies use the DITA standard?

* Standard means owning your content and no vendor lock-in (editing or publishing).
* DITA works very well with topic-based authoring.
* Lots of content reuse potential.

* Reuse lowers trandation costs.
DITA Doc Project Aspects

 Storage

* Workflow

* Collaboration

o Sharing Common Constraints (editing, validation, spell check dictionaries, ...)

* Structure
o Managing links and reusable content
* Trandation

* Publishing (Producing Deliverables)

Storage
S — — 0
ahei AA
/N
®) ™~
Ad A '

* Commercial content management systems (CMS).

* Open Source version control systems: Git, Subversion, CVS

Version Control

V5

trunk

V4

* Ability to Tag Releases and Create Branches.

* See history for resources.

Blog | 3 - DITA| 59

Blog | 3- DITA| 60

Working with the stor age system

* Commercial CM Ss — Remote editing, locking.
* Open Source version control systems— Loca working copies, no editing restrictions — conflicts.

Hint: Maybe you can use the same storage system as software developersin your company.

Collaboration and Wor kflow

* Weinvest alot of time each day collaborating with our team or external collaborators.

* Collaboration should be as comfortable as possible.

Blog | 3 - DITA| 61

Wor kflow

Issuetracking

» Using workflow featuresin the CMS
* Using issue management systems like Bugzilla, Atlassian JIRA or Trello.
o Tip: Linking the product development with the documentation development.
I ssue Tracking Examples

Custom workflows

» Documentation task specific workflow

* Integrate QA and documentation in software development process

Blog | 3 - DITA | 62

I ssue tracking — Simple Documentation Wor kflow

REOPENED

OPEN

DOCUMENTED

CLOSED

Blog | 3 - DITA| 63

I ssue tracking — Development and Documentation Wor kflow

OPEN

ANALYZED

CONFIRMED

RESOLVED
CODE REVIEWED
REOPENED
VERIFIED
CLOSED
DOCUMENTED

I ssue Tracking and Storage I ntegration
Issue Tracker can provide a single place where you can monitor aticket from start to end, including:
Issue description and details

* Who worked on that issue

* What was changed in the application

* What was changed in the documentation

* Who should be notified when issue is resolved.
Involving Subject Matter Experts

* SMEs provide original content (DITA or Markdown or ...)
* Let SMEsreview the published output.
o HTML with feedback forms

o PDF with comments.

Blog | 3 - DITA | 64

o Formal review with web editing tool integrated with storage system.

o Informal review DITA content using change tracking and comment capabilities
How can end user s collabor ate with us?

* Send feedback via email/forum/phone.
* Send feedback in the published HTML output.

* Give feedback using an online DITA editing tool with comment-only capabilities.

Contribution Consistency

Sharing common settings between writers

* Custom style guide.
* Specific editing enhancements.
* Specific validation settings.

¢ Controlled attribute values.

Blog | 3 - DITA| 65

* Custom spell and auto-correct dictionaries.

* Various other common preferences.

Custom Style Guide
The style guideis internal documentation about how to write documentation.
How can we remember what' s written in the style guide?

* Searchable help output from internal style guide.

* Find an automatic way to impose style guide rules when editing.

Automating Style Guide Rules

Schematron Checks to help Technical Writing (on page 178)

* Schematron to add custom validation rules.

* Schematron Quick Fixes to propose quick fixes for each custom error message.

Using the same ter minology rules
Checking Terminology with Oxygen XML Editor (on page 286)
* Custom Spell dictionaries.
* Custom auto-correct mappings.
* Advanced terminology checkers like Acrolinx, HyperSTE or LanguageTools.

* Building your own terminology checker using Schematron.

Blog | 3 - DITA | 66

DITA Project Structure

* Organizing various resources in various folders
* Some CM Ss may not consider this relevant.
File and folder naming/or ganization conventions
* By type:
o Taskg/t_instalation.dita
o Concepts/c_profiler.dita
* By semantics:
o xglt_debugger/backmapping.dita

DITA Style Guide

Managing Content Reuse

DITA Reuse Strategies (on page 79)

https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/Artefact/Documentation_Process/c_File_Naming_Conventions.html

Blog | 3 - DITA| 67

o N

* Separate folders containing reusable content.

* Keep dictionaries of reusable components

* Prefer indirect references (conkeyrefs)
Managing Links

DITA Linking Strategies (on page 72)

Blog | 3 - DITA| 68

* Prefer indirect links (key references)
* Reuselink targets

* Re-direct links depending on publication
* Userelationship tables
Project-widerefactor operations

* Convert between various topic types.
* Rename or move one or more topics.

* Change XML structure in topics from the entire project.

o Example: Change the value of a specific attribute.

Blog | 3- DITA| 69

Trandation

Translating your DITA Project (on page 176)
* You create your content in the primary language using a DITA authoring tool .

* Send acopy of the relevant DITA filesto the localization service provider (LSP).

* Receivetrandated DITA content back from (LSP).

Blog | 3 - DITA| 70

Optimizing for transation

* Use acontrolled vocabulary (simplified English).

* Avoid reusing inline elements other than product names.

https://lists.oasis-open.org/archives/dita/201301/msg00029.html

* Avoid profiling/filtering content at inline level.

Publishing

 PDF

* Check for broken links to remote web sites.

P

WebHelp

“ePUB

Map-wide Validation and Consistency Checks

HTML

Validate each topic according to DITA standard.

* Check for broken links in the context of profiling filters.

CHM
Help

Eclipse
Help

Others

Check for broken links, key references and content references, missing images or referenced resources.

https://lists.oasis-open.org/archives/dita/201301/msg00029.html

Producing the deliverables

* Checking the project before publishing.

* Sharing publishing customizations

Blog |3 - DITA| 71

» Automatic production of deliverables either viaCMS or via an automated open source server (Jenkins).

Useful links

* DITA Style Guide (by dr. Tony Self):
https://www.oxygenxml.com/dita/styleguide/webhel p-feedback/
* Intelligent Style Guide (by George Bina):
https://github.com/oxygenxml/dim
* Oxygen XML Blog (Reuse, Linking, custom validation, sharing settings):
Welcome! (on page 5)
Conclusions
A healthy DITA project needsto:
* Be Manageable.
» Allow for scalability.
* Allow for easy collaboration.
* Allow for detection and correction of mistakes before the deliverables are published.

» Allow for correction of mistakes after the deliverables are published.

But don't panic if you do not have all the aspects of a project covered, your project does not need to be perfect,
perfectible.

it needsto be

https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/
https://github.com/oxygenxml/dim

Blog | 3 - DITA| 72

DITA Linking Strategies

Thissmall tutoria is based on the "DITA Linking Strategies’ presentations | made for the DITA Europe 2016 and DITA North
America 2017 conferences. It's ageneral overview about DITA linking possibilities and best practices. Also, it'smeant asa
continuation of the DITA Reuse Strategies (on page 79) blog post.

According to Wikipedia:

“"A link, is areference to data that the reader can directly follow either by clicking, tapping, or hovering.

Basically, we should regard linking as yet another form of content reuse, except that instead of presenting the content in place, it
re-directs the end user to some other resource.

I'll start with describing linking at DITA Map level.
Map-Level Linking

A DITA Map usestopic references to assembl e the content of a publication.

<topicref href="installation.dita">
<topicref href="server_installation.dita"/>
<topicref href="client_side_installation.dita"/>
</topicref>

Depending on the output format, the topic reference may be alink in the table of contents for the XHTML -based outputs or it
may be interpreted as a content reference for the PDF-based output that generates a single monolith document. So the role of the
topi cref isdual, it may sometimes be regarded as alink to a topic and sometimes as a content reference.

https://en.wikipedia.org/wiki/Hyperlink

Blog | 3- DITA| 73

Chunking

DITA topic modules should be kept as small as possible, but sometimes the end user may need to read more than one topic to
achieve asingle task. So, when publishing to HTML-based outputs, you will end up asking yourself this question:

“Should I prefer larger HTML files or more links in the TOC?”

And you should always consider these two ideas:
.]Ic_i nks are disruptive. Ideally, users would not need to jump around in content to read the entire story they are searching
or.
* Small topicsthat are usually read consecutively by the end user can probably get merged together.
For example, if the installation of your product requires installing both a server-side and a client-side component, by using DITA

chunking you can choose to have separate DITA topic modules for each of the installation procedures but merge the topics
together in the web-based outputs:

<rnip>
<title>User Quide</title>
<t opi cr ef ="installation.dita" ="t o-content">
<t opi cr ef ="server_installation.dita" ="no"/>
<t opi cr ef ="client_side_installation.dita" ="no"/>
</ topicref>
</ map>

Y ou can read more about chunking in the DITA 1.3 specification. The DITA Style Guide aso has a good overview about why it
is preferable to write small topics and then merge them together using the chunking mechanism.

Topic-Level Linking
Links that appear inside topics can be divided into various categories and I'll discuss each of these categories separately.

In-Content Links

In-content links are links added manually in the topic content:

<l i >See: <xref ="http://ww.../" ="htm " ="external "/>

Y ou should keep in mind that this kind of link is disruptive to the reading experience because when end users encounter them,
they need to decide weather to read further on or to follow the link. On the other hand, this may sometimes be a good thing. For
example, one of the installation steps may require the end user to download a certain library from an external website before
continuing.

Y ou can read more about links in general inthe DITA 1.3 specification. The DITA Style Guide, written by Tony Self, also
discourages the use of in-content links.

Related Links
Related links are placed at the end of the DITA topic and they allow the end user to explore additional resources after the current
topic has been read.

<rel ated-1inks>

<l i nk ="http://tontat.apache. org/" ="htm" ="external "/ >
</rel ated-|inks>

To minimize disruption when reading the content in general, the preferred place where to place linksis at the end of the
generated HTML page.

Y ou can read more about related linksin the DITA 1.3 specification.

http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/archSpec/base/chunking.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/#Artefact/Topics_and_Information_Types/c_Avoiding_Hierarchy_in_Topics.html
http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/langRef/base/xref.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/Artefact/Cross_Referencing/c_Avoiding_Cross_References.html
http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/langRef/base/related-links.html

Blog | 3 - DITA | 74

Defining Related Links using Relationship Tables

Related links do not need to be manually added at the end of each topic. Y ou can define relationship tablesin the DITA Map:

<rel tabl e>
<rel row>
<rel cel | >
<t opi cr ef ="client_side_installation.dita"/>
</relcell>
<rel cel | >
<t opi cr ef ="server_installation.dita"/>
</relcell>
</relrow

</reltabl e>

These tables can define associations between two or more topics, associations that automatically contribute to the related links
cregtion in the generated HTML output.

Here are some benefits of using relationship tables:

* A topic should have as few links as possible defined directly within. This makes it easier to reuse the topic in various
contexts and keeps it as separate as possible for other parts of the DITA project, decreasing the possibility of broken
links.

* By default, links defined in relationship tables are bi-directional, allowing users to land on any of the topics when
searching for solutions and find their way to the related ones.

» Using arelationship table separates the task of writing topics from the task of finding relationships between topics.

Y ou can read more about relationship tablesin the DITA 1.3 specification. The DITA Style Guide aso recommends using
relationship tables.

Indirect Links (Key References)

All the link samples we've look at so far have been direct links, links that point to the target using the @ir ef attribute. Indirect
links require two steps:

1. Define akey inthe DITA Map for the target.
<keydef ="client_installation" ="client_side_installation.dita"/>

2. Usethe defined key to reference the target resources.

<xref ="client_installation"/>

Here are some of the benefits of indirect linking:

» Offersthe ability to reuse link target text and meta data. If you want to have custom text for a certain link, you can define
it directly in the DITA Map:

<keydef ="di ta_ot _website" ="http://ww.dita-ot.org/" ="htm "
="external ">
<t opi cnet a>
<l i nkt ext >DI TA Open Tool kit Web Site</Iinktext>
</t opi cnet a>
</ keydef >

and then add key referencesin all other places:

<xref ="dita_ot_website"/>

 Easier conditional linking (including links to topics that sometimes may be missing). If you want your topic to link either
to one target or to another depending on the filtering/profiling conditions, instead of adding profiling directly on the link,
you can add the profiling conditions directly in the DITA Map:

http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/langRef/base/reltable.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html#Artefact/Cross_Referencing/c_Related_Links_Section.html

Blog | 3- DITA| 75

<t opi cr ef ="slicing" ="slicing_vegetabl es_for_experts.dita" ="expert"/>
<t opi cr ef ="slicing" ="slicing_vegetabl es_for_novices.dita" ="novi ce"/>
<keydef ="slicing" ="noLi nk" ><t opi cnet a><keywor ds>

<keywor d>Sl i ci ng</ keywor d></ keywor ds></t opi cnet a>
</ keydef >

and then link to the key from each topic:

<xref keyref="slicing"/>

* Easier link management. A good overview about al the outbound links in your project helps you maintain and control
lists of allowed external web sites. With indirect references, you can define all references to external resourcesin a
separate DITA Map. An example of aDITA project using indirect links to achieve separation of links by purpose can be
found here: https.//github.com/oxygenxml/dita-project-best-practices.

* Makesit easier to move/rename topics. When you move or rename a topic referenced viaindirect links, only the link
defined in the DITA Map will break, making it easier to fix broken links.

The DITA 1.3 specification has a chapter about indirect links.

Auto-Generated Links

Until now, I've talked about manually added links, either in the topic or in relationship tables. Using the DITA @ol | ecti on-type
attribute, you can define relationships between parent and child topic referencesin the DITA Map, relationships that result in
automatic links added between them:

<t opi cr ef ="installation.dita" ="sequence" >
<t opi cr ef ="server_installation.dita"/>
<t opi cref ="client_side_installation.dita"/>

</topicref>

There are 3 useful types of @ol I ecti on-type values:

* Unordered - Links are generated from parent to children, and from children to parent.
* Family - Links are generated from parent to children, from children to parent, and from sibling to sibling.

* Sequence - Links are generated from parent to children, from children to parent, and from child to previous sibling (if
applicable) and next sibling (if applicable).

Y ou can read more about auto-generated linksin the DITA Style Guide.

Conditional Linksin Distinct Publications

Y ou may publish documentation for multiple products from the same DITA content. Also, you may want to have links point to
various targets depending on the product for which you want to publish the documentation. Or, you may want to suppress links
completely in certain publications.

When using direct linking, you will need to profile each link depending on the publication:

Find our nore about slicing vegetables: <xref ="slicing_vegetabl es_for_experts.dita" ="expert"/>
<xref ="slicing_vegetabl es_for_novices.dita" ="novi ce"/>.

With indirect links, you can define the profiling attributes as DITA Map level:

<t opi cref
<t opi cr ef

"slicing"
"slicing"

"slicing_vegetabl es_for_experts.dita"
"slicing_vegetabl es_for_novices.dita"

"expert"/>
"novi ce"/ >

and thus, simplify the reference made in the topic content:

Find our nore about slicing vegetables: <xref ="slicing/>.

https://github.com/oxygenxml/dita-project-best-practices
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/key-based-addressing.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/#Artefact/Maps/c_Collection_Types.html

Blog |3 - DITA| 76

Conditional Linksin the Same Publication

Using DITA 1.3 key scopes, you can reuse atopic multiple timesin aDITA Map and have each referenced topic contain links to
various target topics. For example, if my pr epari ng_veget abl es. di t a topic hasalink:

<li nk ="slicing"/>

you can define various key scopesin the DITA Map that bind the "dlicing" key to various targets:

<t opi chead ="Cooki ng for Experts" ="expert">

<t opi cr ef ="preparing_vegetabl es.dita" ="preparing"/>

<t opi cr ef ="slicing_vegetabl es_for_experts.dita" ="slicing"/>
</ t opi chead>
<t opi chead ="Cooki ng for Novices" ="novi ce">

<t opi cr ef ="preparing_vegetabl es. dita" ="preparing"/>

<t opi cr ef ="slicing_vegetabl es_for_novi ces. dita" ="slicing"/>

</t opi chead>
This previous blog post (on page 78) contains more details about key scopes.

Link Text
When linking to an external resource or to a DITA topic or element, the publishing engine will attempt to deduce the link text
from the target context. For example, the link to aDITA topic or element that containsa<ti t | e> will use that title as the link
text. Thelink to an external resource (for example to http://www.oxygenxml.com) will, by default, use the HTTP location as
thelink text. Y ou can also customize each link text individually. So, ask yourself this question:

“Should | leave the link text to be automatically computed or should | set amore friendly text?”

For internal links to elements that have atitle, in general it is more flexible to not set a custom text and let the publishing engine
decide one for you. For externa links, you should usually specify your custom link text.

Should | Link or Should | Reuse?

Suppose you want to bring a certain paragraph, note, or section to the end user's attention. If that particular target element is not
very large, you should always reuse it (using a content reference) instead of linking to it.

Conclusions

Aswith all large projects, managing links in agrowing DITA project can be problematic, so you need to become organized. As
an overview of what we've discussed so far, | suggest the following best practices:

e Linkingisaform of reuse so:

o Reuse small pieces of content instead of linking to them
o Avoid too much linking (linking is disruptive)

* Useindirect links. It will allow you to reuse link text and make profiling/filtering easier while giving you a better
overview of the outbound links for your project.

If you want to experiment with the various linking strategies | discussed above, you can find some samples here: https://
www.oxygenxml.com/forum/files/linking-strategies-samples.zip.

DITA 1.3 Branch Filtering - Next Generation of Reuse

In this blog post, I'm going to give you a small example of how branch filtering can benefit two cases of reuse, which could not
be done previously. Y ou can read more about branch filtering in the DITA 1.3 specs.

Case 1 - Combine Two Profilesin the Same Publication

Suppose that you have aDITA Project about preparing and cooking vegetables and your DITA map looks like this:

https://www.oxygenxml.com/forum/files/linking-strategies-samples.zip
https://www.oxygenxml.com/forum/files/linking-strategies-samples.zip
https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/branch-filtering.html

Blog | 3 - DITA| 77

<! DOCTYPE map PUBLIC "-//OASI S//DTD DI TA Map//EN' "map. dtd">

<|’Tﬁp>
<titl e>Cooking vegetabl es</title>
<t opi cr ef ="cl eani ngTabl eArea. di ta" ="novi ce"/>
<t opi cr ef ="preparingVegetabl es.dita"/>
<t opi cref ="addi ngExtraFl avor. dita" ="expert"/>
</ map>

Y ou have some content common both for expert and novice users but you al so have content that is specific for atarget audience.
Y ou do not need to teach expert chefs how to clean the table and you do not want to teach novice cooks about enhanced
flavoring techniques.

All of thisisfine until at some point you decide to produce a publication that contains content merged inside both the novice and
the expert map content. Here's where branch filtering can help. Y ou can create amain DITA map that reuses your current DITA
map with two profiling contexts:

<! DOCTYPE map PUBLIC "-//OASI S//DTD DI TA Map//EN' "map. dtd">

<map>
<title>Cooki ng Vegetables.</title>
<t opi chead =" Cooki ng for Begi nners" ="novi ce">
<t opi cref ="veget abl es. di t amap" ="di t amap" >
<di taval ref ="novi ce. di taval "/ >
</topicref>
</ t opi chead>
<t opi chead ="Cooki ng for Experts" ="expert">
<t opi cref ="veget abl es. di t amap" ="di t amap" >
<di taval ref ="expert.ditaval "/>

</topicref>
</ t opi chead>
</ map>

Case 2 - Reusing Common Topics with Different Product Names

Suppose that you have asimple DITA task in which you have described how a certain task can be performed for acertain
product. In our case, the task describes peeling potatoes:

Peeling potatoes

1. »*Wash the potatoes in luke-warm water. <

2. tUse the peeler gently to remove the outer la}rerjd

The task works and at some point in your Vegetables Soup publication, you realize that you need to write a similar task about
peeling cucumbers. The task is exactly the same, except for the product name. So naturally you want to reuse the existing written
task. For this, we re-write the task so that instead of the product potatoes, it contains two consecutive profiled product names:

Peel i ng <ph ="pot at oes" >pot at oes</ ph><ph ="cucunber s" >cucunber s</ ph>
and include the task in the main DITA map in two places with different ditaval filters applied:

<! DOCTYPE map PUBLIC "-//OASI S//DTD DI TA Map//EN' "map. dtd">

<map>
<title>Peeling Vegetables.</title>
<t opi chead =" Pot at oes" >
<t opi cr ef ="peeling.dita">
<di t aval r ef ="pot at oes. di taval "/ >

</topicref>
</t opi chead>

Blog |3 - DITA| 78

<t opi chead ="Cucunber s" >
<t opi cref ="peeling.dita">
<di taval ref ="cucunbers. di taval "/ >

</topicref>
</ t opi chead>
</ map>

This kind of usage will produce two topic HTML filesfrom the single peel i ng. di t a (inthe HTML output folder), one for
each filter context.

The DITA samplesfor this post can be downloaded from https://mwww.oxygenxml.com/forum/files/
branchFilteringBlogSamples.zip.

As usual, any feedback is welcomed.

DITA 1.3 Key Scopes - Next Generation of Reuse

In this blog post I'm going to give you a small example of how key scopes can benefit simple cases of reuse which could not be
done previously.

Let's say you have asimple DITA task in which you have described how a certain task can be performed for a certain product. In
our case, the task describes peeling a potato:

Peeling potatoes

1. *Wash the potatoes in luke-warm water.4

2. pUse the peeler gently to remove the outer layerld

The task works and at some point in your Vegetables Soup publication you realise you need to write a similar task about peeling
cucumbers. Thetask is exactly the same, except the product name. So naturally you want to reuse the existing written task. For
this we re-write the task so that instead of the product potatoes it contains akey reference:

<ph ="veget abl e"/>

Next we need to definein our DITA Map the vegetable key and bind it to a specific value in the potatoes context:

<t opi cr ef ="pot at oes_overvi ew. di ta" =" pot at oes" >
<!-- Define the vegetable key value in this key scope -->
<keydef ="veget abl e" >

<t opi cnet a>
<keywor ds>
<keywor d>pot at oes</ keywor d>
</ keywor ds>
</ topi cnet a>

</ keydef >
<!-- Reference to the comon task -->
<t opi cr ef ="peeling.dita"/>

</topicref>

and add in our DITA Map another key scope with the overview and the task which deal with cucumbers peeling:

<t opi cr ef ="cucunbers_overvi ew. di ta" ="cucunbers" >
<!-- Define the vegetable key value in this key scope -->
<keydef ="veget abl e" >

<t opi cnet a>
<keywor ds>
<keywor d>cucunber s</ keywor d>
</ keywor ds>

https://www.oxygenxml.com/forum/files/branchFilteringBlogSamples.zip
https://www.oxygenxml.com/forum/files/branchFilteringBlogSamples.zip

Blog | 3 - DITA| 79

</t opi cnet a>

</ keydef >
<l-- Reference to the cormobn task -->
<t opi cr ef ="peeling.dita"/>

</ topicref>

Asyou may have noticed, we have not used the key scope names for anything. Just by defining the key scopes, we made the
product name to be expanded differently in both contexts. But our Vegetables Soup publication may also contain atopic which
lists all possible vegetables. Thistopic is defined in a context outside any key scope:

<t opi cr ef ="veget abl es_over.dita"/>
and this overview topic can refer to each product name using the full keyscope key reference value:

<! DOCTYPE topic PUBLIC "-//QASI S//DTD DI TA Topi c//EN" "topic.dtd">

<t opi c ="veget abl es_over">
<title>Vegetabl es Overview</title>
<body>
<p>This is an overview of all vegetables necessary to make soup. You will |earn how to use
veget abl es |ike <ph ="pot at oes. veget abl e"/ > and <ph ="cucunbers. vegetable"/> to
make a great starter soup.</p>
</ body>
</topic>

As stated before, this kind of reuse was not possible using the standard DITA 1.2 standard constructs. Asit turns out, with DITA
1.3 we can also implement this kind of reuse using branch filtering. The DITA samplesfor this post can be downloaded from
https://www.oxygenxml.com/forum/files/keyscopesBlogSampl es.zip.

Asusua any feedback is welcomed.

DITA Reuse Strategies

Introduction

Thissmall tutorial is based on a presentation called DITA Reuse Strategies | made at DITA Europe 2015. It's main purpose isto
explore the numerous possibilities of reusing content within the DI TA standard.

First of al | think the main reasons we want to reuse content in technical documentation are these ones:

 Consistent explanations for the same situations.

* Lesscontent to trandlate.

* Decreased time spent writing content.

* Obtain different publications from common content.

I would like to start by saying that technical documentation writers have two very important roles:

* Record knowledge about using tools and processes.
 Spread knowledge to reach large audiences.

As a software engineer, having a product user's manual which isrich in examples and answers to frequently asked questions
saves me time. Instead of individually explaining to end users various application behaviors | can give links to the manual or
better yet our end usersfind that content by themselves. Because there are just not enough human resources in any company in
order to individually help each end user.

Welll start with atop down approach to reuse. Complete small examples for most of the reuse situations described below can be
found here: https://www.oxygenxml.com/forum/files/dita_reuse_strategies samples.zip.

https://www.oxygenxml.com/forum/files/keyscopesBlogSamples.zip
https://www.oxygenxml.com/forum/files/dita_reuse_strategies_samples.zip

Blog | 3 - DITA| 80

Version Control and Reuse

Version Control alows you to reuse content tagged at a certain point in time in order to produce older versions of your
publications. So no matter what open source version control system like SVN or GIT you are using or commercial CM S, you
should always have the possibility to produce older bug-fix versions for your documentation. So you can think of Version
Control as content reuse on the time line axis.

Converting XML content to various output formats

it =) @ oa @

XML initself is perfect for reuse because:

* XML isanintermediary format. We don't do XML for the pleasure of it. We do it because we want to obtain multiple
outputs from it and it has enough content and structure inside to allow for it. Some call this single sour ce publishing but
it can be just as easily be called content reuse.

* XML contains the necessary content.
* XML contains the necessary structure.
* XML isastandard. So you have a choice between open source and commercial tools.

* XML isastandard for defining standards. Among which DITA, the most versatile standard XML vocabulary when it
comes to reuse.

Whatever output you will obtain from the XML, thereis a constant, this XML format which contains al your datawill contain
more semantic meaning than any of the published outputs.

Y ou can read more about the selling points of using XML in this older blog post: A Short Story of Reuse (on page 288).

Create larger publications from existing ones

k ke

Y ou can merge multiple existing DITA Mapsin various new publications.

The only existing danger for thiswould be if you define keys with the same name but different values in both publications.
Fortunately DITA 1.3 comes to the rescue with the new keyscopes support which alows keys with the same name to be resolved
to various values on each scope:

<! DOCTYPE map PUBLIC "-//OASI S//DTD DI TA Map//EN' "map. dtd">
<I‘Tap>
<title>Vegetabl es Soup</title>

https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/keyScopes.html

Blog | 3 - DITA| 81

<topicref href="carrots/carrots.ditamap" fornmat="ditamap" keyscope="ksl1l"/>

<topi cref href="potatoes/pot atoes. di tamap" fornmat="di tamap" keyscope="ks2"/>
</ map>

%

Hts and Tips

Even if you have asingle root map you can keep related sections or chaptersin different DITA Maps. Besides
adding more logical structure to your content you never know when you'll reuse those sub-maps in different publications.

Reuse content for similar products

TN

Product 1 Product 2

Thisisthe most common case for successful reuse, you have multiple similar products which share common functionality. So
similarly the technical documentation for each of those products will also share common content. Thisis usually done in two
ways. In the following sections | will use the term root map for referring to the DITA Map which will actually get published.

DITA Content

1. Use multiple Root M aps.

Root map 1

Root map 2

Each root map is published to obtain the output for a certain product type. As major benefits you can:

* Reuse entire topics.
* Define variable product names.
* Remap links and reused content using keys.

Blog | 3 - DITA | 82

Publication mapsfor phone models X1000 and X2000 using almost similar content except Blue-tooth
chapter which appearsin only one of them.

DITA Maps Manage

AL AT T] (R

D0 Map. <Curment mog:
* mohiePhanaX1 000 ditamag *
S¥NCrn K10 P ussEr Quik

productfizma = X10DD

DITA Maps Manager
, 1 | B -
Raot map: <Qurrent map
» mebilo Mo X 2000 ditamap =
Symoo X340 phona Lsar guids

productidame = x2000

Getting started a2 Gaming started

Brief spacificatiors

2. Useasingle Root Map.

Root map

Y ou have a single publication root map which gets published for various products using profiling filters applied on it. These
filters can be applied either at topic or element levels. The product name is variable and depends on the applied filters.

Related information
DITA Profiling / Conditional Text

Reuse fragments of content

Until now we have regarded the topic as an indivisible unit in our project. But there are many times when it becomes useful to
reuse smaller elementsin various places throughout the publication.

Content References

Content references are theinitial and probably the mostly used reuse mechanism in the DITA specification. They allow reusing
elements from atopic in various other topics throughout the publication.

https://www.oxygenxml.com/doc/ug-editor/topics/dita-profiling-conditional-text.html

Blog | 3 - DITA| 83

Small example of content referencing

Reusable Component from topic r eusabl es. di t a:

<dd ="CPU' >
<ul ="ul _l ym bqd_x4">
M ni mum - <tm ="tni'>Intel Pentiumlll</tnp/<tm ="t nl' >AMD At hl on</ t m»

cl ass processor, 1 <ternmpGHz</tern».
<l i >Recormended - Dual Core class processor.

</ dd>

Content reference:

<dd ="pat h/ t o/ reusabl es. di t a#t opi cl D/ CPU"/ >

Y ou can read more about how content references can be inserted in Oxygen here: https://www.oxygenxml.com/doc/ug-editor/
#topi cs/eppo-create-conref.html.

Content Key References

When compared to direct content references, content key references are done with indirect addressing. Y ou first need to define a
key for the topic which contains the reused content and make the content key reference using that key.

Small example of content key referencing

Reusable Component from topicr eusabl es. di t a:

<dd ="CPU' >
<ul ="ul _lym bqd_x4">
M ni mum - <tm ="tni'>Intel Pentiumlll</tnp/<tm ="t ni' >AMD At hl on</t m»

cl ass processor, 1 <ternpGHz</terne.
<l i >Recormended - Dual Core class processor.
</ ul >
</ dd>

Key definitionin DITA Map:

<keydef ="reusabl e.install" ="reusabl es/reusabl es. dita"/>

Content key reference:

<dd ="reusabl e.install/CPU"/>

Y ou can read more about how content key references can be inserted in Oxygen here: https://www.oxygenxml.com/doc/ug-
editor/#topi cs/eppo-create-conkeyref.html

Content Reference Ranges

Instead of reusing a series of consecutive elements (for example steps, list items) one by one you can reuse an entire range of
sibling elements. For thisto work, both the initial and the final elements need to have | Ds defined on them.

Small example of content key reference with ranges

Reusable stepsfrom task r eusabl e_st eps. di t a:

<st eps>
<step ="washi ng" >
<cnd>Wash t he veget abl es thoroughly. </ cnd>
</ step>
<step ="peel i ng" >
<cnd>Pass the peel er gently over the vegetable. </ cnd>
</ st ep>

</ st eps>

https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conref.html
https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conref.html
https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conkeyref.html
https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conkeyref.html

Blog | 3 - DITA | 84

Key definitionin DITA Map:

<keydef ="reusabl e_st eps” ="reusabl e_steps.dita"/>

Content key reference range:

<steps>
<step ="reusabl e_st eps/ washi ng" ="defaul t. di t a#def aul t/ peel i ng">
<cnd/ >
</ st ep>
</ st eps>

The usual dialog from Oxygen used to insert reusable content can also be used to select the range of elementsto insert: https://
www.oxygenxml.com/doc/ug-editor/#topi cs/i nsert-dita-content-reference.html.

Content Reuse Tips and Tricks

| tried to compile below a set of best practices to follow when reusing content:

>

» Keep al your reused content in special topics located in special folders. Technical writers need to know that they are
editing content which potentially is used in multiple contexts.

» Keep adescription for each reused element. Y ou can have topics which act like dictionaries of reused content. A table
of reused content can have two columns. On the first column each cell contains the reused element and on the second
one you can have a small description for each reused element. The description acts as metadata, it may give the technical
writer more details about how that content should be reused.

» Use conkeyrefsinstead of conrefs. Really, because they use relative paths conrefs always break when you move topics
around. But more about conkeyrefs in the next section.

* When using conkeyrefs you should create a special map with key definitions. This keeps the reused content and the keys
for it separate from the live content.

Pushing Content

Besides the techniques we've seen so far for pulling reused content in multiple places you can aso push content to a certain
specified place inside an existing topic.

So why push content?

Imagine you have an existing publication "Cooking Book" containing atask with a couple of steps for peeling vegetables. At
some point you create the DITA Map for alarger publication called "Cooking Book for Pros' which reuses the entire original
publication by referencing to the original publication DITA Map. But you somehow need to add extra stepsin the original task
when the larger publication gets printed.

https://www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html
https://www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html

Blog | 3 - DITA| 85

Cooking Book for Pros Publication

Push Extra Step For
Experts

Original Task

Pushing Content to an existing sequence of steps

Sequence of steps from the original task:

<st eps>

<step i d="peel er_handling">
<cnmd>Pass the peeler gently over the vegetable. </ cnd>
</ st ep>
</ st eps>

Key definition in DITA Map for the task which will push the content:

<keydef href="stepsPusher.dita" keys="peeling”/>

Content key reference push donefromthe" st epsPusher . dit a" task:

<steps>
<step conaction="mark" conkeyref="peeling/peel er_handling">
<cnd/ >
</ step>
<step conaction="pushafter">
<cnd>Read the instructions. </ cnd>
</ step>
</ steps>

So the only purpose of the " st epsPusher . di t a" task which isreferenced with aresour ce-only processing role and thus
does not appear at al in the output is to modify the content of the original task which gets published.

How do we push content in Oxygen? First you would need to define an ID on an element which will be the target for our push.

The conref push mechanism allows us either to replace, insert an element before or after this target element. After thisyou can

create the topic which pushes the content, create the step which will be pushed. Y ou can right click inside this steps and choose
Reuse->Push Current Element....

Blog | 3 - DITA| 86

Key References (Variables)

Y ou can reuse simple variables like product name, executable, and so on by defining keywords in the Dita M ap and then using
keyref'sin topics to reuse those text fragments.

Reusing keywor ds
Defining the reused keyword in the DITA Map:
<!-- product nane -->
<keydef ="product" ="editor">

<t opi cnet a>
<keywor ds>
<keywor d>Oxygen XM Edi t or </ keywor d>
</ keywor ds>
</t opi cmet a>
</ keydef >

Reusing the keyword in atopic:
<title>Installation Options for <ph ="product"/></title>
In Oxygen you can create key definitionsin the DITA Map by right clicking in the DITA Maps Manager and choosing

Append Child->K ey definition with keyword.... After this, in the topic you can use Oxygen's regular Reuse Content action to
insert the keyref.

DITA 1.3 Contributions to Reuse

DITA 1.3 takes content reuse to an entire new level allowing you to:

* Reuse topic with variable content depending on context (keyscopes).
* Reuse the same content profiled in various ways in the same publication (branch filtering).

Reuse with Key Scopes
Using DITA 1.3 key scopes you can reuse atopic in multiple placesin the DITA Map with slightly different content.
Reuse using key scopes

Let's say you write atopic about Windows installation for your software product:

<! DOCTYPE topic PUBLIC "-//QASI S//DTD DI TA Topi c//EN" "topic.dtd">

<t opi c ="installation">
<titl e><ph ="osNane"/> Installation</title>
<body>
<p>
<ol ="ol _g5h_st4_zt">

<l i >Downl oad the executable.
Run the executable by double clicking it.
Fol | ow steps described in the installation w zard.</Ii>
</ ol >
</ p>
</ body>
</topic>

and at some point your realise that exactly the same steps need to be followed for the Linux installation. The only differenceis
the name of the operating system. Y ou use a keyref to refer to the operating system name but just with DITA 1.2 support the key
will resolveto asingle value.

Using keyscopes in the DITA Map you can define multiple values for your key depending on the context:

<t opi cgr oup ="w ndows" >
<keydef ="osNane" >
<t opi cnet a>
<keywor ds>

https://www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html

Blog | 3 - DITA| 87

<keywor d>W ndows</ keywor d>
</ keywor ds>
</ topi cnet a>

</ keydef >

<t opi cref ="installation.dita"/>
</ t opi cgr oup>
<t opi cgr oup ="1inux">

<keydef ="osNane" >

<t opi cnet a>
<keywor ds>
<keywor d>Li nux</ keywor d>
</ keywor ds>
</ topi cnet a>
</ keydef >
<t opi cref ="installation.dita"/>
</t opi cgr oup>

Y ou can find amore detailed example and download samples for reuse based on key scopes in this blog post: DITA 1.3 Key
Scopes - Next Generation of Reuse (on page 78).

Reuse with Branch Filtering

With branch filtering you can combine two profiles of the same DITA Map in alarger publication.

Creating a Phones Catalogues publication

If you aready have a DITA Map from which you can obtain publications for various mobile phone versions based on the
profiling filters applied to it, you can use branch filtering to create alarger publication which incorporates the publications for all
mobile phone versions:

<t opi cr ef ="phoneDet ai | s. di t amap" ="di t amap" >
<di t aval r ef ="di t aval / X1000Br anch. di t aval ">
<di t aval met a><dvr Resour ceSuf f i x>1</ dvr Resour ceSuf f i x></ di t aval net a>
</ di taval ref>
</topicref>
<t opi cr ef ="phoneDet ai | s. di t amap" ="di t amap" >
<di t aval r ef ="di t aval / X2000Br anch. di t aval ">
<di t aval net a><dvr Resour ceSuf f i x>2</ dvr Resour ceSuf f i x></ di t aval net a>
</ditaval ref>
</topicref>

Y ou can find a more detailed example and download samples for reuse based on branch filtering in this blog post: DITA 1.3
Branch Filtering - Next Generation of Reuse (on page 76)

Reuse non-DITA resources

Besides DITA topics you can reuse other resourcesin your DITA project:

» Reuse images either referenced directly or viaakey reference.
* Reuse other linked resources (like videos, PDFs and so on).

As binary resources are not embedded in the DITA topics, they are naturally reused by being kept in separate files and linked
when necessary.

>

Y ou can reuse images and link to other resources either via direct references or viaindirect key references. What to choose may
depend on how many times you refer to a certain image or binary resource. If you refer to it only once or twice you can use direct
referencing.

Blog | 3- DITA| 88

If you have problems getting images to appear the same size when published to PDF and XHTML-based outputs you should
make sure they do not have the dots-per-inch information saved inside them: https://www.oxygenxml.com/doc/ug-editor/topics/
stretched-images-pdf-output.html.

Conclusions
The DITA standard can provide for you quite alarge toolbox for reuse scenarios.

Besides the tips which are spread during this tutorial here is some additional advice for you:

Know alittle bit about all these possibilities (at least know that they exist), you never know when one of them might
comein handy.

For any given potential reuse situation you may find out that you can use multiple reuse strategies. So at a given time you
could reuse a piece of simpletext either via direct conrefs, indirect conkeyrefs or keyword keyrefs. Choosing one of the
strategies will depend on the situation. For example if you plan in the future to also have inline elementsin the reused
text, you should go with either conref or conkeyref. If you reuse that content only in one or two places you can go with
conref. But if you reuse it extensively you can define akey and use conkeyref.

Try to keep the reused content separately, in special folders. Writers will know that when they are editing resources from
these special folders they might modify content which is potentially used in multiple places.

If you plan to trandlate your content to other languages try not to reuse inline elements (other than product name and
constants which do not change when trandated). Usually the trandators need to translate entire block level-elementsin
order to have agood flow of translated content. The DITA 1.3 specs contains quite an useful recommendation for this:
https://www.oxygenxml.com/dita/1.3/specs/index.html#non-normative/el ementsM erged.html.

Cross-Book Links
We use cross-book links in our DITA books, and | wanted to share some of our experiences in using them.

A cross-book link isalink that crosses book boundaries. More specifically, it isalink from atopic in one book to another topic in
another book. Cross-book links are made possible by the introduction of keyscopesin DITA 1.3. For more about keyscopes, see
the related blog post, DITA 1.3 Key Scopes - Next Generation of Reuse (on page 78).

Note:

Referencesto "book" in this article apply equally to both <map> and <booknmap> maps.

To define a cross-book link, two components are needed:

* In the source book map, a peer map reference defines a keyscope for each target map that might be referenced by a
cross-book link:

<rTB_p>
<title>Book 1</title>
<mapr ef ="book2. di t amap” keyscope="book2" processing-rol e="resource-only" scope="peer"/>
</ map>

In DITA, apeer map isamap that exists alongside your current map. It is a declaration of another map's existence, but
not an inclusion of that map for processing or publication.

* To create a cross-book link in a source book topic, use akeyref (key-based) reference to the target topic that includes the
keyscope prefix for the target book:

<xr ef ="book2. t opi c2">t opi ¢ 2</xref>

The following example shows a simple case with two books, each containing a topic that references a topic in the other book:

https://www.oxygenxml.com/doc/ug-editor/topics/stretched-images-pdf-output.html
https://www.oxygenxml.com/doc/ug-editor/topics/stretched-images-pdf-output.html
https://www.oxygenxml.com/dita/1.3/specs/index.html#non-normative/elementsMerged.html

Blog | 3 - DITA| 89

book1.ditamap

<map>
<title>Book 1</title>
<mapref href="book2.ditamap" keyscope="book2" scope="peer"/>

</map>

<topicref href="topicl.dita' keys="topicl"}> decccccccccccpmpoccc-

topicl.dita

<p>See <xref keyref:"booki_.t_or_)i 22:>_tgoi_c_2_</2(r_er>- DOOOOO00OOOO00g

for details.</p>

Cros's-book
links

book2.ditamap

<map>
<title>Book 2</title>
<mapref href="book1.ditamap" keyscope="book1" scope="peer"/>

</map>

<topicref href="topic2.dita' keys="topic2"|> €ecccccccccccipecs

topic2.dita

<p>See <xref keyref:"booki_.topi cl">topic 1</xret>- Cooooooooooooog
for details.</p> cTEssSEsees

) Note: Thefiguresin this article omit pr ocessi ng-rol e="r esour ce-onl y" from <mapref scope="peer"> elementsfor

brevity. Although the DITA-OT implicitly treats peer map references as resource-only by defaullt,

define their processing role in our books.

we do explicitly

Cross-book <xr ef > elements must explicitly contain their target text inside them. Although Oxygen automatically resolves and
displays cross-book link target text during authoring, the DITA-OT does not resolve or include the target text during publishing
(because peer maps are not processed). As aresult, you must manually include the target text inside cross-book link elements.

Oxygen provides good support for creating cross-book links in its authoring environment. Y ou can create cross-book linksin two

ways:

* Choosing a scoped key from the Crossr efer ence insertion dialog box

* Doing adrag-and-drop operation from the source book in the DITA Maps Manager view into the topic editing window

» Doing a Copy of the target topic's <t opi c> element, then a Paste special > Paste as link where you want the link

After you create the link, check that the @xeyr ef value uses the expected keyscope value. If not, check that the map context in
the DITA Maps Manager is set to the source map so that the link is created within the correct source context. This can be done
either by setting the context drop-down to <Current map> and ensuring that the source map tab is selected, or by explicitly

setting the context drop-down to the source map (but remember to change it back if you do this).

An interesting cross-book link problem occurred when we started reusing topics across books. We encountered a case where (1)

multiple books reused the same topic, and (2) that topic had cross-book links to topicsin those books:

Blog | 3 - DITA| 90

book 1.ditamap

<map>
<title>Book 1</title>
<mapref href="book2.ditamap" keyscope="book2" scope="peer"/>

<topicref href="topicl.dita" keys="topicl"/> L EELELELEL LY EEET)

<topicref href="shared.dita" keys="shared'y/>

</map>

—P[shared dita

<p>See <xref keyref= "bookl toplcl">top|c 1</xref>- ceccccccccccccaeccccs

and <xref keyref= "bookQ topic2">topic 2</xreF:---------------- coccce

for details.</p>

book2.ditamap
<map>
<title>Book 2</title>
<mapref href="book1.ditamap" keyscope="book1" scope="peer"/>

<topicref href="topic2.dita' keys="topic2"/> ecccccccccccqece-

<topicref href="shared.dita" keys="shared'}/>

</map>

In thisexample, theshar ed. di t a topic isincluded in both book1 and book?2, and it contains references to other topics in those
books. The link to book1. t opi c1 was broken for the topic instance in book1 (because book1 had no knowledge of a"book1"
keyscope), but the same link worked for the topic instance in book 2 (because book2 had a"book1" peer map keyscope defined).
A similar issue happened for the link to book2. t opi c2 in book?2.

The solution was to define local map-level keyscopes for book1 and book?2:

Blog | 3 - DITA| 91

book1.ditamap

<map keyscope="book1" >

<title>Book 1</title>

<mapref href=“boo[<2.difcamap" keysco_pec" boo ope="peer"/>

. >
<topicref href="shared.dita" keys="shared'}y>

:{ shared.dita Local

<p>See <xref keyref="book 1.topic1">topic 1</xref> map-level

and <xref keyref="book2.topic2">topic 2</xref> keyscopes

\

for details.</p>

book2.ditamap /

<map Keyscope="book?2" >

<title>Book 2</title>
<mapref href:"bool_<1.di_tamap" keysco_pe:" book1" scope="peer"/>

>

<topicref href="shared.dita" keys="shared

This allowed keyscoped links in reused topics to always resolve properly, whether they pointed to atopic in the same book or a
peer map book.

Note:

If you use local map-level keyscopes, be sure to use Oxygen 24.0 or later to author your content. It contains some fixes
to create cross-book links properly in locally keyscoped map contexts.

If you use cross-book links, it isimportant to understand how the DITA-OT handles them. When a book containing cross-
book linksis published by itself, the cross-book link elements are accepted syntactically, but during processing they become
unresolved links because the target peer maps are not processed. To fix the links, you can run some kind of post-processing
utility on the final set of published content. For HTML-based output (such as WebHelp), we use the following utility:

https://github.com/chrispy-snps/DITA-fix-xbook-html-links
(Wedo not yet have a solution for cross-book linksin our PDF output, but we plan to look into it in the future.)

But, something very interesting happens when these books are published together as part of a higher-level "collection" map:

https://github.com/chrispy-snps/DITA-fix-xbook-html-links

Blog | 3 - DITA| 92

olh.ditamap

<map>
<title>Online Hel p</title>

</map>

<mapref href="book1.ditamap" keyscope="book1" />
<mapref href="book2.ditamap" keyscope=" book2" />
<mapref href="book3.ditamap" keyscope="book3" />

book1.ditamap

<map keyscope="book1" >
<title>Book 1</title>

<mapref href="book?2.ditamap"
<mapref href="book3.ditamap"

<!-- book 1 topics -->
</map>

keyscope=
keyscope=

" book2"
" book3"

scope="peer"/>
scope="peer"/>

book2.ditamap

<map keyscope="book2" >
<title>Book 2</title>

<mapref href="book1.ditamap"
<mapref href="book3.ditamap"

<!-- book 2 topics -->
</map>

keyscope=
keyscope=

" book1"
" book3"

scope="peer"/>
scope="peer"/>

book3.ditamap

<map keyscope="book3" >
<title>Book 3</title>

<mapref href="book1.ditamap"
<mapref href="book?2.ditamap"

<!-- book 3 topics -->
</map>

keyscope=
keyscope=

" book1"
" book2"

scope="peer"/>
scope="peer"/>

links resolve during publishing, no post-processing is needed.

Note:

When a keyscoped <napr ef > points to amap that has its own local map-level keyscope, the keyscopes are not cascaded.
Instead, a single keyscope with the union of keyscope valuesis used, so that any keyscope in the union can be used to

reference into the map. For details, see 2.3.4.2 Key scopes.

This demonstrates a very useful aspect of keyscoped links between books—links automatically become cross-book or local
as needed, depending on what is included in publishing. This gives you the freedom to publish booksindividualy, in asingle
collection, or in multiple collections. And you can even rearrange books across collections, all without having to modify any

linksin the DITA source.

DITA XML vs Markdown Syntax and Capabilities Comparison

The following article is a comparison between the DITA XML standard and Markdown. The comparison attempts to cover
syntax specification and features. | attempted to write this comparison without any implicit bias towards one or the other. If there
are DITA XML or Markdown features that | missed, that was done out of ignorance and not out of malice. Feedback is always

welcomed, as usual.

Note that the top-level "collection" map includes each book map within its relevant keyscope. As aresult, links that were "cross-
book" in the individual maps automatically resolve and become local links in the higher-level collection map! And because these

http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/keyScopes.html

Blog | 3 - DITA| 93

Table1l. DITA XML vsMarkdown
DITA XML Markdown

Short de- | DITA XML isastandard for designing, writing, man- | Markdown is alightweight markup language that you
scription [aging, and publishing information. There are multiple | can use to add formatting elements to plain text docu-
versions of the DITA standard, the most popular one | ments. There was an effort to standardize Markdown to
being version 1.3. a specification named CommonMark. There are lots of
Markdown flavors and extensions, most of them sharing
acommon set of features. The most popular are probably
CommonMark and Github-flavored Markdown.

Useful re- | Resources for learning DITA with Oxygen (on page
sourcesfor | 8)

Basic Markdown Syntax

learning ¢ Markdown: Syntax
Pros
* OASIS Open standard. * Large user base. Familiar to software engineers
* Advanced support for content reuse (on page who useit to write issues.
79) either at topic, block, or inline level. * Basic syntax, easy to learn.
» Advanced support for filtering (on page * Easier to read without specialized tools.
81) (generating multiple similar user * Offline and online free editing tools.
guides from the same content). * For the base syntax, quite easy to edit the con-
* Open-source publishing engine with lots of tent in a plain text editor tool.
supported output formats (some free, some * Lots of static web site generator open-source
commercial) like HTML5, Windows Help, tools like MKDocs or Jekyll.
PDF, Word, EPUB, and so on.
Why use DITA
Pros and Cons
Cons
* Smaller user base. * Not al language features are available in the
¢ Harder to learn. base Markdown "specification”. There are var-
« XML ismore verbose than plain text. ious flavors with various syntax differences be-

tween them and you probably need to pick afla-
vor to use and stick to it.

Advanced features like content reuse, for exam-
ple, are not in the base standard but may beim-
plemented with different syntaxes for various
flavors.

Static web site generators are not compatible
with each other (they have various specific con-
figuration files) or to link between files.

Not many possibilities to assemble multiple
Markdown files and publish outputs like PDF or
Word, for example.

Cannot render complex cell content (multiple
paragraphs, for example) in table cellsor in list
items.

* Visual editing requires the use of a commer-
cial tool like Oxygen.

* Smaller number of open source tools to gener-
ate professional looking outputs.

Pros and Cons

Cross- A DITA Map can refer to a Github-flavored Mark- -
Compati- | down file and the publishing engine can perform ady-
bility namic conversion from Markdown to DITA while edit-

ing.

https://www.oxygenxml.com/dita/1.3/specs/introduction/dita-release-overview.html
https://www.markdownguide.org/getting-started/
https://commonmark.org/
https://www.markdownguide.org/extended-syntax/
https://www.markdownguide.org/basic-syntax/
https://daringfireball.net/projects/markdown/syntax
https://stefan-jung.org/dita-introduction/topics/why-dita.html
https://stefan-jung.org/dita-introduction/topics/pros-and-cons.html
https://www.mkdocs.org/
https://jekyllrb.com/
https://stefan-jung.org/dita-introduction/topics/pros-and-cons.html
https://www.dita-ot.org/dev/topics/markdown-dita-syntax-reference.html#ariaid-title1
https://www.dita-ot.org/dev/topics/markdown-dita-syntax-reference.html#ariaid-title1

Blog | 3 - DITA | 94

Tablel. DITA XML vsMarkdown (continued)

DITA XML Markdown
Table of Gathering multiple DITA topicsin alarger publication | CommonM ark does not define the possibility to create
contents | and defining the table of contentsis done by using DI- | atable of contents or to aggregate multiple Markdown
TA Maps. filesin larger publications.
Working with DITA Maps Various static web site generators have various ways
to define table of contents, usually based on Yaml, like
MKDoaocs.
Validation
* Validation according to the DITA specifica- * Usually with Markdown, you can look at alive
tion DTDg/schemas done when publishing or preview while typing to see that everything
when editing. looks OK.
* Additional validation can be done with * There are various processors that may be used to
Schematron rules (on page 262). validate Markdown, for example using a set of
JSON rules.
Publishing Most publishing libraries rely on the conversion from
* The DITA Open toolkit publishing engine Markdown to HTML.
comes with default support to publish DITA
Maps and customize to plain HTML5, PDF. * Lotsof open-source static web site generators.
* There are additional open-source pluginsto * Lotsof libraries (Javascript, Java, Python, etc)
publish to MS Word or EPUB. to convert Markdown to HTML.
* Other curated open-source plugins are avail- * Other conversion types available using Pandoc.
ableinthe DITA OT plugins registry.
* Commercia plugins are available to publish
to WebHelp output like Oxygen WebHelp or
Fluid Topics.
Tranda- | Thereare translation agencies directly accepting DITA | There are various tools like Simpleen that seem to
tion XML content or you can convert DITA XML to XLiff | specifically handle Markdown trandation.
and use atranslation system. Each DITA XML topic
or map can have an @ni : | ang attribute to specify the
current language in which it is written.
Tranglating your DITA Project (on page 176)
Extensibil-
ity * Possibility to define anew specialization * Use HTML elements inside Markdown, for ex-
of the DITA vocabulary with new element ample, when defining complex tables or you do
names. not have a Markdown equivalent.
e Usethe @ut put cl ass attribute value on ele- e Yaml headers.
ments to set custom values used when styling * Ability on certain Markdown flavors/extensions
the output. to define attributes for each element.
* Usethe DITA <dat a> element with custom
names and values and take them into account
with publishing time customizations.
* Usethe DITA <f orei gn> element (for exam-
ple, embed HTML inside it using a custom
publishing plugin).

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/definition-of-ditamaps.html
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/definition-of-ditamaps.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-pathfinder-documents.html
https://www.mkdocs.org/user-guide/configuration/
https://github.com/mattbriggs/markdown-validator
https://github.com/mattbriggs/markdown-validator
https://www.dita-ot.org/
https://www.dita-ot.org/plugins
https://www.oxygenxml.com/xml_editor/webhelp.html
https://www.fluidtopics.com/
https://about.gitlab.com/blog/2022/04/18/comparing-static-site-generators/
https://pandoc.org/
https://simpleen.io/blog/translate-markdown-files
https://www.oxygenxml.com/doc/ug-editor/topics/dita-integrate-specialization.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-embed-html.html
https://python-markdown.github.io/extensions/attr_list/

Tablel. DITA XML vsMarkdown (continued)

Blog | 3 - DITA| 95

DITA XML Markdown
M etadata
* The DITA <prol og> element can contain lots * Sometimes, Markdown files may contain Y aml
of metadata information, but not visible in the headers before the actual content that define
published output. Example: simple keys and values. Example:
<topic ="topic_wcj _tgy_5wh"> ---
<title>The Title</title> title: The Title
<pr ol og> aut hor: The Aut hor
<aut hor >The Aut hor </ aut hor > keywords: [one, two, three, four]
<net adat a> ---
<keywor ds> # A Headi ng
<keywor d>one</ keywor d> Text body.
<keywor d>t wo</ keywor d>
</ keywor ds>
</ met adat a>
</ pr ol og>
* The<i ndext er m» elements are also considered
metadata, as they are used to generate an index
table.
Content No content re-use support is in the standard base. Vari-
reuse: * Key references to re-used product names. ous extensions do exist, for example:
* Content references to re-used elementsin mul-
tiple places. * Redocly uses HTML <enbed> tags with refer-
« Content reference push to push content in mul- ences to Markdown files to re-use entire chunks
tiple places. of Markdown content placed inside afile.
* Code references to re-use pieces of codein * Hugo uses specia notations named shortcuts.
multiple places.
*» Key scopes and branch filtering to re-use the
same topics in multiple contexts with different
content in each context.
* Re-use atopic in multiple places in the publi-
cation.
Filters Y ou can use profiling attributesin DITA XML topics | There may be, but | am not aware of such afeaturein
or on topic referencesin aDITA Map map. By using a | Markdown.
single DITA Map and filtering (on page 81) it dif-
ferently, you can obtain multiple publications from it.
For example, for the Oxygen user's manual, we obtain
lots of distinct publications for "Oxygen XML Editor",
"Oxygen XML Author", "Oxygen XML Web Author"
from the same DITA Map.
Headings Y ou can use a number of # characters followed by space
* DITA topicshavea<tit|e> element that ap- | and text to define anew heading. Headings do not neces-
pears as a heading 1 when published and is al- | Srily need to be incremental, you can start with heading
so used for the<titie > elementinthepub- |level 2 and then have aheading level 1.
lished HTML document. # Heading level 1
* You can nest topics one inside the other and ### Heading | evel 3
the generated HTML output will have <h2>, ## Heading |evel 2
<h3>, etc for each nested topic, depending on o
the nested depth.
* You can have <sect i on> elements with <t i -
t1 e>elementsinside atopic (they cannot be
nested one inside the other).

https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/prolog-elements.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/indexing-d.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/indexing-d.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-variables.html
https://www.oxygenxml.com/doc/ug-editor/topics/working-with-content-references.html
https://www.oxygenxml.com/doc/ug-editor/topics/conref-push-mechanism.html
https://www.oxygenxml.com/doc/ug-editor/topics/coderef.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-keyscopes.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-branch-filtering.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-reuse-topics.html
https://redocly.com/docs/developer-portal/guides/reusing-content/
https://gohugo.io/content-management/shortcodes/#shortcodes-with-markdown
https://www.oxygenxml.com/doc/ug-editor/topics/dita-profiling-conditional-text.html
https://www.markdownguide.org/basic-syntax/#headings

Blog | 3 - DITA| 96

Tablel. DITA XML vsMarkdown (continued)

DITA XML Markdown
<topic ="topi c_wcj _tgy_5wb">
<title>Titlel</title>
<body>
<section>
<title>Section 1</title>
<p>par agr aph</ p>
</ section>
</ body>
<topic ="inner">
<title>lnner topic title</title>
</topic>
</topic>

Block ele- | There are multiple topic types like <concept >, <t ask>, | Block elements: Paragraphs, tables, lists, images, block

ments <ref erence>, and extratopic types can be added using | quotes, etc.
aspecialization. The basic block elements are <t op-
ic>, <title>, paragraph <p> elements, <codebl ock>,
lists , <t abl e>, <secti on>, <fi g>, <i mage>,
<not e>. There are also other block-level elements, de-
pending on the topic type.

Inlineele- | , <i >, <u>,<sup>,<sub> and other inline elements Bold, italic,underline. Depending on the Markdown

ments with more semantic meaning (like <codeph>, <ui con- | flavor, other inlines like subscript, superscript, strike-
trol >, <fil epat h>). through.

Au- The DITA <obj ect > element can be used to reference | No officia support, maybe use embedded HTML con-

dio/Video [audio, video or iframe content. tent or add alink to the audio/video instead.

Tables The DITA <t abl e> element is based on the CALS Markdown tables are usually written in an ASCI| graph-
table specification. Cells can span multiple rows or ic, like representation allowing for cells content to be
columns and contain inside block elements content like | aligned I€eft or right. By default, cells can contain only
lists, paragraphs. The table can have header and body | plain text inside. If more complex table structures are
rows. needed, HTML tables can be inserted directly in Mark-

down if the used Markdown flavor supports HTML ele-
mentsinsideit.

Lists Ordered , unordered , or definition lists<dl >. | Ordered and unordered lists. Each list element contains
Other topic typeslike <t ask> contain, for example, the | simple content. It cannot contain block- level elements
<st eps> element that is an ordered list of steps. Each | like additional lists or multiple paragraphs.
list item can contain block elements like paragraphs,
other lists, tables, etc. Thetask list is an interesting extension to show check-

boxes next to each list item.

Other types of lists (definition list for example) or list
items that contain multiple block-level elements can be
inserted directly in Markdown if the used Markdown fla-
vor supports HTML elementsinsideit.

Links Links to other web resources.

* Internal links (cross references):
o Link to another topic.
o Link to aparticular element in another
topic.
o Linksto web resources.
 Related links (at the end of each topic)

https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/body-elements.html
https://www.markdownguide.org/basic-syntax/
https://www.oxygenxml.com/doc/ug-editor/topics/dita-adding-media.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-tables-2.html#eppo-tables__cals-table-model
https://www.markdownguide.org/extended-syntax/#tables
https://www.markdownguide.org/basic-syntax/#lists-1
https://www.markdownguide.org/extended-syntax/#task-lists
https://www.markdownguide.org/basic-syntax/#links

Tablel. DITA XML vsMarkdown (continued)

Blog | 3 - DITA| 97

DITA XML

Markdown

o Link to another topic.

o Link to aparticular element in another
topic.

o Linksto web resources.

Conclu-
sion

* Harder to typein aplain text area, requires DI-
TA editing tools (most of which, are not free).

» Advanced support for structured validation.

* Advanced support for content re-use and pro-
filing conditional text.

* Publishing engine allows publishing to multi-

Easy to manually typein aplain text areabut a
preview definitely helps.

More complex elements need to be inserted as
HTML elements.

Various Markdown extensions have extra sup-
port for example for content reuse.

Mostly targeted towards obtaining web-based
HTML content.

Looks like alanguage that is not intended to do
the heavy lifting of producing multiple deliv-
erable formats and deliverables from the same
content.

ple output formats like HTML, PDF, and oth-
ers based on plugins that can be installed.

Publishing Customizations

An overview of various useful publishing customizations that appear asindividua articles on the Oxygen XML Blog.
DITA Project Overview

* DITA Map Metrics Evolution (on page 170)
* Creating Link Graphs From DITA Maps (on page 121)

Embed Latex Equationsin DITA Topics

Adding support for embedding LaTeX equationsin DITA content (on page 116)
Embed PlantUML/Mermaid Diagramsin DITA Topics

* Embedding Diagramsin DITA topics using PlantUML (on page 101)
* Embedding Diagramsin DITA Topics Using Mermaid (on page 102)

DITA Task Steps Presentation Alternatives

* Presenting DITA Task Steps as Diagrams (on page 103)
* Show DITA Task Stepsin Separate Tabs (on page 106)

Generate Google Structured Data Content from DITA Content

* Generating Google Structured Data from your DITA tasks (on page 131)
* Generating Google Structured Data from your DITA frequently asked questions (on page 133)

Present Consecutive Elementsas Tabsin HTML Output

» Show Consecutive DITA Code Blocksin Separate Tabs (on page 105)

Blog | 3 - DITA| 98

Convert OpenAPI Content to DITA

Converting OpenAPI to DITA XML and Publishing to WebHelp (Experimental) (on page 107)
Various Applicationsfor DITA to Markdown Publishing

* Creating PowerPoint Slides from DITA Content (on page 124)
* Publishing DITA Content Using the MKDocs Web Site Generator (on page 122)

DITA Prolog Customizations

* Displaying prolog details (author, creation date, read time) (on page 127)
* Dynamically publishing alist with the most recent topics (on page 128)
* Dynamically Generating an RSS Feed (on page 129)

Marking DITA Topicswith Labelsfor the HTM L -based Output
Adding Labelsto Topicsin the WebHelp Responsive Output (on page 125)

Generating Content for Google Chatbot

Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML content (on page 216)

Externally Contributed Articles

* Cross-Book Links (on page 88)
* Preprocessing DITA-OT Project Files (on page 182)

DITA WebHelp Publishing Solution Advantages

Oxygen XML Editor's own user guide is generated from DITA XML content and published as WebHelp Responsive output:
https://www.oxygenxml.com/doc/ug-editor/.

Below, | tried to compile alist of advantages that the published WebHelp output obtained from DITA XML content has:

It's a pure HTM L 5+Javascript publishing solution without the need of any server-side component.

The WebHelp output can be used both offline and online.

It's compatible with all browser vendors: https.//www.oxygenxml.com/doc/ug-webhel p-responsive/topics/
wh_getting_started.html.

It has aresponsive layout, adjusts to the screen size, and can be used on awide variety of devices (mobile devices,
tablets, or desktops).

The WebHelp layout can be fully customized: https://www.oxygenxml.com/doc/ug-webhel p-responsi ve/topics/webhel p-
responsi ve-description.html.

The WebHelp publishing comes with 7-8 pre-configured color themes, but you can also create your own publishing
templates: https://www.oxygenxml.com/doc/ug-webhel p-responsive/topics/whr_publishing_templates.html.

Y ou can also use the free Oxygen Styles Basket website to customize the WebHelp output: https://
styles.oxygenxml.com/.

It contains its own search engine implemented in Javascript (with support for AND, OR, exact match, auto
complete, and highlights). The search engine can assign various weights and priorities to various elements.https./
www.oxygenxml.com/doc/ug-webhel p-responsive/topi cs/whr-search-engine.html.

It automatically generates an Index page if the DITA content contains <i ndex> elements.

For each section contained inside atopic, amini table of contents is generated: https://www.oxygenxml.com/doc/ug-
webhel p-responsive/topi cs/whr-html 5-pages.html#whr-topi c-page-layout__topic-topic-toc.

Inner topics, sections, and topics can be folded.

Code block content can be automatically syntax highlighted when publishing: https://www.oxygenxml.com/doc/ug-
webhel p-responsi ve/topi cs/add-syntax-highlights-codebl ocks.html.

https://www.oxygenxml.com/doc/ug-editor/
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/wh_getting_started.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/wh_getting_started.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/webhelp-responsive-description.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/webhelp-responsive-description.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr_publishing_templates.html
https://styles.oxygenxml.com/
https://styles.oxygenxml.com/
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-search-engine.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-search-engine.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-html5-pages.html#whr-topic-page-layout__topic-topic-toc
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-html5-pages.html#whr-topic-page-layout__topic-topic-toc
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/add-syntax-highlights-codeblocks.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/add-syntax-highlights-codeblocks.html

Blog | 3 - DITA| 99

* Tracked changes and comments made in the DITA XML content can be published as side notes in the WebHelp
output: https://www.oxygenxml.com/doc/ug-webhel p-responsive/topi cs/webhel p-responsi ve-pl ugin-additional -
parameters.html#webhel p-responsive-plugin-additional -parameters __ webhelp_show_changes and_comments.

* The WebHelp output comes with support for the following built-in languages: English, French, German, Japanese, and
Chinese, while support for additional languages can be added. It can also be used with right-to-l€ft text orientation:
https://www.oxygenxml.com/doc/ug-webhel p-responsive/topics/whr-locali zation.html.

* It can be used for context-sensitive help, called with various help 1Ds from an application:https.//www.oxygenxml.com/
doc/ug-webhel p-responsi ve/topi cs'whr-context-sensitive.html.

* The WebHelp Feedback system can be integrated in every WebHelp page and provides support for users to add
comments and offer feedback (create account, post message, moderate, manage multiple versions of documentation):
https://www.oxygenxml.com/doc/ug-webhel p-responsive/topi cs/whr-feedback-system.html.

* You can embed Facebook, Twitter, or Google Analytics: https://www.oxygenxml.com/doc/ug-webhel p-responsive/
topics/webhel p-soci al-media-integration.html.

* WebHelp documentation can also be produced on the server side: https://www.oxygenxml.com/xml_webhelp/
download_oxygenxml_webhelp.html.

* The WebHelp output was tested for Accessibility problems, it works well with a screen narrator, and one of the WebHelp
color themesis fully 508 compliant for people with reduced vision: https://www.oxygenxml.com/doc/ug-webhel p-
responsive/topics/whr-accessibility.html.

The following past webinars may further help people who want to customize the WebHelp output:

» Techniques for Customizing the WebHelp Responsive Output
* Documentation Review Workflow Using Oxygen Feedback
* DITA Publishing and Feedback with Oxygen Tools

PDF

DITA OT PDF Customization - Table with Alternate Row Background Colors

Based on this forum thread | will try to give some steps in which you can create your own DITA Open Toolkit PDF
customization folder for customizing atable to have alternate row background colors.

1. First of al you need to know the XSLT template that you need to override.
o You can open aDITA topic which has atable inside it and select in the Outline view the table row. The
Attributes view will show you its @class attribute value which is - topic/row .
o Usethe Find/Replace in Filestool to search in the PDF plugin folder (for example DI TA- OT- DI R/
pl ugi ns/ org. di t a. pdf 2/) for the string topic/r ow.
o Inthe XSLT stylesheet DI TA- OT- DI R/ pl ugi ns/ or g. di t a. pdf 2/ xsl / f o/ t abl es. xsl| youwill
find atemplate which matches all rows from atable body:

<xsl:tenpl ate ="*[contai ns(@l ass, ' topic/tbody ')]/*[contains(@l ass, ' topic/row
DIRE
<f o: tabl e-row ="t body. row'>
<xsl:call-tenplate ="comnmonattri butes"/>

<xsl : appl y-t enpl at es/ >
</fo:tabl e-row
</ xsl :tenpl at e>

That is the template which you will need to overwrite in your customization.
2. Copy the entire folder DI TA- OT- DI R/ pl ugi ns/ org. di t a. pdf 2/ Cust omi zat i on to an external location. For
examplein my case | copied it to my Desktop.
3. Renamed in that copied folder thecat al og. xm . ori g filetocat al og. xmi , edit it and uncomment the line:

<uri ="cfg:fol xsl/custom xsl" ="fol xsl /custom xsl "/ >

This custom catalog file will be automatically used to contribute in the PDF publishing process with high priority the
XSLT stylesheet located in Cust omi zat i on/ f o/ xsl / cust om xsl .

4. Renameinthe Cust omi zat i on/ f o/ xs| folder thecust om xsl . ori g filetocust om xsl . This stylesheet will
contain all your template overrides.

5. Overwriteinthecust om xsl| the original template like:

https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/webhelp-responsive-plugin-additional-parameters.html#webhelp-responsive-plugin-additional-parameters__webhelp_show_changes_and_comments
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/webhelp-responsive-plugin-additional-parameters.html#webhelp-responsive-plugin-additional-parameters__webhelp_show_changes_and_comments
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-localization.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-context-sensitive.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-context-sensitive.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-feedback-system.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/webhelp-social-media-integration.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/webhelp-social-media-integration.html
https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html
https://www.oxygenxml.com/xml_webhelp/download_oxygenxml_webhelp.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-accessibility.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-accessibility.html
https://www.oxygenxml.com/events/2022/webinar_techniques_for_customizing_the_webhelp_responsive_output.html
https://www.oxygenxml.com/events/2022/webinar_documentation_review_workflow_using_oxygen_feedback.html
https://www.oxygenxml.com/events/2021/webinar_dita_publishing_and_feedback_with_oxygen_tools.html
https://www.oxygenxml.com/forum/topic11623.html

Blog | 3 - DITA | 100

<xsl:tenpl ate ="*[contai ns(@l ass, ' topic/tbody ')]/*[contains(@lass, ' topic/row"')]">
<f o: tabl e-row ="t body. row'>
<xsl : choose>
<xsl : when ="(count (precedi ng-sibling::*[contains(@l ass, ' topic/row')]) nmod 2) =

<I-- Even row, light blue -->
<xsl:attribute ="background-col or">rgb(210, 222, 253)</xsl:attribute>
</ xsl : when>
<xsl : ot herw se>
<l-- Odd row, white -->
<xsl:attribute ="backgr ound- col or">whi t e</ xsl : attri but e>
</ xsl : ot her wi se>
</ xsl : choose>
<xsl:call-tenpl ate ="commonattributes"/>
<xsl : appl y-t enpl at es/ >
</fo:tabl e-row
</ xsl :tenpl at e>

6. If you want the table frame border colorsto have a custom color you can override some attribute sets defined in the
DI TA-OT-DI R/ pl ugi ns/org. dita. pdf 2/ cfg/fo/attrs/tables-attr. xsl:

<xsl:attribute-set
<xsl:attribute
</xsl:attribute-set>
<xsl:attribute-set
<xsl:attribute
</xsl:attribute-set>
<xsl:attribute-set
<xsl:attribute
</xsl:attribute-set>
<xsl:attribute-set ="table__tableframe__left" ="common. border__left">
<xsl:attribute ="border-1|eft-col or">bl ue</xsl:attribute>
</ xsl:attribute-set>ou

"tabl e__tabl efrane__top" ="comnmon. border __t op">
" bor der - t op- col or " >bl ue</ xsl : attri but e>

"tabl e__tabl eframe__bottont ="common. border __bot t om' >
"bor der - bott om col or " >bl ue</ xsl : attri but e>

"table__tableframe__right" ="common. border __right">
"border-right-col or">bl ue</xsl :attri bute>

7. Edit your PDF transformation scenario and set the parameter customization.dir to point to your customization folder.
8. Publish and enjoy :)

If you want to create aDITA Open Toolkit plugin to achieve the same result you can use the dita.xsl.xslfo plugin extension
to contribute your own XSLT stylesheet to the publishing process: Creating asimple DITA Open Toolkit plugin to customize
published HTML and PDF content (on page 118)

Possibilities to obtain PDF from DITA

Lately while attending Tekom 2015 and DITA OT Day 2015 | happened to come across two more DITA to PDF solutionsthat |
did not know about so | tried to compile below alist of all DITA to PDF possibilitiesthat | know of, along with some details:

* DITA Map PDF - based on HTML5 & CSS. Thiscommercial plugin is devel oped and maintainced by Oxygen as an
alternative to the default PDF publishing. It allows styling the DITA content using CSS and publishing to PDF using our
own Chemistry engine or other commercial solutionslike Prince XML or Antenna House.

* Default DITA to PDF solution embedded in the DITA Open Toolkit distribution. Besides Apache FOP you
can also use RenderX XEP or Antenna House for publishing. It's customization can be done either viaa
plugin or viaa PDF customization folder: https.//www.oxygenxml.com/doc/ug-editor/index.html#topics
dita_pdf_output_customization.html.

* AntennaHouse DITA OT plugin for producing PDF from DITA using Antenna House. Thereisalso aDITA
specialization plugin which alows you to set specific formatting attributes directly to DITA elements.

e The TopLeaf XML Publisher commercial product allows you to produce various outputs like PDF and EPUB from
XML content. The application also has a visual PDF layout formatter, it comes also with aDITA OT plugin and has
installation instructions for Oxygen:https://turnkey.com.au/topl eaf-downl oads/.

* Miramo, again a commercial solution which recently started developing support for DITA using aDITA OT plugin.
Possibly user based DITA to PDF publishing will be free and server based production will require buying alicense. Like
TopLedf, it aso has avisual PDF layout designer.

* Adobe FrameMaker can aso publish to PDF using its own solution.

Now the question would be, why there are so many solutions available? In my opinion all these solutions are available because
the default DITA to PDF output still requires quite alot of XSLT skillsin order to customize.

https://www.oxygenxml.com/events/2015/dita-ot_day.html
https://www.oxygenxml.com/doc/ug-editor/index.html#topics/dita_pdf_output_customization.html
https://www.oxygenxml.com/doc/ug-editor/index.html#topics/dita_pdf_output_customization.html
https://github.com/AntennaHouse/pdf5
https://github.com/AntennaHouse/ah-dita
https://github.com/AntennaHouse/ah-dita
https://contiem.com/software/publishing-software/topleaf/
https://turnkey.com.au/topleaf-downloads/
https://www.miramo.com/download/documentation/Miramo_DITA-OT_GettingStarted.pdf

Blog | 3 - DITA | 101

What do you think?

DITA PDF publishing - Force page breaks between two block elements

Let's say that at some point in your DITA content you have two block level elements, like for example two paragraphs:

<p>Fi rst para</p>
<p>Second par a</ p>

and you want to force in the PDF output a page break between them.

Here'show a DITA Open Toolkit plugin which would achieve this could be implemented:

1. You define your custom processing instruction which marks the place where a page break should be inserted in the PDF,
for example:
<p>Fi rst para</p>

<?pagebr eak?>
<p>Second par a</ p>

2. Inthe DITA Open Toolkit distribution in the pl ugi ns directory you create a new plugin folder named for example

pdf - page- br eak.
3. Inthisnew folder create anew pl ugi n. xm file with the content:

<pl ugi n ="com your package. pagebr eak" >
<feature ="package. support . nanme" ="Force Page Break Plugin"/>
<feature ="package. support.enmail" ="support @ourenui | . coni'/ >
<feature ="package. ver si on" ="1.0.0"/>
<feature ="di ta. xsl.xsl fo" ="pageBr eak. xsl " ="file"/>

</ pl ugi n>

The most important feature in the plugin isthat it will add anew XSLT stylesheet to the XSL processing which produces
the PDF content.
4. Createin the same folder an XSLT stylesheet named pageBr eak. xs| with the content:

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
="http://ww. w3. org/ 1999/ XSL/ For mat "
="1.0">
<xsl :tenpl ate ="processing-instruction(' pagebreak')">
<f o: bl ock ="page"/ >

</ xsl : tenpl at e>
</ xsl : styl esheet >

5. Install your plugininthe DITA Open Toolkit by running the DITA OT ANT integrator task.

If you are running the publishing from Oxygen XML Editor you can use the predefined transformation scenario: https.//
www.oxygenxml.com/doc/ug-oxygen/#topics/dita-ot-install-plugin.html.

If you run DITA OT from the command line please follow these guidelines: http://www.dita-ot.org/2.0/dev_ref/plugins-
installing.html.

Embedding Diagramsin DITA topics using PlantUML
PlantUML isaneat library that takes textual descriptions of diagrams and produces visual diagrams from them.

Suppose you have aDITA topic that embeds such atextual description of adiagram: https://github.com/oxygenxml/dita-ot-
diagrams-plugin/blob/master/com.oxygenxml.diagrams.svg/samples/testPlantUM L Diagram.dita.

https://www.oxygenxml.com/doc/ug-oxygen/#topics/dita-ot-install-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/#topics/dita-ot-install-plugin.html
http://www.dita-ot.org/2.0/dev_ref/plugins-installing.html
http://www.dita-ot.org/2.0/dev_ref/plugins-installing.html
https://plantuml.com/
https://github.com/oxygenxml/dita-ot-diagrams-plugin/blob/master/com.oxygenxml.diagrams.svg/samples/testPlantUMLDiagram.dita
https://github.com/oxygenxml/dita-ot-diagrams-plugin/blob/master/com.oxygenxml.diagrams.svg/samples/testPlantUMLDiagram.dita

Blog | 3 - DITA | 102

<?xml version="1.0" encoding="UTF-8"7%>
<!DOCTYPE topic PUBLIC "-//CASIS//DTD DITA Topic//EN" "topic.dtd">
<topic "testPlantUML">
<title>Test diagram</title>
<body>
<p*
<foreign "embed-plant-—uml">
@startuml
Alice -> Bob: Authentication Reguest

Bob —-> Alice: Authentication Response

Llice -> Bob: Another authentication Request
Zlice <—-— Bob: Another authentication Response
@enduml</foreign>
<fp}
</body>
</topic>

Test diagram

Alice Bob

|
|
I Authentication Request

|
' Another authentication Request

B §

-
>
=

— L

Alice Bob

To provide support in Oxygen for using such diagramsin DITA topics, you need to install the following components:

* An Oxygen plugin that presents PlantUML textual descriptions asimages when editing the content in the Author visual
editing mode: https://github.com/oxygenxml/wsaccess-javascript-sampl e-pluging/tree/master/plantuml -images-support.

* A DITA Open Toolkit publishing plugin that, onceinstalled in the DITA Open Toolkit, will convert the textual
descriptions to diagrams for both the HTML -based and PDF outputs: https://github.com/oxygenxml/dita-ot-diagrams-
plugin.

Once you have this setup, you can both visualize the diagrams when editing and publish them while having the diagram
representations dynamically converted to SVG in the published output.

Related information
Embedding Diagramsin DITA Topics Using Mermaid (on page 102)
Presenting DITA Task Steps as Diagrams (on page 103)

Embedding Diagramsin DITA Topics Using Mermaid

Mermaid is aneat library that takes textual descriptions of diagrams and produces visual diagrams from them.

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/plantuml-images-support
https://github.com/oxygenxml/dita-ot-diagrams-plugin
https://github.com/oxygenxml/dita-ot-diagrams-plugin
https://mermaid-js.github.io/mermaid/#/

Blog | 3 - DITA | 103

Suppose you have a DITA topic that embeds such atextual description of adiagram: https://github.com/oxygenxml/dita-ot-
diagrams-plugin/blob/master/com.oxygenxml.diagrams.svg/sampl es'testM ermai dDiagram.dita.

<topic ="t est Mer mai dDi agr ant' >
<title>Test Mermmid diagranx/title>
<body>
<p>
<foreign ="enbed- ner nai d- di agr an’ >gr aph TD;
A- - >B;
A-->G;
B-->D;
C-->D; </ foreign>
</ p>
</ body>
</topic>

Test Mermaid diagram

To provide support in Oxygen for publishing to HTML using such diagramsin DITA topics, you need to install thisfree
publishing plugin that, once installed in the DITA Open Toolkit, will convert the textual descriptionsto SVG diagrams for both
the HTML-based and PDF outputs: https://github.com/oxygenxml/dita-ot-diagrams-plugin.

0 Tip: You can preview the created diagrams using the Mermaid live editor: https:.//mermaid.live/edit.

Related information
Embedding Diagrams in DITA topics using PlantUML (on page 101)
Presenting DITA Task Steps as Diagrams (on page 103)

Presenting DITA Task Steps as Diagrams

By using our free DITA Open Toolkit plugin, you can embed diagram text descriptions (either in PlantUML (on page 101) or
Mermaid (on page 102) format) in DITA topics and have them rendered as diagram images in the published output.

| experimented with dynamically constructing diagrams (using the Mermaid (on page 103) framework) for DITA tasks at the
time of publishing.

Suppose you have aDITA task with a set of steps.

<steps>
<step>
<cmd>Begin by cutting out all the dead branches. </ cnd>
<subst eps>

https://github.com/oxygenxml/dita-ot-diagrams-plugin/blob/master/com.oxygenxml.diagrams.svg/samples/testMermaidDiagram.dita
https://github.com/oxygenxml/dita-ot-diagrams-plugin/blob/master/com.oxygenxml.diagrams.svg/samples/testMermaidDiagram.dita
https://github.com/oxygenxml/dita-ot-diagrams-plugin
https://mermaid.live/edit

Blog | 3 - DITA | 104

<subst ep>
<cnd>Fi nd shear s</ cnd>
</ subst ep>

</ subst eps>
</ step>
<step>
<cnd>Renpve all tangled or crossed over branches. This allows air to circulate and
reduces bug and fungi infestation. </ cnd>
</ step>

</ steps>

A DITA Open Toolkit plugin can use an XSLT customization to dynamically create a Mermaid text diagram representation from
the DITA task steps:

<xsl:tenpl ate nmatch="steps[step]">
<xsl :vari abl e nane="var">
<forei gn outputcl ass="enbed- mer nai d- di agram’ cl ass="- topic/foreign ">

stat eDi agram v2
Title: <xsl:value-of select="normalize-space(ancestor::task/title)"/>
Title --> Statel
<xsl:for-each sel ect="step">
<xsl:vari abl e nane="st at ePos" sel ect="position()"/>

St at e<xsl : val ue- of sel ect ="$st at ePos"/>: <xsl:val ue-of select="normalize-space(cnd)"/>
<xsl:if test="position() > 1">

St at e<xsl : val ue- of sel ect="$statePos - 1"/> --> State<xsl:val ue-of sel ect="8%statePos"/>
</xsl:if>
<xsl:if test="substeps/substep">
<xsl:for-each sel ect ="subst eps/ subst ep" >
St at e<xsl : val ue- of sel ect ="$st at ePos"/ ><xsl : val ue-of select="position()"/> <xsl:value-of select="nornalize-s
pace(cnd) "/ >
</ xsl : f or - each>
state State<xsl:val ue-of select="$statePos"/>{
<xsl:for-each sel ect ="subst eps/ subst ep" >
<xsl:if test="position() > 1">
St at e<xsl : val ue- of sel ect ="$st at ePos"/ ><xsl : val ue-of select="position() - 1"/> -->

St at e<xsl : val ue-of sel ect =" $st at ePos"/ ><xsl : val ue- of sel ect="position()"/>

</xsl:if>

</ xsl : for-each>
}

</xsl:if>

</ xsl : for-each>
</foreign>
</ xsl :vari abl e>
<xsl : appl y-tenpl ates sel ect ="$var"/>
<xsl : next - mat ch/ >
</ xsl : tenpl at e>
</ xsl : styl esheet >

A complete DITA Open Toolkit that contains the customization can be found here: resources/com.oxygenxml.task.diagram.zip.

At the time of publishing, the task's HTML page will contain this diagram inside it:

resources/com.oxygenxml.task.diagram.zip

Blog | 3 - DITA | 105

Pruning

Begin by cutting out all the dead branches.

Find shears

[Start from the bottom branch]

{Work your way up }

[Remove all tangled or crossed over branches. This allows air to circulate and reduces bug and fungi infestation.]

{Take your time! Work comfortably and do not make shortcuts when cutting stems. Use good quality, sharp tools. J

Clean up the area. Burn all pest infested branches.

Related information
Embedding Diagramsin DITA topics using PlantUML (on page 101)
Embedding Diagramsin DITA Topics Using Mermaid (on page 102)

Show Consecutive DITA Code Blocks in Separate Tabs

When inserting <codebl ock> elementsin DITA content with code from various languages, you can use the @ut put cl ass
attribute to provide syntax highlighting for each codeblock in the generated WebHelp and PDF outputs: https:/
www.oxygenxml.com/doc/ug-editor/topi cs/add-syntax-highlights-codebl ocks-x.html.

Suppose you have consecutive <codebl ock> €lements, each one of them displaying how something can be accomplishedin a
particular programming language, like this:

<codebl ock ="preserve" ="ruby">require 'rest-client’
require 'json'

headers = {
' Content - Type' => 'application/octet-strean,
" Accept' => 'application/json',
"Aut horization' => 'Bearer {access-token}'

</ codebl ock>
<codebl ock ="preserve" ="pyt hon">i nport requests
headers = {
' Content-Type': 'application/octet-stream,
" Accept': 'application/json',
"Authorization': 'Bearer {access-token}'
} </ codebl ock>

https://www.oxygenxml.com/doc/ug-editor/topics/add-syntax-highlights-codeblocks-x.html
https://www.oxygenxml.com/doc/ug-editor/topics/add-syntax-highlights-codeblocks-x.html

Blog | 3 - DITA | 106

You can install this open-source DITA Open Toolkit plugin to display codeblocks as separate tabs in the published WebHelp
output: https://github.com/oxygenxml/dita-wh-codebl ock-tabs.

The WebHelp output should look like this:

Code samples
Ruby Python

require 'rest-client'

require 'json'

headers = {
'Content-Type' => 'application/octet-stream',
'Accept' => 'application/json',

'Authorization' => 'Bearer {access-token}'

Show DITA Task Stepsin Separate Tabs

You can present individual DITA task steps in separate tabs in the generated WebHel p output by using this free plugin: https://
github.com/oxygenxml/dita-wh-tabs.

Suppose you have a DITA task that contains steps like this:

<st eps>
<step>
<cnd>Begin by cutting out all the dead branches. </ cnd>
</ st ep>

<st ep>
<cnd>Cl ean up the area. </ cnd>

</ step>
</ st eps>

You can install this open-source DITA Open Toolkit plugin to display the steps as separate tabs in the published WebHelp
output: https://github.com/oxygenxml/dita-wh-tabs. To enable generating separate tabs for each DITA task step, you aso need to
set thetabs. for. st eps publishing parameter to the value of t r ue.

The WebHelp output should look like this:

https://github.com/oxygenxml/dita-wh-codeblock-tabs
https://github.com/oxygenxml/dita-wh-tabs
https://github.com/oxygenxml/dita-wh-tabs
https://github.com/oxygenxml/dita-wh-tabs

Blog | 3 - DITA | 107

v Convert Code Templates to External Author Actions

Describes how to bring code templates into a framework as author actions.

Code templates are code fragments that can be inserted quickly at the current editing position. Author actions that are available in the Author mode offer a lot more
flexibility. For example, you can decide what fragment to insert based on the current context. If you want to create a new framework or customize an existing framework,
then it makes sense to convert code templates to author actions. You can then contribute them to the content completion window. You can also define the framework
using a Framework extension script.

Step1 Step2 Step3 Step4 Step5 Step6 Step7

Create an XSLT file with the following content:

<?xml version="1.0" encoding="UTF-8"?7>
<xsl:stylesheet ="http://www.w3.0rg/1999/XSL/Transform"
="http://www.w3.0rg/2001/XMLSchema"

='"xs

="3.0">

<xsl:output thod="xm1"/>

Converting OpenAPI to DITA XML and Publishing to WebHelp (Experimental)

OpenAPI documentation isusually stored in JSON or YAML formats. In this topic, we will attempt to convert OpenAPI
documentation to Markdown using widdershins, convert Markdown to DITA content using the Oxygen Batch Converter add-on,
and then publish to WebHelp Responsive outpui.

1. Download the Yaml or JSON representation of an OpenAPI specification to the local disk. For this example, | used the
OpenAPI documentation from the Oxygen Content Fusion server: https://fusion.oxygenxml.com/api/swagger.json.

2. Download and install widdershins.

3. From acommand prompt or terminal, produce a Markdown representation of the origina API file:

wi ddershins --search fal se --1anguage_tabs 'ruby: Ruby' 'python: Python' --summary /../swagger.json -0
swagger . nd

4. In the Oxygen application, use the Tools > Batch Documents Converter > > Markdown to DITA conversion to
convert the Markdown fileto aDITA Map.

® swagger.ditamap X 4 b HE
f:=- Oxygen Content Fusion APl v4.1-SNAPSHOT
- Oxygen Content Fusion APl v4.1-SNAPSH:
- internal
- Returns statistics for activity found on
- Returns assignable accounts filtered t

- Returns a list (Topic ‘returns_assignable
- task

Marks a file as being read by the curt

Marks a file as no longer being read |

Returns the readers of the given file.

Returns the readers of the given files.
Get the content of a file.

Set the content of a file.

Bl makeFileReviewable

List the files from a given folder.

Clears the locks set on files.

Uploads a review task

Return a list pending collaborators

https://github.com/Mermade/widdershins
https://fusion.oxygenxml.com/api/swagger.json
https://github.com/Mermade/widdershins

Blog | 3 - DITA | 108

5. Once you have the DITA Map, you can publish it to WebHelp Responsive or integrate it as part of alarger DITA Map.
The map can be further modified by adding chunking attributes to avoid breaking the published output in too many
HTML files.

6. When publishing the swagger . di t anap to WebHelp, we set theval i dat e parameter to no because the produced
DITA content had some invalid content inside.

7. The resulting WebHelp output is available here: https://blog.oxygenxml.com/resources/open-api-webhel p/
returns_the_current_user%27s_details.html. Codeblocks that contain sample source code are divided into multiple tabs
using this plugin: Show Consecutive DITA Code Blocks in Separate Tabs (on page 105).

DITA to Confluence

Atlassian Confluence is a content collaboration tool used to help teams collaborate and share knowledge efficiently. Based on
my limited knowledge of Confluence, I'veidentified several ways that you can write technical documentation in DITA and then
make it available on the Confluence platform:

Publish DITA to Microsoft Word and import in Confluence

Oxygen XML Editor comes bundled with support to publish DITA content to Microsoft Word using the DITA to Word plugin:
https://www.oxygenxml.com/doc/ug-editor/topi cs/ditamap-ms-word.html.

Once you publish the DITA project to Word, you can use the Import Word Document action in Confluence to import the Word
document.

https://blog.oxygenxml.com/resources/open-api-webhelp/returns_the_current_user%27s_details.html
https://blog.oxygenxml.com/resources/open-api-webhelp/returns_the_current_user%27s_details.html
https://confluence.atlassian.com/
https://github.com/jelovirt/com.elovirta.ooxml
https://www.oxygenxml.com/doc/ug-editor/topics/ditamap-ms-word.html

Earth - Spring, Su
ound throughout

¢ v o EZIED

Attachments (0)
Page History
Restrictions
Analytics

Import documents as Confluence pages

Page Information
Resolved comments
Link to this Page...

View in Hierarchy

View Source

View Storage Format
Export to PDF

Export to Word

Import Word Document

Slack Notifications

Copy
Move

Delete

Blog | 3 - DITA | 109

Blog | 3 - DITA | 110

During the import process, you will be able to choose to split the document into multiple pages depending on the headings.

Import Word Document: Configuration

Root page title: |flowers

Where to import: ® Import as a new page in the current ¢
Replace "Flowers by Season”

Delete existing children of "Flowers k

Title conflicts: ® Rename imported pages if page nam
Replace existing pages with importec

Remove existing pages with the sam:

Split by heading: Don't split v

Level 1 Headings
Level 2 Headings
Level 3 Headings

Publish DITAtoHTML5 and import in Confluence

Although Confluence supports out-of-the-box importing only from Microsoft Word, there is acommercial file importer plugin
for Confluence: https.//marketplace.atlassian.com/apps/1221333/all-in-one-file-importer-for-confluence. This plugin can import
various file formats to Confluence, including Markdown and HTML.

The plugin contributes an import action that can be used to either import individual HTML or Markdown files or entire folders.
The plugin might try to import various unwanted file formats (such as CSS and image files) so these types of files need to be
manually deleted before the import process. Also, the plugin does not seem to properly resolve links between the imported
HTML files.

https://marketplace.atlassian.com/apps/1221333/all-in-one-file-importer-for-confluence

Blog | 3 - DITA| 111

s ¢ o 2

Attachments (0
Page History
Restrictions

Analytics

Import documents as Confluence pages

nint Page Information

Publish DITA to HTML5 and paste from Web Browser to Confluence

If you just want to update afew pages, you can publish DITA to HTML, open the published HTML content in aweb browser,
select and copy the contents, then paste in a Confluence page. Confluence seems capable of converting the pasted HTML content
toitsown HTML-like format. Some manual cleanup may be required after pasting the content.

Creating a special DITA to Confluence-like HTML publishing flow

Theinternal storage format Confluence usesis akind of HTML mixed with XML content: https://confluence.atlassian.com/doc/
confluence-storage-format-790796544.html.

If aDITA OT plugin were to implement special DITA to Confluence-like HTML output, it would probably need special handling
for:

* Internal links.
e Linksto binary resources.
* Images.

Generating alist of changes between releases

Sometimes you may had PDFs or HTML content with the documentation to reviewers and instead of them having to read again
the entire user's manual you may want to give them also alist of changed topics. Such alist can be manually maintained in a
separate DITA topic but if your project uses version control and you tag your releases you may also want to try and manually
build thislist of changes.

For DITA projects which use Git for source control you can use amodified version of the DITA Open Toolkit custom ANT
parser plugin to automatically generate a list of changes between two versionsin the published output. | will enumerate the steps
to do this below:

* Check out your Git project. If al your releases are tagged as branches, running a command line like this:

git diff --nane-only tagNanme

will show in the console a set of changed topics between the current changes and the t aghame branch. For example for
the Oxygen XML Editor user'smanual | canrungit diff --name-only oxygen22.0 to seeall changes between the
current contents in the repository and the Oxygen 22.0 branch in the repository.

https://confluence.atlassian.com/doc/confluence-storage-format-790796544.html
https://confluence.atlassian.com/doc/confluence-storage-format-790796544.html
https://github.com/oxygenxml/dita-custom-ant-parser/tree/generate-changes-list
https://github.com/oxygenxml/dita-custom-ant-parser/tree/generate-changes-list

Blog | 3 - DITA| 112

* Inthe main DITA Map add areference to a topic which will be the recipient of the generated content at publishing time:

<t opi cr ef ="dynam cChangeHi st ory. gen" ="ant - parser"/>

Create thisdynani cChangeHi st or y. gen topic next to the DITA Map but leave it with empty contents, the
publishing plugin will be responsible of updating its contents.

* Download the com oxygenxm . ant . par ser. di t a plugin from here: https://github.com/oxygenxml/dita-custom-
ant-parser/tree/generate-changes-list.

* Integrate/install the plugin in your DITA Open Toolkit pl ugi ns folder.

* Openthebuild filecom oxygenxmni . ant. parser. dita/resources/buil d. xm inOxygen XML Editor.
The build file has three stages which may need to be slightly changed to fit your project's structure:

o Runthegit command in your project's folder and find all differences related to a certain branch. In my case the
branch is called oxygen22. 0 so it needs to be changed to your particular branch name.

o Apply the XSLT stylesheet cr eat eChangesTopi c. xsl onthe changeslist and generate a DITA topic. You
will need to make changes to the stylesheet so that the generated paths to the changed topics are relative to the
place where the generated DITA topic islocated.

o Runan XSLT stylesheet on the DITA topic to add the @ ass attributes.

* Oncethe plugin is properly configured, an extra topic will be produced in the output (either PDF or HTML) containing
links to the changes list.

DITA Publishing Customization Overview

Oxygen XML Editor publishes DITA content to various output sources using a bundled version of the DITA Open Toolkit
(short name: DITA OT) publishing engine. Oxygen versions prior to version 20 come with two DITA OT versions:

* DITA OT 1.8 located in the OXYGEN_INSTALL_DIR\frameworks\dita\DITA-OT folder.
* DITA OT 2.x located in the OXYGEN_INSTALL_DIR\frameworks\dita\DI TA-OT2.x folder.

while Oxygen version 20 comes bundled only with DITA OT 2.x located in the folder specified above. Y ou can find the exact
version of DITA OT bundled with Oxygen by looking in the main menu Help->About at the Framewor ks tab.

DITA Open Toolkit Overview

The DITA Open Toolkit is an open source publishing engine that can publish DITA content to various output sources such as
XHTML, PDF, or Windows Help (CHM). Since it has a plugin-based architecture, it can be extended with extra plugins that
either define new formats for conversion or customize an existing conversion format. Y ou can run the DITA OT from Oxygen
using its transformation scenarios or you can run it directly from acommand line:http://www.dita-ot.org/dev/topics/building-
output.html.

The DITA OT bundled with Oxygen contains more plugins than the standard DITA OT that can be downloaded from the
DITA OT official web site. For example, it contains pre-installed plugins for converting DITA content to Word, EPUB, Oxygen
WebHelp, or to publish to PDF using CSS to customize the output: Useful DITA OT Plugins (on page 117).

Publishing Customizations (Befor e you begin)

Some customizations, usually for HTML-based output, can be made simply by creating a custom CSS and they do not involve
modifying the DITA OT enginein any way. But most customizations might involve adding anew pluginto the DITA OT. So
here are some best practices before you begin your customization:

1. Copy the bundled DITA OT folder (usually OXYGEN_INSTALL_DIR\frameworks\dita\DITA-OT2.x) to alocation
outside of Oxygen. Thiswill allow you to have full write access to the folder in order to install new plugins:https://
www.oxygenxml.com/doc/ug-editor/topi cs/dita-ot-install-plugin.html.

2. In the Oxygen Preferences->DITA page, set the default DITA OT distribution to be the external copied one. This will
mean that Oxygen will use the external DITA OT for DITA validation and publishing. After doing this, you will be
able to upgrade the Oxygen version and benefit from all editing-related improvements without affecting the publishing
system.

https://github.com/oxygenxml/dita-custom-ant-parser/tree/generate-changes-list
https://github.com/oxygenxml/dita-custom-ant-parser/tree/generate-changes-list
https://www.dita-ot.org/dev/topics/plugins-installing.html
https://www.dita-ot.org/
https://www.dita-ot.org/
http://www.dita-ot.org/dev/topics/building-output.html
http://www.dita-ot.org/dev/topics/building-output.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-ot-install-plugin.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-ot-install-plugin.html

Blog | 3 - DITA | 113

3. Share that external DITA OT copy with therest of the team. If you are using arepository like Subversion or Git for
collaboration (on page 290), you can commit the entire modified DITA OT publishing engine as part of your project.
Thiswill allow everybody else in your team to use the official changes that you made. Thiswill also alow you to set up
some kind of automatic publishing system using an open-source integration server like Travis.

Customizing the XHTM L-based outputs

Usually XHTM L -based outputs can be modified by using a custom CSS stylesheet to override various styles. If you edit an
XHTM L-based transformation scenario in Oxygen, there is a parameter called ar gs.css that can be set to point to your custom
CSS and a parameter called ar gs.copy.css that can be set to yesto copy the CSS to the output folder. To know what CSS stylesto
override, you can use your web browser’s CSS Inspector toolsto look at the produced HTML output. The same parameters can
be set when publishing from a command line: http://www.dita-ot.org/dev/topics/html-customization-css.html.

Y ou can also create plugins to customize the XHTML-based outputs by adding an extra XSLT stylesheet: for example, Creating
asimple DITA Open Toolkit plugin to customize published HTML and PDF content (on page 118). A list with al DITA OT
XSLT extension points can be found here: http://www.dita-ot.org/dev/extensi on-points/plugin-extensi on-points-xslt-import.html .

Customizing the Oxygen WebHelp-based output

Oxygen’'sDITA OT comes bundled with specific plugins developed by Oxygen that allows publishing DITA content to
WebHelp Responsive output. Oxygen’s User’s Guide has detailed topics about how to customize these outputs: https://
www.oxygenxml.com/doc/ug-editor/topics/wh-responsi ve-customi zati on-tips.html.

Customizing the PDF Classic output

The DITA to PDF output can be customized either by creating a PDF customization folder (in this case the DITA OT folder will
not be modified at all) or by creating a PDF customization plugin: https://www.oxygenxml.com/doc/ug-editor/topics/dita-pdf-
output.html. Thereis also abook called DITA For Print that contains details about how to customize various aspects.

Customizing the DITA + CSSto PDF output
In recent versions, Oxygen added a new transformation scenario called DITA Map PDF - WY SIWY G that alows you to use
CSSto style the PDF output, lowering the required knowledge for implementing a PDF customization. There is an entire chapter

in the Oxygen users manual covering various PDF customization details: https://www.oxygenxml.com/doc/ug-editor/topics/
dcpp_the_customization_css.html#dcpp_the customization_css.

DITA Open Toolkit Frequently Asked Questions (FAQ)

| tried to put together below a set of frequently asked questions and useful links about the DITA Open Toolkit.

What isthe DITA Open Toolkit?

The DITA Open Toolkit isa publishing tool used to convert DITA content into various output formats. It's official web site,
containing download links and documentation can be found here: http://www.dita-ot.org/.

How do | usethe DITA Open Toolkit?
Y ou can download, install and build output from DITA content using the command line.

Besides this, there are applications which come with the DITA Open Toolkit bundled. For example Oxygen XML Editor comes
bundled usually with the latest bundled DITA Open Toolkit. Oxygen provides visual means to run the bundled DITA Open
Toolkit using a concept called transformation scenarios.

What version of DITA Open Toolkit should | use?

Y ou should try to use the latest DITA Open Toolkit release available on the officia download page.

https://travis-ci.org/
http://www.dita-ot.org/dev/topics/html-customization-css.html
http://www.dita-ot.org/dev/extension-points/plugin-extension-points-xslt-import.html
https://www.oxygenxml.com/doc/ug-editor/topics/webhelp-responsive-output.html
https://www.oxygenxml.com/doc/ug-editor/topics/wh-responsive-customization-tips.html
https://www.oxygenxml.com/doc/ug-editor/topics/wh-responsive-customization-tips.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-pdf-output.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-pdf-output.html
https://xmlpress.net/publications/dita/dita-for-print/
https://www.oxygenxml.com/doc/ug-editor/topics/dcpp_the_customization_css.html#dcpp_the_customization_css
https://www.oxygenxml.com/doc/ug-editor/topics/dcpp_the_customization_css.html#dcpp_the_customization_css
http://www.dita-ot.org/
http://www.dita-ot.org/download
http://www.dita-ot.org/dev/getting-started/installing-client.html
https://www.dita-ot.org/dev/topics/first-build-using-dita-command.html#ariaid-title1
https://www.oxygenxml.com/doc/ug-editor/topics/create-dita-ot-transformation.html
http://www.dita-ot.org/download

Blog | 3 - DITA | 114

What outputs can | obtain using the DITA Open Toolkit?

The entire set of default available output formats is available here: https:.//www.dita-ot.org/dev/topics/output-formats.html. But
the DITA Open Toolkit can be enhanced by installing plugins to provide additional output formats.

What isthe general architecture of the DITA Open Toolkit?

The DITA Open Toolkit isaquite large mixture of ANT build scripts, Javalibrariesand XSLT scripts. It has a pipeline-

based architecture which uses plugins to publish DITA content to various output formats. Most of the DITA Open Toolkit
customi zations that you want to make in order to add new publishing capabilities or to customize existing publishing choices can
be made without modifying itsinternal core.

What isa DITA Open Toolkit plugin?

A DITA Open Toolkit plugin can either provide a new publishing format, customize an existing publishing stage or provide a
DITA specialization vocabulary. The plugin can use one of the numerous extension points available in the DITA Open Toolkit:
https://www.dita-ot.org/dev/extensi on-points/plugin-extension-points.html.

Once you have created a plugin you can install it in the DITA Open Toolkit either by manual installation or using the new
automated installation procedure.

How do | customizethe HTM L -based outputs?

There are anumber of parameters which can be set to customize the HTML-based outputs: http://www.dita-ot.org/dev/
parameters/parameters-base-html.html. For example you can specify your own CSS stylesheet to be used with the generated
HTML output.

Y ou can also create a plugin to customize the HTML outputs by adding a custom XSLT stylesheet: Creating asimple DITA
Open Toolkit plugin to customize published HTML and PDF content (on page 118).

How do | customize the PDF output?

Oxygen comes bundled with a DITA Open Toolkit plugin which uses CSSto style the DITA content and produce PDF: https://
www.oxygenxml.com/doc/ug-editor/topi cs/pdf-css-customization.html. This plugin is free to use from inside Oxygen but is
part of acommercia product if you want to automate the publishing on the server side. Thisis our recommended plugin for
publishing DITA to PDF.

In addition the DITA Open Toolkit comes bundled with afree PDF generation plugin which uses X SL-FO. The PDF output is
obtained by passing the original DITA content to XSL-FO and then generating PDF using an XSL-FO processor. The default
bundled and used X SL-FO processor is the Apache FOP but you can aso install separately and use commercial PDF processors
like Antenna House or RenderX XEP.

Y ou can customize the PDF output either using a PDF customization folder or by creating a PDF customization plugin (on page
118).

There are anumber of other solutions for obtaining PDF from DITA: Possibilities to obtain PDF from DITA (on page 100).

Enhancing DITA Publishing With Plugins

The DITA Open Toolkit publishing engine comes with support for predefined output formats such asHTM5, PDF, and Eclipse
Help. Asthe architecture of the publishing engine is plugin-based, over time we have developed lots of useful pluginsin the
Oxygen XML GitHub account that enhance the publishing and in this blog post, | will enumerate some of them. For the plugins
that are already installed within Oxygen XML Editor's DITA Open Toolkit engine, | added the [Bundled] marker.

Plugin that ConvertsDITA Mapsto PDF Using CSS 3 [Bundled]

Maybe our most important work so far, this plugin can publish DITA to PDF using CSS. As a publishing engine, it can use either
our Oxygen XML Chemistry processor (freely bundled with Oxygen XML Editor) or the Antenna House and Prince XML
engines.

https://www.dita-ot.org/dev/topics/output-formats.html
http://ant.apache.org/
https://www.w3.org/TR/2007/REC-xslt20-20070123/
https://www.dita-ot.org/dev/reference/architecture.html
https://www.dita-ot.org/dev/reference/architecture.html
https://www.dita-ot.org/dev/topics/plugin-newtranstype.html
https://www.dita-ot.org/dev/topics/plugin-applications.html
https://www.dita-ot.org/dev/topics/plugin-xmlcatalog.html
https://www.dita-ot.org/dev/extension-points/plugin-extension-points.html
https://www.dita-ot.org/dev/topics/plugin-newtranstype.html#ariaid-title1
https://www.oxygenxml.com/doc/ug-editor/topics/dita-ot-install-plugin.html
https://www.dita-ot.org/dev/topics/plugins-installing.html
http://www.dita-ot.org/dev/parameters/parameters-base-html.html
http://www.dita-ot.org/dev/parameters/parameters-base-html.html
https://www.oxygenxml.com/doc/ug-editor/topics/pdf-css-customization.html
https://www.oxygenxml.com/doc/ug-editor/topics/pdf-css-customization.html
https://xmlgraphics.apache.org/fop/
https://www.antennahouse.com/
http://www.renderx.com/
https://www.oxygenxml.com/doc/ug-editor/#topics/dita_pdf_output_customization.html
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/oxygenxml/dita-ot-css-pdf

Blog | 3 - DITA | 115

DITA Metrics Report [Bundled]

Thisisavery useful open source plugin that generates an HTML report from an existing DITA project containing lots of useful
information:

» Total number of maps and topics that are part of the project.

* Total number of elements used in topics and maps along with atable presenting all element names and their usage
counter.

* The used elements used from each DITA domain.

» Total number of attributes used in topics and maps along with a table presenting all attribute names and their usage
counter.

* Statistics about the conditional attributes used in the project.

* Information about content reuse.

» Text and content statistics, including both total words (word count) and unique words (vocabulary).

* List of largest and smallest topics and the number of words each one used.

e Listing of al links to resources outside of the project.

Export DITA Map Plugin [Bundled]

Y ou can use this free plugin to create a ZIP file from your entire DITA project. The plugin also takes filters/profiling into account
when including topics.

Publish DITA Content with Referencesto Video and Audio Resour ces. [Bundled]

A DITA Open Toolkit plugin that convertsthe DITA <obj ect > element to various HTML 5 structures such as <<vi deo>,
<audi 0>, Of <i frane>.

Plugin That Adds Edit Linksin HTML or PDF-based Outputs [Bundled]

This plugin adds edit links in the HTML or PDF-based outputs allowing subject matter experts to give feedback on the published
content directly using a DITA web editing tool (such as Oxygen XML Web Author).

Create Single Merged XML Document From Entire DITA Project [Bundled]

This plugin produces a merged output from the entire DITA map structure without further processing. It is useful if you want to
further process the merged XML document for producing various reports.

Dynamically Publish Excel Content asDITA

A DITA Open Toolkit plugin that dynamically convertsto DITA Excel files referenced with f or mat =" excel * in DITA maps.

Dynamically Use JSON Content in DITA Topics

A DITA Open Toolkit plugin that dynamically convertsto DITA JSON files referenced with f or mat ="j son" in DITA maps.
Embed HTML Content in DITA Topics[Bundled]

A plugin that allows embedding well-formed HTML content in a DITA topic inside a special element.

Embed LateX Equationsin DITA Content

A DITA Open Toolkit plugin that allows publishing embedded Latex mathematical equationsto HTML and PDF.

Embed UML Diagramsin DITA Content

A DITA Open Toolkit plugin that allows publishing embedded UML diagrams equationsto HTML and PDF.

https://github.com/oxygenxml/dita-ot-metrics
https://github.com/oxygenxml/dita-export-map#export-dita-map-plugin
https://github.com/oxygenxml/dita-media-support
https://github.com/oxygenxml/dita-reviewer-links
https://github.com/oxygenxml/dita-merged
https://github.com/oxygenxml/dita-excel
https://github.com/oxygenxml/dita-json
https://github.com/oxygenxml/dita-embed-html
https://github.com/oxygenxml/dita-latex
https://github.com/oxygenxml/dita-plant-uml

Blog | 3 - DITA| 116

Float Imagesin HTML and PDF Outputs

A plugin that allows floating an image referenced in aDITA topic |eft or right depending on the @ut put ¢l ass attribute value
specified onit.

Embed Referenced MathML and SVGZ Imagesin HTML Output

A DITA Open Toolkit plugin that allows you to embed referenced MathML and SVG imagesin the HTML5 and XHTML
output.

Dynamically Convert DITA Tablesto Graphs

A DITA Open Toolkit plugin that converts DITA tables having a certain structure to SVG graphs.

Show Oxygen Change Tracking Information in the PDF Output [Bundled]

This plugin allows you to see Oxygen XML Editor track changes (insertions, deletions, or comments) in the PDF outpuit.

Sample Customization Plugin for Classic PDF Output

This sample DITA Open Toolkit PDF customization plugin is a good starting point if you want to:

* Customize fonts
* Customize a cover page to provide custom logos and coloring

* Customize page headers and footers

PDF - Generate Numbers Before Topic's Title

A DITA-OT PDF2 customization plugin that can be installed to generate numbers before each topic'stitle.

PDF Plugin That Presents Chapters With Landscape Orientation

A PDF customization folder that allows you to define landscape orientation for a certain chapter.

Adding support for embedding LaTeX equationsin DITA content

LaTeX isahigh-quality typesetting system that includes features designed for the production of technical and scientific
documentation. LaTeX can also be used to express mathematical formulasin atextual format. By default, web browsers and PDF
readers do not have support to show mathematical equations written in LaTeX but there are open source projects that can read
LaTeX and convert it to other image types.

Adding support for writing LaTeX equationsin DITA topics would imply three stages:

* Find away to write the equation in the DITA XML content. Y ou can either create aDITA DTD specialization and add
anew element (for example, called <1 at ex> and it extends the DITA <f or ei gn> element). Alternatively, you can use the
DITA <f or ei gn> element with a specific @ut put cl ass attribute value directly:

<! DOCTYPE topic PUBLIC "-//QASI S//DTD DI TA Topi c//EN" "topic.dtd">
<topic ="t est Equati on">
<title>Test equation</title>
<body>
<p><f oreign ="enbed-latex">L" = {L}{\sqrt{1-\frac{v~2}{c 2}}}</foreign></p>
</ body>
</topic>

* If you want Oxygen to properly present the LaTeX equation when editing in the Author visual mode, you need an
Oxygen plugin that converts the equation content to an image. There is a sample plugin that does that here: https:/

https://github.com/oxygenxml/dita-image-float
https://github.com/oxygenxml/dita-embed-html-mathml-svg
https://github.com/oxygenxml/dita-table-svg
https://github.com/oxygenxml/dita-classic-pdf-review
https://github.com/oxygenxml/com.oxygenxml.pdf2.ug
https://github.com/oxygenxml/dita-ot-numbering
https://github.com/oxygenxml/dita-classic-pdf-landscape-sample
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support

Blog | 3 - DITA | 117

github.com/oxygenxml/wsaccess-javascri pt-sampl e-plugins/tree/master/l atex-images-support. Y ou can download and
copy the plugin folder latex-images-support to the Oxygen plugins folder, then restart Oxygen.

* Publishing to HTML-based and PDF outputs. This DITA Open Toolkit plugin automatically converts LaTeX images to
SV G when publishing: https://github.com/oxygenxml/dita-latex.

Useful DITA OT Plugins

The DITA Open Toolkit isthe most commonly used engine for publishing DITA content to various output formats. It has a
plugin-based architecture and it comes bundled by default with plugins for publishing to XHTM L -based and PDF formats.
There are other useful open-source plugins that can be installed in the DITA Open Toolkit and provide various publishing or
reporting capabilities. Below isalist of my favorite open source plugins, many of which are bundled by default with Oxygen
XML Editor:

DITAtoMSWord

This very useful plugin developed by Jarno Elovirta (the main DITA OT developer) can be used to publish DITA to MSWord
(OOXML): https://github.com/jelovirt/com.elovirta.ooxml. The plugin is robust and can handle large DITA projects.

Convert MSWordtoDITA

The DITA For Publishers project developed by Eliot Kimber contains a plugin that can convert MSWord (OOXML)
documentsto DITA topics: http://www.ditadpublishers.org/d4p-users-guide/user_docs/d4p-users-guide/word2dita/word-to-dita-
plugin.html. Useful advice and other ways to migrate from MSWord to DITA can be found here: How to Migrate from Word to
DITA (on page 248).

DITA to EPUB
The DITA For Publishers project developed by Eliot Kimber contains a plugin that can convert DITA content to EPUB3:

http://www.ditadpublishers.org/d4dp-users-guide/user_docs/d4p-users-guide/epub-plugin/generating-epubs.html. There are also
plugins that can take the EPUB3 output and generate Kindle or M obi formats.

Use Markdown content directly in DITA Maps

This plugin developed by Jarno Elovirta can be used to publish hybrid DITA projects containing both DITA and Markdown
topics to any output format: https://github.com/jel ovirt/dita-ot-markdown.

Embed video and audio resourcesin DITA topics

This handy little plugin developed by Oxygen allows you to embed audio, video, or Y ouTube resourcesin DI TA topics and
properly display the embedded content in the XHTML-based outputs: https://github.com/oxygenxml/dita-media-support.

Publish RelaxNG-based DITA topics

RelaxNG is the default schematype in which the DITA vocabulary is described by the specification developers. But the DITA
Open Toolkit does not alow publishing RNG-based DITA content by default. Installing this plugin developed by Oxygen will
make this possible: https://github.com/oxygenxml/dita-relaxng-defaults.

Present Oxygen track changesin the PDF output

This useful plugin developed by Oxygen alows you to preserve Oxygen change tracking highlightsin the PDF output: https://
github.com/oxygenxml/dita-classic-pdf-review.

Publish DITA to PDF using CSS

The difficult thing about the default PDF output is the customization that involves modifying XSLT scripts and requiring
knowledge of both XSLT and XSL-FO. This plugin developed by Oxygen alows you to use CSS to customize the PDF
obtained from DITA content: https://github.com/oxygenxml/dita-css. The plugin needs a commercial license of Render X
XEP or Antenna House in order to produce the PDF: https://www.oxygenxml.com/doc/ug-editor/topics/ditamap-pdf-css-
html5-2.html. But for Oxygen XML Editor 19, we are actively working on a PDF CSS engine (called Chemistry) that will

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support
https://github.com/oxygenxml/dita-latex
https://github.com/jelovirt/com.elovirta.ooxml
https://github.com/dita4publishers/dita4publishers/releases
http://www.dita4publishers.org/d4p-users-guide/user_docs/d4p-users-guide/word2dita/word-to-dita-plugin.html
http://www.dita4publishers.org/d4p-users-guide/user_docs/d4p-users-guide/word2dita/word-to-dita-plugin.html
https://github.com/dita4publishers/dita4publishers/releases
http://www.dita4publishers.org/d4p-users-guide/user_docs/d4p-users-guide/epub-plugin/generating-epubs.html
https://github.com/jelovirt/dita-ot-markdown
https://github.com/oxygenxml/dita-media-support
https://github.com/oxygenxml/dita-relaxng-defaults
https://github.com/oxygenxml/dita-classic-pdf-review
https://github.com/oxygenxml/dita-classic-pdf-review
https://github.com/oxygenxml/dita-css
https://www.oxygenxml.com/doc/ug-editor/topics/ditamap-pdf-css-html5-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/ditamap-pdf-css-html5-2.html

Blog | 3 - DITA| 118

allow the plugin to work from Oxygen without any additional licenses: http://archive.xmlprague.cz/2017/files/presentations/
css2pdf-xslfo.pdf.

A list with all open-source DITA OT plugins devel oped and shared by Oxygen XML Editor can be found on GitHub: https://
github.com/search?g=topi c%3Adita-ot-plugin+org%3Aoxygenxml & type=Repositories. My DITA OT Day 2016 presentation
covers most of these: https://www.oxygenxml.com/events/2016/dita-ot_day.html#Seven_Open-Source DITA-OT_plugins.

Creating asimple DITA Open Toolkit plugin to customize published HTML and PDF
content

| recently worked on a DITA Open Toolkit plugin which can be used to provide syntax highlight when publishing DITA
codeblock elementsto HTM L -based or PDF outpults.

Based on this experience I've put together some steps to help anyone wanting to create an XSLT customization plugin for the
DITA Open Toolkit for HTML and PDF based outputs.

1. Create afolder for your plugin in the DITA OT pluginsfolder. The DITA OT bundled with Oxygen can be
found here: OXYGEN_INSTALL_DIR/frameworks/dita/DITA-OT. In my case | created the following folder:
OXYGEN_INSTALL_DIR/frameworkg/dita/DI TA-OT/plugins/com.oxygenxml.highlight.

2. Create aplugin.xml filein that folder containing the plugin's extension points. In my case, the plugin descriptor file

contains:

<pl ugi n ="com oxygenxm . hi ghl i ght">
<feature ="package. support . nanme" ="Oxygen XM. Editor Support"/>
<feature ="package. support . enail " ="support @xygenxmn . coni'/ >
<feature ="package. ver si on" ="1.0.0"/>
<feature ="di ta.xsl.xhtnl" ="xht ml Hi ghli ght.xsl" ="file"/>
<feature ="di ta. xsl.xsl fo" ="pdf H ghl i ght. xsl" ="file"/>

</ pl ugi n>

The important extensionsin it are the references to the XSLT stylesheets which will be used to stylethe HTML and
the PDF outputs. Y ou can find a bunch of other DITA OT plugin extension points here:https://www.dita-ot.org/dev/
extension-points/plugin-extension-points.html.

3. Create an XSLT stylesheet called xhtmlIHighlight.xdl located in the same plugin folder. As| want to overwrite
the creation of the HTML content from a DITA codeblock element | will first need to find the XSLT template
that | need to overwrite. A DITA codeblock element has the class attribute value "+ topic/pre pr-d/codeblock
". Usualy in such cases | take part of the class attribute value and search using the "Find/Replacein Files"
Oxygen action in all of the DITA OT XSLT resources. In this case | searched for topic/preand found this XSLT
stylesheet: OXYGEN_INSTALL_DIR/frameworks/dita/DI TA-OT/pluging/org.dita.xhtml/xsl/xs html/dita2html Impl.xsl
containing this XSLT template:

<xsl:tenpl ate ="*[contai ns(@l ass, ' topic/pre ')]" ="topic.pre">
<xsl:if ="contai ns(@rane, 'top')"><hr /></xsl:if>
<xsl : appl y-t enpl at es ="*[contai ns(@l ass, ' ditaot-d/ditaval-startprop
D ="out-of-1ine"/>
<xsl:call-tenplate ="spec-title-nospace"/>
<pre>
<xsl:attribute ="cl ass" ="npane()"/>
<xsl:call-tenplate ="comonattributes"/>
<xsl:call-tenplate "setscal e"/>
<xsl:call-tenpl ate "set i danane"/ >
<xsl : appl y-t enpl at es/ >

</ pre>
<xsl : appl y-tenpl at es ="*[contai ns(@l ass, ' ditaot-d/ditaval-endprop ")]" ="out-of -1ine"/>
<xsl:if ="contai ns(@ranme, 'bot')"><hr /></xsl:if><xsl:val ue-of ="$new i ne"/ >

</ xsl : tenpl at e>

thus my xhtmlHighlight.xsl will overwrite the content of the template like:

<xsl:tenpl ate ="*[contai ns(@l ass, ' topic/pre ')]" ="topic.pre">
<xsl:if ="contains(@rane, 'top')"><hr /></xsl:if>
<xsl : appl y-t enpl at es ="*[contai ns(@l ass, ' ditaot-d/ditaval-startprop
D ="out-of -1ine"/>
<xsl:call-tenplate ="spec-title-nospace"/>
<pre>
<xsl:attribute ="cl ass" ="name()"/>

<xsl:call-tenplate ="commonattri butes"/>

http://archive.xmlprague.cz/2017/files/presentations/css2pdf-xslfo.pdf
http://archive.xmlprague.cz/2017/files/presentations/css2pdf-xslfo.pdf
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://www.oxygenxml.com/events/2016/dita-ot_day.html#Seven_Open-Source_DITA-OT_plugins
https://www.dita-ot.org/dev/extension-points/plugin-extension-points.html
https://www.dita-ot.org/dev/extension-points/plugin-extension-points.html

Blog | 3 - DITA| 119

<xsl:call-tenpl ate ="setscal e"/>
<xsl:call-tenplate ="seti danane"/ >
<l--Here I"'mcalling the styler of the content inside the codebl ock.-->
<xsl:call-tenplate ="out put Styling"/>
</ pre>
<xsl : appl y-t enpl at es ="*[contai ns(@l ass, ' ditaot-d/ditaval-endprop ")]" ="out-of -1ine"/>
<xsl:if ="contai ns(@rane, 'bot')"><hr /></xsl:if><xsl:val ue-of ="$new i ne"/ >

</ xsl :tenpl at e>

and call another XSLT template which applies as a Java extension the XSLTHL library to style the content.

. Create an XSLT stylesheet called pdfHighlight.xsl located in the same plugin folder which will contain the PDF XSLT
customization. In this case | will overwrite the XSLT template from: OXYGEN_INSTALL_DIR/frameworks/dita/DITA-
OT/pluging/org.dita.pdf2/xsl /fo/topic.xsl which has the content:

<xsl:tenpl ate ="*[contai ns(@l ass,' topic/pre ")]">
<xsl:call-tenplate ="set SpecTitle"/>
<f o: bl ock ="pre">

"commonattri butes"/>
set Frame"/ >

‘set Scal e"/ >

set Expanse"/ >

<xsl:call-tenpl ate
<xsl:call-tenpl ate
<xsl:call-tenplate
<xsl:call-tenplate
<xsl : appl y-t enpl at es/ >
</ fo: bl ock>
</ xsl :tenpl at e>

. In order to install your plugin in the DITA OT you need to run the integrator. In the Oxygen Transfor mation Scenarios
view there isa Show all scenarios action available in the drop down settings button. Just check that and execute the
transformation scenario called Run DITA OT Integrator. And that'sit, your XSLT content will be applied with priority
when publishing both to XHTML-based and to PDF-based outputs.

Let'stake now alook at what that misterious step (5) - running the integrator to install the plugin - really did:
o Inthe XSLT stylesheet: OXYGEN_INSTALL_DIR/frameworks/dita/DI TA-OT/plugins/or g.dita.xhtml/xsl/
dita2html-base.xsl a new import automatically appeared:

<xsl :i nport ="pl ugi n: com oxygenxni . hi ghl i ght: xht ml Hi ghl i ght.xsl"/>

Thisimport is placed after al base imports and because of thisit has a higher priority. More about imported
template precedence can be found in the XSLT specs: http://www.w3.org/TR/xd t# mport.

o Likewise, in the top-level stylesheets related to PDF publishing like: OXYGEN_INSTALL_DIR/frameworks/dita/
DITA-OT/pluging/org.dita.pdf2/xdl/fo/topic2fo_shell.xsl a new import statement has appeared:

<xsl :i nport ="pl ugi n: com oxygenxm . hi ghl i ght : pdf Hi ghl i ght.xsl"/>

Now you can take your plugin's folder and distribute it to anyone having aDITA OT installation along with some simple
installation notes. Y our customization will work as long as the templates you are overwriting have not changed from one
DITA OT distribution to the other.

Thisvideo from the DITA OT Day 2018 in Rotterdam has al so steps for implementing asimple DITA OT plugin: https://
www.oxygenxml.com/events/2018/dita-ot_day.html#step_by step implementation of a DITA.

Using Git client-side hooks to run DITA publishing pipelines

This topic describes how to use Git client-side hooks to execute DITA commands and publishing workflows, with an emphasis
on using the Oxygen's Git Client.

Prerequisites

1. Oxygen's Git client is based on the JGit library. When running on Windows, thislibrary relieson CY GWIN to run the
Git hooks. CY GWIN must be installed and added to the path.

2. If you are running on Windows, you either need an Oxygen Git client version 2.0.0 or one newer than 2.1.1 (at the time
this post iswritten, 2.1.1 was the latest version, but a new one will soon be released). We are basically avoiding versions
that come bundled with JGit 5.6.0, which has this known issue.

If you need to install version 2.0.0 of the plugin, since this version is no longer available in the add-on, you have to
install it manualy:

http://www.w3.org/TR/xslt#import
https://www.oxygenxml.com/events/2018/dita-ot_day.html#step_by_step_implementation_of_a_DITA
https://www.oxygenxml.com/events/2018/dita-ot_day.html#step_by_step_implementation_of_a_DITA
https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.eclipse.org/jgit/
https://www.cygwin.com/
https://www.cygwin.com/
https://github.com/oxygenxml/oxygen-git-plugin/releases/download/2.0.0/git.support-2.0.0-plugin.jar
https://bugs.eclipse.org/bugs/show_bug.cgi?id=558577

Blog | 3 - DITA | 120

a. Uninstall the current Oxygen Git client version, if oneis present.
b. Download Oxygen Git client version 2.0.0.
c. Unzipitinside{ oxygenl nst al | Di r}/ pl ugi ns. Make sure you don't create any intermediate folders. The
path should be like this: { oxygenl nstal I Dir}/git. support-2.0.0/plugin. xn .
3. The DITA-OT command utility needs to be added to the path so that the presented script will work.

What isa Git hook?

Git has away to fire off custom scripts when certain important actions occur. There are two groups of these hooks: client-
side and server-side. Client-side hooks are triggered by operations such as committing and merging, while server-side hooks
run on network operations such as receiving pushed commits. Y ou can read more about what types of hooks are available at
Customizing Git - Git Hooks.

Using a client side hook with a DITA project

The main scenario we are focusing on in thistopic is about using client-side hooks while working with DITA and storingitin a
Git repository, and how to enable Oxygen' s built-in Git Client to execute these hooks.

The hooks are al stored in the hooks subdirectory of the Git directory, whichis. gi t/ hooks by default. A useful client-side hook
isthe pre-commit hook. It’ s used to inspect the snapshot that’ s about to be committed, to see if you' ve forgotten something, to
make sure tests like Oxygen's Validate and Check for completeness run properly, or to examine whatever you need to inspect in
the code.

To make it easier to follow, though, we will use a use case reported by one of Oxygen's users. That is to generate a Markdown
version of the documentation whenever you commit something. When | tried to do the same thing myself, | encountered some
challenges and | think it will help othersif they read how | managed to solveit.

Installing a pre-commit hook

Git automatically populatesthe. gi t / hooks directory with example scripts when you initialize arepository. All we needtodois
rename pre-commit.sample to simply pre-commit and put in it the script we are interested in.

Note: The DITA-OT command utility needs to be added to the path in order for the following script to work.

The content of the pre-commit file is something like this: we assume that the map to publish is called READMVE. di t amap and it
islocated inside the project root directory.

,'* Note: Oxygen's Git client is based on the JGit library. When running on Windows, this library relieson CY GWIN to run
these Git scripts. CY GWIN must be installed and added to the path.

#!'/ bi n/ sh
set -X

echo "Start hook"
export G T_HOOKS DIR="cd "\“dirname "\\\ readlink "$0" || echo $O\\\ "\ " && pwd’

We assune the hooks directory is the default one: wc/.git/hooks
export ROOT_DIR="$G T_HOXS DIR/../.."

OS specific support. $var _nust_ be set to either true or false.
cygw n=f al se;

case "‘unane’ " in
CYGWN N*) cygwi n=true ;;
esac

For some reasons, if we let a cygwin path pass, the dita pipeline fails wth:

Error: Failed to run pipeline: [DOTAO69F][FATAL] I|nput file
"file:/cygdrivel/c/Users/.../git-hooks-sanple/.git/hooks/../../README. ditamap’ cannot be |ocated or read.
Ensure that file was specified properly and that you have perm ssion to access it.

1t works if we pass it instead as: C//Users/.../git-hooks-sanpl e/ READVE. di t anap

https://github.com/oxygenxml/oxygen-git-plugin/releases/download/2.0.0/git.support-2.0.0-plugin.jar
https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.eclipse.org/jgit/
https://www.cygwin.com/
https://www.cygwin.com/

Blog | 3 - DITA| 121

Considering the fact that the dita script just passes the --input further on to ANT, it mght have
sonething to do with cygwi n processing perforned in ANT.
if $cygwi n; then
ROOT_DI R="cygpath --nixed "$ROOT_DI R'"
fi

dita --input=$ROOT_DI R READVE. di t amap - - f or mat =mar kdown - - out put =$ROOT_DI R/ docs/

Exit with status of |ast command

exit
Thefirst challengein the script aboveisthat if | don't pass the ditamap path through RooT_DI R="cygpat h - - ni xed "$ROOT_DIR"",
the DITA publishing pipeline fails with:

Error: Failed to run pipeline: [DOTA069F] [FATAL] Input file

"file:/cygdrivel/c/Users/.../git-hooks-sanple/.git/hooks/../../README. ditamap' cannot be |ocated or read.
Ensure that file was specified properly and that you have permission to access it.

Having done that, running this hook on Windows will still fail, inside the DITA pipeline, with:

Buil dfile: \cygdrive\d\tool s\dita-ot-3.4\build. xnl does not exist!

Tofix this, | hadtogoinside{di t a. ot. di r}/ bi n/ di t a and search for thisline:
Add build script to argunents

ant _exec_args="%ant_exec_args \"-buildfile\" \"$D TA HOVE build. xm\" \"-pain\"
\"org.dita. dost.invoker.Main\""

and replace it with:

BUI LD_FI LE="$DI TA_HOVE/ bui | d. xm

if $cygwin ; then

BUI LD _FI LE="cygpath --nixed "$BUI LD_FI LE"®
fi

Add build script to argunents
ant _exec_args="%ant_exec_args \"-buildfile\" \"$BU LD FILE\" \"-main\" \"org.dita.dost.invoker.Min\""

That's it. Each time you commit something in this repository, the Markdown version of your documentation gets generated.

Creating Link Graphs From DITA Maps

It may be sometimes useful as an overview to obtain a graphical visualization of how your DITA topics refer to each other. The
VisJS Javascript library can be used to construct node network diagrams. Here's how you can use it for your DITA project:

1. Open themain DITA Map in the Oxygen XML Editor DITA Maps Manager view, use the Configure Transformation
Scenarios button, then create a new transformation scenario of type DITA OT Transformation choosing the Merge
DITA Content to Single XML file transformation type. If you are not using Oxygen XML Editor you can download and
install the dita-mer ge plugin separately from Github.

2. Apply the new transformation scenario on the DITA Map, once the merged XML document is generated, create another
transformation scenario of type XML transformation with XSLT and transform to HTML using the XSLT stylesheet:
https://github.com/oxygenxml/dita-merged/bl ob/master/possible-applications/createHTM L VisGraph.xsl

3. Open the result HTML document in aweb browser. Depending on the complexity of the DITA project it may take
some time for the diagram to show up. As an example the related links section below contains a reference to a diagram
representation of the Oxygen XML Blog. If we regard the diagram as a circle, on the outer bounds of the circle are topics
which have few incoming and outgoing links and in the center topics which have many outgoing and incoming links.
Linksfrom the DITA Map to the topics are not taken into account. Y ou can interact with the diagram by dragging nodes
and by using the mouse wheel to zoom in or out.

Related information
Graph Visualization of the Oxygen XML Blog DITA Map

https://visjs.github.io/vis-network/docs/network/index.html
https://github.com/oxygenxml/dita-merged
https://github.com/oxygenxml/dita-merged/blob/master/possible-applications/createHTMLVisGraph.xsl
resources/sampleGraphBlog.html

Blog | 3 - DITA| 122

Publishing DITA Content Using the MKDocs Web Site Generator

MKDocsis a stetic site generator that is geared towards building project documentation. Documentation source files are written
in Markdown and configured with asingle YAML configuration file.

Hereishow to use DITA XML content to build a static site with MKDocs:

1

o Ul

Open your DITA map in the Oxygen XML Editor DITA MapsManager view. For my example, | will use the
OXYGEN_| NSTALL_DI R/ sanpl es/ fl ower s/ fl owers. di t amap sample.

. Use the Configure Transformation Scenarios toolbar button, create a new transformation scenario of type DITA-OT

transformation and choose GitHub-flavored M arkdown as the transformation type.

. In the transformation scenario's Output tab, you can configure the folder where the Markdown content should be

generated.

. Use the new transformation scenario to transform your DITA content into Markdown.
. Install the mkdocs package on your system: https://www.mkdocs.org/getting-started/.
. Create a new project using the nkdocs command line:

Devel oper $ nkdocs new fl owers

I NFO - Creating project directory: flowers

I NFO - Witing config file: flowers/nkdocs. yni

I NFO - Witing initial docs: flowers/docs/index.nd
Devel oper$ cd flowers

. Inthe created project'sf | ower s/ docs folder, copy the entire set of Markdown files produced by publishing the DITA
content.
Use the mkdocs serve command to start alocal web server:
Devel oper: flowers $ nmkdocs serve
I NFO - Building docunentation...
I NFO - Cleaning site directory
I NFO - Docunentation built in 0.24 seconds
I NFO - [14:03:38] Serving on http://127.0.0.1: 8000/

Openthef| ower s/ nkdocs. ym fileand configure it further, change the name of the project to something more
appropriate (e.g. Flower s). Change the theme to some other theme supported by nkdocs (e.g. readthedocs).

site_nanme: Flowers
t hene: readt hedocs

Result: Back in the browser, the new site name and color theme should be applied, the search should work, and by
default, the table of contents presents the filesin the order that they appear on disk:

A Flowers

Growing Flowers Iris

Docs » Topics » Flowers » Iris

CONCEPTS

Autumn Flowers From Wikipedia, the free encyclopedia.

Bulb
Iris is a genus of between 200-300 species of flowering plants with showy flowers. It takes its name

from the Greek word for a rainbow, referring to the wide variety of flower colors found among the
Genus many species. As well as being the scientific name, iris is also very widely used as a common name;
for one thing, it refers to all Iris species, but some plants called thus belong to closely related
genera. In North America, a common name for irises is flags, while the subgenus Scorpiris is widely
known as junos, particularly in horticulture.

Cultivar

Panicle
Perennial
Pollination
Rhizome

Sepal

Spring Flowers

Summer Flowers

Winter Flowers

https://www.mkdocs.org/getting-started/
https://www.mkdocs.org/getting-started/

Blog | 3 - DITA | 123

Thef | ower s/ docs/ i ndex. nd file contains the table of contents derived from the original DITA map structure. Its
contents can be used to create a navigation map which can beincluded in thef | ower s/ nkdocs. ym configuration
file.

10. Openthei ndex. nd file generated from the DITA map in Oxygen XML Editor and inthe HTML preview right click
and choose to export as HTML.

11. Create an XSLT stylesheet that when applied over the HTML content, it generates the entire structure of the table of
contents:

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
="http://ww. w3. or g/ 2001/ XM_Schena"
="xs"
="2.0">
<xsl : out put ="text"/>
<xsl:tenpl ate ="/">
<xsl : appl y-tenpl at es ="/ *rat >
</ xsl : tenpl at e>
<xsl:tenpl ate ="*:a">
<xsl :vari abl e ="noDescendent s" ="count (parent::*:1i/descendant::*:1i)"/>
<xsl : for-each ="ancestor-or-sel f::*:li"><xsl:text>
</ xsl :text ></xsl : for-each>- <xsl : val ue- of ="text ()"/>:<xsl:choose><xsl : when ="$noDescende
nts = 0"><xsl :val ue- of =" @ref"/></xsl : when><xsl : ot her wi se><xsl :text >
</ xsl : text ><xsl : f or - each ="ancestor-or-self::*:1i"><xsl:text>
</ xsl : text ></xsl : for-each> <xsl:val ue-of ="text ()"/>:<xsl:val ue- of =" @ref"/></xsl:othe

rwi se></ xsl : choose>
<xsl:text>
</ xsl : text>
</ xsl : tenpl at e>
</ xsl : styl esheet >

12. Apply the stylesheet over the HTML content to produce the content that getsincluded in thef | ower s/ nkdocs. ym
configuration file:

site_nane: Flowers
nav:
- Home: index.nd
I ntroduction: topics/introduction.nd
- Care and Preparation: topics/care.nd
- Pruning: tasks/pruning.nd
- Garden Preparation: tasks/gardenPreparation.nd
- Flowers by Season: topics/index.nd
- Spring Flowers: concepts/springFl owers. nd
- Iris: topics/flowers/iris.nd
- Snowdrop: topics/flowers/snowdrop. nmd
- Summer Fl owers: concepts/summer Fl owers. nd
- Gardeni a: topics/flowers/gardenia.nd
- Lilac: topics/flowers/lilac.nd
- Autumm Fl owers: concepts/aut umFl owers. nd
- Chrysant hemum topics/flowers/chrysant hemum nd
- Salvia: topics/flowers/salvia.nd
- Wnter Flowers: concepts/w nterFl owers. nmd
- Cerbera: topics/flowers/gerbera.nd
- Genus: concepts/ gl ossaryGenus. nd
- Pollination: concepts/glossaryPollination.md
- Sepal : concepts/ gl ossarySepal . nd
- Rhi zone: concept s/ gl ossaryRhi zone. nd
- Bul b: concepts/ gl ossaryBul b. nd
- Cultivar: concepts/glossaryCul tivar. nmd
Per enni al : concept s/ gl ossar yPer enni al . nd
- Panicle: concepts/glossaryPanicle. nmd
- Copyright: topics/copyright.nd
thene: readthedocs

Result: Now the output should have the table of contents generated from the original DITA map:

Blog | 3

-DITA | 124

@A Flowers
Docs » Iris
Home Iris
Introduction
Care and Preparation From Wikipedia, the free encyclopedia.

Pruning
Iris is a genus of between 200-300 species of flowering plants with sho

from the Greek word for a rainbow, referring to the wide variety of flow
Flowers by Season many species. As well as being the scientific name, iris is also very widel

Garden Preparation

Spring Flowers for one thing, it refers to all Iris species, but some plants called thus bel

O Iris genera. In North America, a common name for irises is flags, while the <

known as junos, particularly in horticulture.
Use

Snowdrop
Summer Flowers
Tip: Thereisamkdocs-literate-nav mkdocs plugin which can be installed after step 5 above and you can add

the plugin information to the nkdocs. yni (instead of step 9 above). This plugin utilisesthe i ndex. nd file built by
the transform instead of the nav section in the nkdocs. ym to order the side toc correctly.

Creating PowerPoint Slides from DITA Content

Pandoc is a command-line interface that can convert lots of input formats (e.g. Markdown) to many types of output formats (e.g.
Powerpoint).

Hereis how to publish DITA XML content to Powerpoint using Pandoc:

1

o Ol

Result:

Open your DITA map in the Oxygen XML Editor DITA MapsManager view. For my example, | will use the
OXYGEN_| NSTALL_DI R/ sanpl es/ fl ower s/ fl owers. di t amap sample.

. Use the Configure Transformation Scenarios toolbar button, create a new transformation scenario of the type DITA-

OT transformation, and choose GitHub-flavored Markdown as the transformation type.

. In the transformation scenario's Output tab, specify the folder where the Markdown content should be generated.
. In the same transformation scenario's Par ameter s tab, set the r oot-chunk-override parameter to the value of t o-

cont ent to produce asingle large Markdown file that contains all the DITA map's content.

. Run the transformation scenario to transform your DITA content into Markdown.
. Download the Pandoc command-line utility specific for your platform from: https.//pandoc.org/installing.html.
. Convert the Markdown file produced from DITA content to PPTX using the pandoc command line:

pandoc -f markdown -t pptx -o /path/to/out/flowers.pptx /path/tp/flowers/out/flowers.nd

Y ou can open theresulting f | ower s. ppt x in Powerpointl. For each DITA topic, you should have a separate slide:

https://github.com/oprypin/mkdocs-literate-nav
https://pandoc.org/installing.html
https://pandoc.org/installing.html

Blog | 3 - DITA | 125

Introduction

With just a little bit of care and preparation, any flower garden
can be a vibrantly colored environment.

With just a little bit of care and preparation, any flower garden
can be a vibrantly colored environment. Flowers can be selected
for specific blooming seasons, colors and shapes. Both annual
and perennial flower gardens can be planted depending on
climate and specific needs.

4 Flowers by Seas

Tip: You can use the same approach of producing Markdown from DITA and then using Pandoc to produce other
outputs such as Wiki, EPUB, Word, RTF, or PDF.

Tip: To produce web slides from DITA content, you can also use the free DITA to Reveal JS plugin created by Stefan
Jung: https://github.com/doctales/org.doctales.reveal.

Adding Labelsto Topicsin the WebHelp Responsive Output

DITA topics can contain <keywor d> elements that are usually placed in a<pr ol og> element, but they can also be used inside the
topic body contents.

<topic ="topiclD'>
<title>DITA 1.3 Features</title>
<pr ol og>

<net adat a>
<keywor ds>
<keywor d>DI TA 1. 3</ keywor d>
</ keywor ds>
</ net adat a>
</ prol og>. ..

The Oxygen WebHelp Responsive output uses these keywords as away of giving more priority to certain sequences of words
when searching for content. By default, keywords do not appear in the published output.

This articleis an attempt to add a new concept of alabel:

* A label isakeyword element with a special @ut put cl ass="1abel " attribute. The label is always visible in the published
output. It can be placed either in a prolog section or anywhere inside the topic where akeyword is allowed.
* When alabel is selected, the WebHelp output displays all other topics that have the same label value set to them.

Inserting Labels

We can decide to use the DITA <keywor d> element with a certain @ut put cl ass attribute value set to | abel to insert such
keywords that should be displayed in the published output.

<topic ="topiclD'>
<title>DITA 1.3 Features</title>
<pr ol og>

<net adat a>
<keywor ds>
<keywor d ="] abel ">DI TA 1. 3</ keywor d>
</ keywor ds>
</ net adat a>
</ prol og>. ..

https://github.com/doctales/org.doctales.reveal

Blog | 3 - DITA | 126

To make the insertion of such labels easier, you can, for example, create a custom Author action that inserts the labels and add
the custom action to the content completion window: Adding a Custom Author Action to the Content Completion Window (on
page 269).

To have special styling for the inserted labels when editing, you can customize the CSS stylesheets used for DITA editing:
Customizing the DITA Visual Editing Experience (on page 137).

Factoring Labels When Publishing

DITA WebHelp output can be customized using a publishing template mechanism. Inside a publishing template folder, thereis
an opt filethat can contain linksto various XSLT stylesheets that are useful for customizations. For example, we'll add alink to
a stylesheet for processing such special keyword label elements:

<publ i shi ng-t enpl at e>
<nane>..... </ name>

<xslt>

<ext ensi on ="xsl t/| abel s- show. xsl " ="com oxygenxnl . webhel p. xsl . di t a2webhel p"/ >

</ xslt>
</ webhel p>
</ publ i shi ng-t enpl at e>

Thel abel s- show. xs| stylesheet will match all l1abels and display them after the title of each topic. For each label, it will
have alink to search the entire documentation for the same label:

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni
="http://ww. w3. or g/ 2001/ XM_Schena"
="xs"
="2.0">
<xsl:tenpl ate ="*[contai ns(@l ass, ' topic/prolog ')]">
<l-- create a special div which displays all labels, with a |link on each |abel -->
<xsl:if =".//keyword[@ut putclass = 'label']">
<di v ="wi dth: 100% text-align: right; font-style:italic; color:gray;">Labels:
<xsl : appl y-t enpl at es =".//keyword[@ut putclass = 'label"]"/>
</ di v>

</xsl:if>
<xsl : next - mat ch/ >
</ xsl :tenpl at e>

<!-- Match a | abel keyword and display it as a span -->
<xsl:tenpl ate ="keywor d[@ut putcl ass = 'l abel "]">
<a
="{concat ('../search. ht Ml ?searchQuery=l abel _', nornalize-space(translate(text(), ,
N
<span ="backgr ound- col or: deepskybl ue; col or: whi t e; bor der - r adi us:
6px; mar gi n: 0. 2em paddi ng: 0. 2em "
><xsl : val ue- of ="text()"/>
</ a>
</ xsl :tenpl at e>

<l-- Add specific HTM. neta el enents for each |abel -->
<xsl:tenpl ate E ="gen- keywor ds- net adat a" >
<xsl : next - mat ch/ >
<xsl :vari abl e ="keywor ds- cont ent " >
<!-- for each |abel -->
<xsl : for-each ="// keywor d[@ut putclass = 'l abel']">
<xsl : val ue- of
="concat ('l abel _', normalize-space(translate(text(), LN D))
<xsl:if ="position() &t; last()">
<xsl :text>, </xsl:text>
</xsl:if>

</ xsl : for-each>
</ xsl :vari abl e>

<xsl:if ="string-Iength($keywords-content) > 0">
<met a ="keywor ds" ="{$keywor ds-content}"/>
</xsl:if>
</ xsl : tenpl at e>
</ xsl : styl esheet >

The end result displays labels defined in each topic and alows you to click on each label and find al topics with the same label.

https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA | 127

Oxygen XML Blog

Home / DITA / Learning / DITA 1.3 Branch Filtering - Next Generation of Reuse A E

DITA 1.3 Branch Filtering - Next Generation of Reuse

Contributed by: Radu Coravu
Labels:
Thanks to the hard working OASIS DITA TC Group the DITA 1.3 standard is quite close to being released. Oxygen

17.1 which will be released probably in September this year will have experimental DITA 1.3 support. This will

The Oxygen blog uses this customization and some of the articlesin the blog have labels defined on them: DITA 1.3 Branch
Filtering - Next Generation of Reuse (on page 76).

The WebHelp publishing template used for publishing this blog already has a customization to display labelsin the blog articles:
https://github.com/oxygenxml/blog/tree/master/publishing/webhel pBlogTempl ate.

Displaying prolog details (author, creation date, read time)

DITA topics can contain a<pr ol og> element with various details such as the author name, creation date, and other details that
are not displayed in the published output by default.

<t opi ¢ ="
<title> ..</title>
<pr ol og>

<aut hor >. .. </ aut hor >
<critdates>

<creat ed ="2022-01-13"/>
</critdates>

At the time of publishing, we can show the author name, creation date, and the number of minutes it takes to read the article
before the actua topic content by customizing the WebHelp Responsive output.

DITA WebHelp output can be customized using a publishing template mechanism. Inside a publishing template folder, thereis
an opt filethat can contain linksto various XSLT stylesheets that are useful for customizations. For example, we'll add alink to
a stylesheet for processing the DITA <pr ol og>:

<publ i shi ng-t enpl at e>
<nane>..... </ name>

<xslt>

<ext ensi on ="xsl t/prol og. xsl " ="com oxygenxm . webhel p. xsl . di t a2webhel p"/ >
</ xslt>
</ webhel p>
</ publ i shi ng-t enpl at e>

The pr ol og. xsl stylesheet will display the author name, creation date, and an approximate number of minutes it takes to read
the article:

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni
="http://ww. w3. or g/ 2001/ XM_Schena"
<xsl:tenpl ate ="*[contai ns(@l ass, ' topic/prolog ")]">
<!-- Display the author nane -->
<xsl :vari abl e ="avat ar - aut hor" ="repl ace(*[contai ns(@l ass, ' topic/author ")]," ',"'_")"/>
<di v ="aut hor" >
<xsl : val ue- of ="*[contai ns(@l ass, ' topic/author ')]"/>
</ div>
<l-- Display the creation date -->

" xs" ="2.0">

https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate
https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA | 128

<xsl:if ="exists(.//*[contains(@l ass, ' topic/created ')]/ @ate)">
<di v ="date">
<xsl :vari abl e ="cd" =".//*[contains(@l ass, ' topic/created ')]/ @ate"/>
<xsl : val ue- of ="f or mat - dat e(xs: dat e($cd),
"[D] [M\n, 3-3] [Y0001]"')"/>
</ di v>
</xsl:if>
<!-- Display the number of minutes it takes to read the article -->
<di v>
<xsl :vari abl e ="fileContent" =/ >
<xsl:vari abl e ="text" ="normal i ze- space($fil eContent)"/>
<xsl :vari abl e ="t ext Wt hout Spaces" ="transl ate($fileContent, ' ', '")" />
<xsl :vari abl e ="fil eCount Wr ds" ="string-length($text) -

string-|ength($text Wthout Spaces) +1"/>

<xsl :vari abl e ="readM n" ="f or mat - nunber ($fi | eCount Words div 50, '0')"/>
Read time: <xsl:val ue-of ="$readM n"/> m nute(s)
</ div>

<xsl : next - mat ch/ >
</ xsl :tenpl at e>
</ xsl : styl esheet >

The WebHelp publishing template used for publishing this blog already has a customization to display information from the
prolog: https://github.com/oxygenxml/blog/tree/master/publishing/webhel pBlogTempl ate.

Each published topic contains information about the author name, created date, and an estimate number of minutesit takes to
read the article. The author name display can be enriched with an avatar photo:

Frequently Asked Questions

| Radu Coravu
' 29 Mar 2022

Read time: 2 minute(s)

v How do I register to receive notifications for new blog posts?

Dynamically publishing alist with the most recent topics

DITA topics can contain an optional <cr eat ed> element that specifies the date when they were created by the technical writer.

<t opi c ="
<title>. ..</title>
<pr ol og>

<aut hor>. . . </ aut hor >
<critdates>

<creat ed ="2022-01-13"/>
</critdates>

At the time of publishing, we can dynamically generate atopic that contains alist of the most recent topics, while taking the
creation date into account for each topic by customizing the WebHelp Responsive output.

DITA WebHelp output can be customized using a publishing template mechanism. Inside a publishing template folder, thereis
an opt filethat can contain linksto various XSLT stylesheets that are useful for customizations. For example, we'll add alink to
a stylesheet for processing such special keyword label elements:
<publ i shi ng-t enpl at e>
<nane>..... </ name>

<ext ensi on ="xsl t/ updat eWhat sNew. xsl| " ="com oxygenxm . webhel p. xsl . cr eat eTocX\M."/ >

</ xslt>

https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate
https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA | 129

</ webhel p>
</ publ i shi ng-tenpl at e>

Theupdat eWhat sNew. xs| stylesheet will sort the first five most recent topics and create anew DITA topic that containsit:

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni
="http://ww. w3. org/ 2001/ XM_Schena" ="xs" ="2.0
="http://ww. oxygenxmnl . conl ns/ webhel p/toc">
<l-- Artifically inmpose content to the what's new topic. -->
<xsl:tenplate ="/">
<xsl : next - mat ch/ >
<xsl : resul t - docunent ="{resol ve-uri ('topics/what_s_new. dita', base-uri())}">
<xsl : processi ng-instruction ="wor kdi r-uri"><xsl : val ue- of ="repl ace(resol ve-uri ('topi cs/what _s_new
.dita', base-uri()), '"what_s_newdita', '')"/></xsl:processing-instruction>
<xsl : processi ng-instruction ="pat h2proj ect-uri">../</xsl:processing-instruction>
<xsl : processi ng-instruction ="pat h2r oot map-uri">../</xsl : processi ng-i nstructi on>
<topic ="http://dita. oasi s-open. org/architecture/2005/"
="topic_v5l _Its_fsbh" ="1.3"

="(topi c abbrev-d) a(props deliveryTarget) (topic equation-d) (topic hazard-d) (topic
hi-d) (topic indexing-d) (topic markup-d) (topic mathnl-d) (topic pr-d) (topic relngnt-d) (topic swd)
(topic svg-d) (topic ui-d) (topic ut-d) (topic markup-d xnml-d) "
="- topic/topic ">

<title ="- topic/title ">What's Newl </title>
<body ="- topic/body ">
<p ="- topic/p ">Mst recent blog posts:</p>
<section ="- topic/section ">
<!-- Find the npbst recent topics by |ooking at the creation date and sorting them

descending -->
<xsl :for-each
="//topicref[@ref][not(@ormat) or @ormat =
"dita'][doc-avail abl e(resol ve-uri (@ref, base-uri()))][docunent(resolve-uri(@mref,
base-uri()))/*/prol og/critdates/created @ate]">

<xsl :sort ="docunent (resol ve-uri (@ref,
base-uri()))/*/prol og/critdates/created/ @ate" ="descendi ng"/ >
<l-- Present only the first 5 topics -->
<xsl:if ="position() &t; 6">
<xsl :variabl e ="doc" ="docunent (resol ve-uri (@ref, base-uri()))"/>
<p ="- topic/p ">
<xr ef ="{repl ace(@ref, '"topics/', "")}" ="- topic/xref
"><xsl : val ue- of ="$doc/*/title"/></xref>
</ p>

</xsl:if>
</ xsl : for-each>
</ section>
</ body>
</t opi c>
</ xsl : resul t - docunment >
</ xsl:tenpl ate>
</ xsl : styl esheet >

Inthe DITA Map, we need to add areference to astub DITA topic that will be overwritten by the publishing process:

<t opi cr ef ="t opi cs/what _s_new. di ta" ="no"/>

The published output will produce awhat's new topic as the one here: what_s_new.html.

The WebHelp publishing template used for publishing this blog already has a customization to display arecent list of topics:
https://github.com/oxygenxml/bl og/tree/master/publishing/webhel pBlogTempl ate.

Dynamically Generating an RSS Feed

When publishing awebsite from DITA XML content, we can dynamically generate an RSS XML feed by customizing the
WebHelp Responsive output.

DITA WebHelp output can be customized using a publishing template mechanism. Inside a publishing template folder, thereis
anopt filethat can contain linksto various XSLT stylesheets that are useful for customizations. For example, we'll add alink to
a stylesheet for processing such special keyword label elements:

<publ i shi ng-t enpl at e>
<nane>..... </ name>

what_s_new.html
https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate
https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA | 130

</ xslt>
</ webhel p>
</ publ i shi ng-tenpl at e>

Thecr eat eRSS. xsl stylesheet generatesanr ss. xm file that contains references to all topics referenced in the DITA Map:

<xsl:styl esheet xnlns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
excl ude-resul t-prefi xes="xs"
xm ns:toc="http://ww. oxygenxnl . com ns/ webhel p/toc"
versi on="2.0">

<xsl : param nanme="JSON_OQUTPUT_DI R_URI "/ >
<xsl:tenpl ate natch="/toc:toc">

<xsl : next - mat ch/ >

<xsl : appl y-tenpl ates node="rss" select="."/>
</ xsl : tenpl at e>

<xsl:tenpl ate nmatch="/toc:toc" node="rss">
<xsl:resul t-docunent href="{concat ($JSON_ QUTPUT_DIR URI, '/../../../../rss.xm"')}" indent="yes">
<rss version="2.0" xnlns:atons"http://ww. w3. or g/ 2005/ At ont' >
<channel >

<title>TI TLE OF RSS FEED HERE</titl e>
<link>/rss.xm </1ink>
<descri pti on>DESCRI PTI ON OF FEED HERE</ descri pti on>
<l anguage>en- us</ | anguage>

<atomlink href="https://ny.website/rss.xm" rel="self" type="application/rss
+xm " xnl ns: at on="http: // ww. w3. or g/ 2005/ At oni'/ >
<l ast Bui | dDat e><xsl : val ue- of sel ect="format-dateTi me(current-dateTine(),'[F], [D [M1]
[Y] [h] [Pl [z]")"/></lastBuil dDate>
<docs>https://oxygenxm bl og. netlify. com </ docs>
<gener at or >FEED GENERATOR NAME</ gener at or >
<managi ngEdi t or >EDI TOR EMAI L | NFORMATI ON</ managi ngEdi t or >
<webMast er >SWEBVASTER EMAI L | NFORVMATI ON</ webMast er >
<copyri ght >Copyright Info Here. Al rights reserved. </ copyri ght>
<cat egor y>News</ cat egor y>
<ttl>30</ttl>
<i mage>
<url>http://ny.website/inmg/rss-inage.gif</url>
<title>BLOG TI TLE HERE
<link>/rss.xm </link>

</i mage>
<xsl:for-each select="//toc:topic">
<xsl:if test="not(@ref = 'javascript:void(0)"')">
<itemp
<title><xsl:value-of select="toc:title"/></title>
<l i nk><xsl : val ue- of select="concat('/', @ref)"/></link>
<gui d i sPernaLi nk="fal se"><xsl : val ue- of sel ect="@ref"/></guid>
<xsl:variabl e nane="ref" sel ect="repl ace(resol ve-uri (@ref, base-uri()),
‘\.htm*, '.dita")"/>

<xsl:variabl e nane="date" sel ect ="docunent ($ref)/*/prol og/critdates/created @ate"/>
<xsl : choose>
<xsl : when test="$date">
<pubDat e><xsl : val ue- of select="
f or mat - dat e(xs: dat e($dat e) ,
"[F], [DO1] [M\n,*-3] [Y] 00:00:00 GMI')"/></pubDate>
<!-- Format |ike: Thu, 20 Dec 2022 02:46:11 UTC -->
</ xsl : when>
<xsl : ot herwi se>
<l-- Set sone fixed date so that the topic does not appear as new -->
<pubDat e> Wed, 1 Jan 2020 02:46: 11 GMI</ pubDat e>
</ xsl : ot her wi se>
</ xsl : choose>
<litem>
</xsl:if>
</ xsl : for-each>
</ channel >
</rss>
</ xsl : resul t - docunent >

Blog | 3 - DITA| 131

</ xsl :tenpl at e>
</ xsl : styl esheet >

The published output will produce an RSS feed similar to the one here: https://blog.oxygenxml.com/rss.xml. For each topic
referenced in the feed, a publication date is computed based on its creation date specified in the prolog:

<topic ="rss_feed_generation">
<title>. ..</title>
<pr ol og>

<aut hor >. . . </ aut hor >
<critdates>

<creat ed ="YYYY- MV DD/ >
</critdates>

The WebHelp publishing template used for publishing this blog already has a customization to create the RSS feed: https://
github.com/oxygenxml/blog/tree/master/publishing/webhel pBlogTempl ate.

Using the RSS Feed With Follow.it to Receive New Posts by Email

Websites such as Follow.it allow you to register alink to your RSS feed and produce a small HTML form that can be embedded
in your blog. Users who register to receive notifications when new posts are available in the RSS feed will receive automatic
emails.

Once the RSS feed is available on the website, the following steps can be followed to integrate with Follow.it:

1. Go to the Follow.it website and add a reference to your RSS feed.

2. On the website, customize the form that will be embedded in your blog HTML contents.

3. Inthethe opt file (inside the Oxygen WebHelp publishing template folder), add references to an XML file that contains
the structure for it to appear after the content of each article:

<fragnent
<fragnent

"htm - fragnents/subscribe. xm "
"htm -fragnents/subscribe. xm "

"webhel p. fragnent. after.toc_or _tiles"/>
"webhel p. fragnent . af t er. f eedback"/ >

4. Createthesubscri be. xm file and paste the form HTML content created by Follow.it inside it. Makethe HTML
content well-formed.

Generating Google Structured Data from your DITA tasks

HTML pages published on the web can contain metadata specified using the Google Structured Data specification. Once such
metadata existsin an HTML page, the Google search engine can present, for example, steps to complete a certain task directly

in the search page without the need to open the target HTML page. Below is a set of steps for automatically generating Google
Structured Data metadatafor DITA tasks when publishing DITA content to Oxygen WebHelp Responsive output, which can be
customized using a publishing template mechanism.

1. Inyour DITA project, create atask type of topic with a specific @ut put cl ass attribute value to signal that you want the
Google structured data to be automatically generated for it.

<t ask ="task_id" ="googl e- struct ur ed- dat a- st eps" >
<title>My task</title>
</ task>
<st eps>
<st ep>
<cmd>Step 1 content.</cnd>
</ st ep>
<step>
<cnmd>Step 2 content.</cnd>
</ st ep>
</ st eps>

2. Inside aWebHelp publishing template folder, thereisan opt file that can contain linksto various XSLT stylesheets
that are useful for customizations. For example, we'll add alink to a stylesheet for processing such specia tasks and
producing a special script that contains details for each step.

<publ i shi ng-t enpl at e>

<nane>..... </ name>

https://blog.oxygenxml.com/rss.xml
https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate
https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate
https://follow.it/ni
https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data#structured-data-format
https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA| 132

<xslt>

<extension file="xslt/addGoogl eStructuredData. xsl" i d="com oxygenxm . webhel p. xsl . di t a2webhel p"/ >
</ xslt>
</ webhel p>
</ publ i shi ng-tenpl at e>

3. CreatetheaddGoogl eSt r uct ur edDat a. xsl XSLT stylesheet that processes the task contents and addsin the
HTML head a script that contains the stepsin Google Structured Data format.

<xsl:styl esheet xnlns:xsl="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'

xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schenma"

excl ude-resul t-prefixes="xs"

version="2.0">

<xsl:tenpl ate nmatch="*[contai ns(@l ass, ' topic/prolog ')]">
<xsl:if test="/*[@utputclass=' googl e-structured-data-steps']">

<xsl : appl y-tenpl ates sel ect="/*" node="googl e-structured-data"/>

</xsl:if>
<xsl : next - mat ch/ >

</ xsl :tenpl at e>

<xsl:tenplate match="*" node="googl e-structured-data">
<script type="application/ld+json">

"@ontext": "https://schena.org",
"@ype": "Howlo",
"nanme": "<xsl:value-of select="title"/>",
"step": [
<xsl :for-each sel ect ="t askbody/ st eps/ st ep">
{
"@ype": "HowToSection",
"name": "Step",
"position": "<xsl:value-of select="position()"/>",
"itenli stEl enent": [
{
"@ype": "HowloStep",
"position": "1",
"itenli stEl enent": [
{
"@ype": "HowTloDirection",
"position": "1",
"text": "<xsl:val ue-of select="nornualize-space(cnd)"/>"
3}

<xsl:if test="position() &t; last()"> </xsl:if>
</ xsl : for-each>

1}
</script>
</ xsl : tenpl at e>
</ xsl : styl esheet >

4. Publish the DITA XML Content to aweb site.
5. Test your HTML page using the Google Rich Results Tester: https://search.google.com/test/rich-results.

https://search.google.com/test/rich-results

Blog | 3 - DITA | 133

6. Once Google indexes your page, google search for it.

This tool provides a preview of results in

Google Search. Best viewed on mobile
devices. Learn more.

5 https://support.google.com > answer

Generating Google Structured Data
from your DITA tasks

HTML pages published on the web can contain
metadata specified using the Google Structured
Data specification. Once such metadata exists in ...

1. Create in your DITA project a task topic ... v
2. Inside a WebHelp publishing template fo... v
3. Create the addGoogleStructuredData.xsl... v

Afisati toti cei 3 pasi pentru google.com

Related information
Generating Google Structured Data from your DITA frequently asked questions (on page 133)

Generating Google Structured Data from your DITA frequently asked questions

HTML pages published on the web can contain metadata specified using the Google Structured Data specification. Once such
metadata existsin an HTML page, the Google search engine can present, for example, lists of frequently asked questions directly
in the search page without the need to open the target HTML page. Below isa set of steps for automatically generating Google
Structured Data metadata for DITA frequently asked questions when publishing DITA content to Oxygen WebHelp Responsive
output, which can be customized using a publishing template mechanism.

1. Inyour DITA project, create atopic with a specific @ut put cl ass attribute value to signal that you want the Google
structured data to be automatically generated for it.

<topic ="frequent|y_asked_questions" ="googl e-structured-data-faq">
<title>Frequently Asked Questions</title>
<body>
<section>
<title>How do | register to receive notifications for new bl og posts?</title>
<p>Each bl og HTM. page has at the end a formin which you can fill your email address if

you want to be notified when new posts are nade. </ p>
</ section>

2. Inside aWebHelp publishing template folder, thereisan opt filethat can contain links to various XSLT stylesheets that
are useful for customizations. For example, we'll add alink to a stylesheet for processing such special DITA topics and
producing a special script that contains details for each question/answer pair.

https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data#structured-data-format
https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA | 134

<publ i shi ng-t enpl at e>

<nane>..... </ name>
<xslt>
<extension file="xslt/addGoogl eStructuredData. xsl" id="com oxygenxm .webhel p. xsl . di t a2webhel p"/>
</ xslt>

</ webhel p>
</ publ i shi ng-tenpl at e>

3. CreatetheaddGoogl eStr uct ur edDat a. xsl XSLT stylesheet that processes the task contents and adds a script in
the HTML head that contains the frequently asked questions in Google Structured Data format.

<xsl:styl esheet xml ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
xm ns: xs="http: // www. w3. or g/ 2001/ XM_Schena"
excl ude-resul t-prefixes="xs"
version="2.0">
<xsl:tenplate nmatch="*[contai ns(@l ass, ' topic/prolog ')]">
<xsl : choose>
<xsl :when test="/*[@ut put cl ass=' googl e-structured-data-faq']">
<xsl :apply-tenpl ates sel ect="/*" node="googl e- structured-data-faq"/>
</ xsl : when>
</ xsl : choose>
<xsl : next - mat ch/ >
</ xsl :tenpl at e>

<xsl:tenpl ate nmatch="*" node="googl e-struct ured-data-faq">
<script type="application/ld+json">

"@ontext": "https://schema.org",
"@ype": "FAQPage",
“mai nEntity": [

<xsl:for-each sel ect ="body/section">

"@ype": "Question",

"name": "<xsl:val ue-of select="normalize-space(title)"/>",

"accept edAnswer ": {

"@ype": "Answer",

"text": "<xsl|:value-of select="nornmalize-space(string-join(*[not(self::title)], ""))"/>"

}

<xsl:if test="position() &t; last()"> </xsl:if>
</ xsl : for-each>
1
}

</script>
</ xsl : tenpl at e>

</ xsl : styl esheet >

4. Publish the DITA XML Content to aweb site using the WebHelp Responsive transformation.
5. Test your HTML page using the Google Rich Results Tester: https://search.google.com/test/rich-results.

https://search.google.com/test/rich-results

Blog | 3 - DITA | 135

6. Once Google indexes your page, google search for it.

This tool provides a preview of results in

n Google Search. Best viewed on mobile
devices. Learn more.

o~

> https://support.google.com > answer

Frequently Asked Questions

How do | register to receive notifications for new
blog posts? Each blog HTML page has at the end a
form in which you can fill your email address if...

How do | register to receive notifications for new o
blog posts?

Can | contribute articles to the Oxygen XML
Blog?

Related information
Generating Google Structured Data from your DITA tasks (on page 131)

Editing Customizations

The DITA XML editing features (visual editing, validation, custom actions) can be customized by extending and changing the
base DITA framework configuration.

Startup DITA Project

The Startup DITA Project contents are useful for starting anew DITA project with Oxygen XML Editor version 23.0 or newer,
using collaboration version control systems such as Git or Subversion.

When the pr oj ect . xpr isopen inthe Project view, it imposes a custom set of options, aswell as an imposed custom DITA
framework extension.

Project Structure

The project contains the following folder structure:

e custom set ti ngs/framewor ks - Contains custom DITA and DITA Map framework extensions.

e custom settings/| earned-wor ds - Containslearned words for the English dictionary.

e filters - Thisinitialy empty folder can be updated to contain DITAVAL Filter files used to profile the DITA content
when publishing.

* i mages - Containsimages used in the DITA project.

* oxygen-term checker - Containsaterminology file with an examplerule.

* publ i shi ng - ContainsaDITA-OT project file and a publishing template.

https://github.com/oxygenxml/DITA-Startup-Project
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-ditaval-file.html
https://www.oxygenxml.com/doc/ug-editor/topics/terminology-checker-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html
https://www.oxygenxml.com/doc/ug-editor/topics/whr-publishing-template-2.html

Blog | 3 - DITA | 136

* r eusabl es - Contains various reusable components. For example, in the "reusable_components.dita" topic, you can
add various DITA elements (such as notes, paragraphs, lists, and list items) that are reused in various placesin the
project. See more about reusing DITA content.

* t opi cs - Contains al the DITA topicsin the project.

Settings Saved at Project Level

Most of the preference pagesin Options > Preferences can be saved at project level. When the project is open in the Proj ect
view, the following options are imposed:

* The Editor / Spell Check preferences page is saved at project level with automatic spell checking enabled.

» The Editor / Spell Check / Dictionaries preferences pageis saved at project level and all learned words are saved in
thecust om set ti ngs/ | ear ned-words/ en. tdi file

* The Editor / Edit Modes/ Author preferences page is saved at project level.

* TheDITA / Maps preferences page is saved at project level.

* The Document Type Association preferences page disables certain framework configurations that are not useful (e.g.
DocBook 5).

* The Document Type Association / L ocations preferences page references two custom framework configurations that
are described further.

Framework Customizations
The editing environment for DITA Maps and T opics can be customized by extending their current frameworks.

The framework extension for editing DITA Topicsisdefined inthecust om set ti ngs/frameworks/ dit a-
ext ensi on/ di t a- ext ensi on. exf framework script file. Y ou can add your own custom actions to the toolbars, menus, or
contextual menus, and add, change, or remove transformation scenarios or validation scenarios.

* You can customize the existing DITA Topic file templates by making changesto the cust om set ti ngs/
framewor ks/ di t a- ext ensi on/ t enpl at es/ folder.

* The content completion configuration extension filecust om set t i ngs/ f r amewor ks/ di t a- ext ensi on/
resources/ cc_config_ext.xm alowsyou to customize various aspects of the content completion feature.

* You can add custom Schematron validation rules (on page 178) inthecust om set ti ngs/ f ramewor ks/ di t a-
ext ensi on/ r esour ces/ cust onRul es. sch Schematron file.

* You can aso customize the visual editing (on page 137) by modifying the CSS cust om set ti ngs/
f ramewor ks/ di t a- ext ensi on/ css/ cust om css.

The framework extension for editing DITA Mapsisdefinedinthecust om setti ngs/ f ranewor ks/ di t a- map-

ext ensi on/ di t a- map- ext ensi on. exf framework script file and can me customized in asimilar way. Y ou can
customize the existing DITA Map file templates by making changesto thecust om set ti ngs/ f r amewor ks/ di t a- map-
ext ensi on/ t enpl at es/ folder.

Renaming/Moving Topics and Other Resour ces

The project has alogical folder named mai n Fi | es with areference to the main DITA map. This enables the Main Files support
in the project, allowing you to rename or move files while the references to those files are automatically updated.

Terminology Checking

For checking terminology, you can use the Oxygen Terminology Checker add-on. Y ou can add terminology rules to the
oxygen-t erm checker folder. For example, the Oxygen user manual uses a set of Vae rulesto check for common
terminology problems.

https://www.oxygenxml.com/doc/ug-editor/topics/eppo-create-conref.html
https://www.oxygenxml.com/doc/ug-editor/topics/sharing-projects.html
https://www.oxygenxml.com/doc/ug-editor/topics/learned-words.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/customizing-templates.html
https://www.oxygenxml.com/doc/ug-editor/topics/rendering-elements-cc-author.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/customizing-templates.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/terminology-checker-addon.html?
https://github.com/oxygenxml/userguide/tree/master/DITA/oxygen-term-checker
https://github.com/oxygenxml/userguide/tree/master/DITA/oxygen-term-checker

Blog | 3 - DITA | 137

Publishing

Y ou can publish the content of the pr oj ect . di t amap in two ways:

* You can open the DITA-OT project file named publ i sh- pr oj ect . xm fromthepubl i shi ng subfolder and two
predefined publishing scenarios become available. Y ou can read more about DITA-OT project filesin the user manual.

* You can aso open the pr oj ect . di t anmap filein the DITA Maps Manager view, invoke the "Configure
Transformation Scenario(s)" dialog box, and in the Project section, there are two predefined transformation scenarios
(one for WebHelp, the other for PDF) that use the publishing template archived in the zip file. This past webinar shows
more details about creating and customizing a publishing template.

Starting with Oxygen XML Editor version 24, the Startup DITA Project will be available as a new project template in the
Project > New Project dialog box. If you want to try it with Oxygen XML Editor version 23 you should download the project
template (. zxpr file) from the project releases page and set it as a new document template.

Customizing the DITA Visua Editing Experience

The Author visual editing experience in Oxygen is CSSdriven. Let's say | have ateam of writers using Oxygen and they want to
visually edit DITA dl elementsin atable-like layout.

All the validation, editing and publishing support Oxygen has for a specific XML vocabulary is defined in aframework
configuration (on page 272).

Instead of copying an entire framework configuration folder (such as DITA or Docbook), modify and distribute it, you can
choose to extend that framework and distribute the extension. This way, you will benefit from new functionality added to the
base framework by newer Oxygen versions and still use your customizations.

The steps bel ow describe how an extension of the DI TA framework that removes certain elements from the content completion
list can be constructed and shared:

1. Somewhere on your disk, in a place where you have full write access, create afolder structure like:
custom_frameworks/dita-extension.
2. Inthat folder, create anew CSS stylesheet (for example custom.css) that will contain your custom CSS styles:

dl {
di splay:table !inportant;
}
dl entry{
di spl ay: tabl e-row !inportant;
}
dt, dd {
di splay: table-cell !inportant;
border: 1px solid bl ack;
paddi ng: 2px;

}

3. Inthe Document Type Association / L ocations preferences page, add the path to your custom_framewor ks folder in
the Additional frameworksdirectorieslist. Then click Apply in the Preferences dialog box.

4. Inthe Document Type Association preferences page, select the DITA document type configuration and use the Extend
button to create an extension for it.

5. Give a custom name to the extension (for example DITA - Custom), then change its Stor age to external, and saveit to
apath like: path/tol.../custom_framewor ks/dita-extension/dita-extension.framework.

6. Make whatever changes are necessary to the framework configuration, and in the Author tab click the CSS tab and add
areference to your custom CSS. Do not set atitle for the CSS and also do not check the Alter nate checkbox as you want
your CSSto be applied by default.

7. Click OK to close the dialog box and then either OK or Apply to save the changes to the preferences.

After you perform these steps, you will have afully functioning framework in the dita-extension folder that can be shared with
others: Document Type Extension Sharing (on page 261).

To check that your framework extension works, you can create anew DITA topic and insert adl element inside it. It should now
be presented in atable-like layout.

https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html
https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html
https://github.com/oxygenxml/DITA-Startup-Project/releases
https://www.oxygenxml.com/doc/ug-editor/topics/create-your-own-templates.html#create-your-own-templates

Blog | 3 - DITA| 138

In order to know which CSS styles to override for a specific DITA element, you can right click inside that element in the Author
visual editing mode and use the I nspect Styles action to see all CSS styles defined for it by default. Y ou can aso define aternate
CSS styles that are applied manually by the writer by using the Author toolbar Styles drop-down menu.

Customizing the DITA Framework Using a Framework Extension Script

How to customize an existing framework (e.g. DITA) using aframework extension script.

All the validation, editing, and publishing support Oxygen has for a specific XML vocabulary is defined in aframework
configuration (on page 272). Oxygen comes bundled with such frameworks for popular XML vocabularies, such asDITA. A
common use case is to make changes to these built-in frameworks, to tailor them according to specific requirements.

A framework extension script isan XML file that defines the changes to perform on a base framework. Suppose that you want to
make the following changes to the DITA framework:

1. Customize the new document templates.

2. Change the Author mode rendering with a new CSSfile.

3. Remove the Bold, Italic, Underline actions from the Author mode.
4. Add the Insert Note action to the toolbar.

Creating the Framework Extension Script

The easiest way to create such a script isto use the New document wizard and choose the Extend Framework Script or Create
Framework Script template. Defineit as an extension of the DITA framework through the @ase attribute. Also, set ahigh
priority, through the <pri ori t y> element, to make sure the framework will be picked in favor of the DITA one.

<scri pt ="http://ww. oxygenxm . conl ns/ f r amewor k/ ext end"
="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance"
="http://ww. oxygenxmni . coni ns/ f r amewor k/ ext end
http://ww. oxygenxm . conl ns/ f r amewor k/ ext end/ f r anewor kExt ensi onScri pt . xsd"
="DI TA">

<name>Cust om DI TA</ nane>

<descri pti on>A custom DI TA franework. </ descri ption>

<priority>H gh</priority>
</script>

Y ou need to save the script inside a framework directory (the same place as the *.framework file). For example, if you save
itinsde. ../ cust om framewor ks/ custom dita/ di ta-script.exf,thenyouneedtoadd. ../ custom
f r amewor ks to the Additional frameworks directorieslist.

) Note: Oxygen 23.1 or later will automatically detect the script and load the framework. If you want to use the
framework in an older Oxygen XML Editor version that does not have support for these scripts, you can compile the
script to obtain the * .framework file by using the Compile Framewor k Extension script action from the contextual
menu or by runningthescr i pt s/ conpi | eFr amewor kScri pt . bat external tool (available in the All Platforms
distribution only).

Customizing the New Document Templates

The document templates appear when the user invokes the New... action. To add a new template, you need to do the following:

* Inthedirectory where the script is saved, create anew file (e.g. t enpl at es/ My custom topi c. di ta). The
content of the file represents the template's content.
* In the script, specify the new template locations by adding this fragment inside the <scri pt > element.
<docunent Tenpl at es ="none" >

<addEntry ="${framework}/tenpl ates"/>
</ docunent Tenpl at es>

https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/new-dialog-sa.html
https://www.oxygenxml.com/doc/ug-editor/topics/new-dialog-sa.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-location.html
https://www.oxygenxml.com/doc/ug-editor/topics/customizing-templates.html?hl=document%2Ctemplates

Blog | 3 - DITA | 139

) Note: In the example snippet above, the @ nheri t attribute is set to not inherit any of the document templates defined in
the base framework.

Changing the Author Mode Rendering With a New CSS File

The author mode is driven by CSSrules. To add new rules, you need to:

* Create anew CSSfilein the directory where the script is saved. Giveit aname (e.g. css/ cust om css) and, for
example, arule to make titles red:

title {
col or:red;

}
* In the script, specify the path to the new CSS by adding this fragment inside the <scr i pt > element.

<aut hor >
<css>
<addCss pat h="${framewor k}/css/cust om css"/>
</ css>
</ aut hor >

Removing the Bold, Italic, Underline Actions From the Author Mode

An author action is just a configuration that describes which operation to use depending on the context. Each action has a unique
ID. Suppose that you do not want Bold, Italic, and Underline actions from the built-in DITA framework because their markup is
not semantic. After you inspect the actions preferences and we find out their 1Ds, you can filter them from all toolbars and menus
by adding this fragment inside the <scri pt > element.

<aut hor >
<aut hor Act i ons>
<renobveAction
<renoveActi on
<renoveActi on
</ aut hor Act i ons>
</ aut hor >

"bol d"/ >
"italic"/>
"underline"/>

Adding the Insert Note Action to the Toolbar

The Insert Node action is aready defined in the DITA framework, but it is not present on the toolbar. To add it to the toolbar,
you need to:

* Go to Options->Prefer ences, edit the DITA framework, and search in the Actions tab for the Insert Node action. Make
note of itsID.

* Edit the framework extension script and put the action in the toolbar by adding this fragment inside the <scri pt >
element.

<aut hor >
<t ool bar s>
<t ool bar >
<addActi on ="insert.note" ="par agr aph"/>
</ t ool bar >
</t ool bar s>
</ aut hor >

" Note: In this example, an action is used that is already present on the toolbar as an anchor. The new action is added to
the toolbar after the action that inserts a paragraph.

Related information
https://www.oxygenxml.com/doc/ug-editor/topi cs/framework-customizati on-scri pt-usecases.html
https.//www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

https://www.oxygenxml.com/doc/ug-editor/topics/the-action-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-action-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-actions-sub-tab.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

Blog | 3 - DITA | 140

Controlled Attribute Vaues for your DITA Project

Frequently when editing DITA content you will feel the need to enforce a controlled set of values when editing certain attributes.
For example you may want to impose that the values for the @outputclass attribute on the element codeblock are either
language-xml or language-css. Thisisuseful in order to remind writers that any other value will not be interpreted by the build
process in a significant manner.

Oxygen has a couple of easy ways in which controlled values can be imposed for certain attributes:

1. You can edit the XML configuration file OXYGEN_INSTAL L _DIR/frameworks/dita/r esour ces/
cc_value_config.xml and provide additional entries. In the case of our small example for providing controlled values for
the @attribute the configuration file should contain an additional entry:

<mat ch ="codebl ock" ="out put cl ass" >
<itens ="addl f Enpty" >
<item ="| anguage- xm " ="XM. Syntax Highlight"/>
<item ="| anguage- css" ="CSS Syntax Highlight"/>
</itens>
</ mat ch>

Besides providing a hard-coded list of values the content compl etion configuration fileis flexible enough to allow
calling an XSLT stylesheet which could retrieve those values from other sources (for example viaHTTP from an Exist
database).

2. Provide those controlled values via a Subject Scheme Map (my favorite). Coming back to our example, you can create a
small Subject Scheme map with the filenamecont r ol | edVal ues. di t amap and the content:

<! DOCTYPE subj ect Scheme PUBLIC "-//OASI S// DTD DI TA Subj ect Schenme Map//EN'"nmap. dtd">
<subj ect Schene>
<subj ect Head>
<subj ect HeadMet a>
<navtitle>Provide controlled attributes</navtitle>
</ subj ect HeadMet a>
</ subj ect Head>
<hasl nst ance>
<subj ect def ="l anguageTypeKey" >
<subj ect def ="| anguage- xm ">
<t opi cnet a>
<navtitle>XM. Syntax Highlight</navtitle>
</t opi cnet a>
</ subj ect def >
<subj ect def ="| anguage- css" >
<t opi cnet a>
<navtitl e>CSS Syntax Hi ghlight</navtitle>
</t opi cnet a>
</ subj ect def >
</ subj ect def >
</ hasl nst ance>
<enuner at i ondef >
<el ement def ="codebl ock"/ >
<attri but edef "out put cl ass"/>
<subj ect def "1 anguageTypeKey" />
</ enuner at i ondef >
</ subj ect Schene>

then you can refer to it from your main DITA Map like:

<t opi cr ef ="control | edVval ues. di t amap" ="di tamap" ="subj ect Schene"/ >

3. If the attributes on which you want to impose certain values are DITA profiling attributes, you can go to the Oxygen
Prefer ences->Editor / Edit modes/ Author / Profiling/Conditional Text page and define the set of allowed values for
them.

The only problem with the first approach is the fact that validation will not impose those values and writers will not receive
validation error messages if they set another value for the specific attribute. So you will probably need to add a Schematron check
in order to signal errors when a certain attribute's val ue does not match the list of controlled attribute values. For both the second
and third approaches, validation will warn the writersif certain attribute values do not match values in the controller values|list.

https://www.oxygenxml.com/doc/ug-editor/#topics/configuring-content-completion-proposals.html
https://www.oxygenxml.com/doc/ug-editor/#topics/subject-scheme-map.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/condproc.html#condproc

Blog | 3 - DITA | 141

Controlled Attribute Values (Part 2 - Advanced)

As aready presented in Controlled Attribute Values for your DITA Project (on page 140), Oxygen allows you to add or
replace possible values for attributes or elements based on a simple configuration file. A more complex scenario is one in which
in order to decide which valuesto provide, you need more context information. Let's take this DITA fragment:

<net adat a>
<ot her net a ="nane" ="val ue"/>
</ met adat a>

What we want is to offer proposals for @aont ent but the possible values for @aont ent depend on the value of @ane. We will
see how we can solve this dependency.

Note: Starting with Oxygen 17.1 there is a simpler way to achieve the use case presented in this post. The
contextElementX PathExpression parameter will be bound to an X Path expression that identifies the element in the context of
which the content completion was invoked.

The configuration file

The configuration file (cc_value_config.xml) allows calling an XSLT stylesheet and that's just what we will do:

<mat ch ="ot her net a" ="content">
<xslt ="met a. xsl " ="fal se"/>
</ mat ch>

Asyou can see, we can't express the dependency between @@ont ent and @aare inside the configuration file . | also want to
mention that because the values for @aont ent are dynamic, we want the XSLT script to execute every time the values are
reguested (we shouldn't cache the results). We enforce this by setting @aisecache to false.

The XSLT script

The XSLT script has access to the XML document (through the documentSystem| D parameter) but it lacks any context
information, we can't really tell for which <ot her net a> element was the script invoked. To counter this limitation, we will use
Java extension functions and we will call Oxygen's Java-based API from the XSLT. Here how it looks:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
="http://ww. w3. or g/ 2001/ XM_Schena"
="http://ww. oxygenxm . com’ ns/ doc/ xsl "
="http://ww. oxygenxm . conl ns/ doc/ xsl "
="j ava: ro. sync. exnl . wor kspace. api . Pl ugi n\Wor kspacePr ovi der "
="java:ro.sync. exnl . workspace. api . Pl ugi nWr kspace"
="java: ro.sync. exnl . wor kspace. api . edi t or. WsEdi t or "
="http://saxon.sf.net/"
="j ava: ro. sync. exm . wor kspace. api . edi t or. page. t ext . xnl . WBXM_Text Edi t or Page"
="java: ro. sync. exnl . wor kspace. api . edi t or. page. aut hor . WSAut hor Edi t or Page"
="j ava: ro. sync. ecss. ext ensi ons. api . Aut hor Docunent Control | er"

="xs xd"
="2.0">
<xsl : param ="docunent Syst enl D" ="xs:string"/>
<xsl:tenpl ate ="start">
<xsl :vari abl e ="wor kspace" ="prov: get Pl ugi n\Wor kspace()"/>
<xsl :vari abl e ="edi t or Access" ="wor k: get Edi t or Access($wor kspace, xs: anyURI ($docunent Systeni D),
0)"/>
<xsl :vari abl e ="pagel D' ="xs:string" ="edi t or Access: get Current Pagel D($edi t or Access) "/ >
<xsl :vari abl e ="nane" ="xs:string">
<xsl : choose>
<xsl : when ="$pagel D=' Text' ">
<xsl :vari abl e ="t ext page" ="edi t or Access: get Curr ent Page($edi t or Access)"/ >
<!-- In the text page, the context is the @ontent attribute -->
<xsl : val ue- of ="t ext page: eval uat eXPat h($t ext page, 'xs:string(./parent::node()/ @ane)')"/>
</ xsl : when>
<xsl : when ="$pagel D=" Aut hor" ">
<xsl :vari abl e ="aut hor Page" ="edi t or Access: get Cur r ent Page($edi t or Access) "/ >
<xsl :vari abl e ="caret Of f set" ="aut hor Page: get Car et Of f set ($aut hor Page) "/ >
<xsl :vari abl e ="ctrl " ="aut hor Page: get Docunent Cont r ol | er ($aut hor Page) "/ >
<xsl :vari abl e ="cont ext Node" ="ctrl:get NodeAt O f set ($ctrl, S$caretCffset)"/>

<l-- In the author page, the context is the "othernmeta" el ement -->

https://www.oxygenxml.com/doc/ug-editor/topics/configuring-content-completion-proposals.html#configuring-content-completion-proposals__configuring_proposed_values_in_context
https://www.oxygenxml.com/doc/ug-editor/#topics/configuring-content-completion-proposals.html

Blog | 3 - DITA | 142

<xsl : val ue- of ="ctrl:eval uatexXPath($ctrl, 'xs:string(@ane)', $contextNode, false(), false(),
false(), false())[1]"/>
</ xsl : when>
</ xsl : choose>
</ xsl : vari abl e>

<items>
<xsl : choose>
<xsl : when ="$nanme = 'tenperatureScale' ">

<item ="Cel si us" ="(synbol Q"/>
<item ="Fahr enhei t" ="(synbol F)"/>

</ xsl : when>

<xsl : when ="$nanme = 'neasurenent'">
<item ="Metric" ="Metric systeni/>
<item ="l nperial " ="Al so known as British Inperial"/>

</ xsl : when>
</ xsl : choose>
</items>
</ xsl : tenpl at e>
</ xsl : styl esheet >

Converting Subject Scheme Map Valuesto aDITAVAL

Suppose you aready have a Subject Scheme Map in your project and you use it to control attribute values: Controlled Attribute
Valuesfor your DITA Project (on page 140).

In the Oxygen Colorsand Styles preferences page, you can also assign various colors and styles to each profiling attribute
(name, value) combination. One option for thisisto manually re-add attributes and valuesin that list. Another option would
beto create an XSLT stylesheet to gather all profiling attribute names and values from the Subject Scheme Map and create a
DITAVAL file. The stylesheet would look like this:

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
="http://ww. w3. or g/ 2001/ XM_Schena"
="xs"
="2.0">
<xsl : out put ="yes"/>
<xsl:tenpl ate ="/">
<val >
<xsl : for-each ="subj ect Schenme/ enuner at i ondef " >
<!-- For each attribute nane -->
<xsl:if ="subj ect def / @eyref and attributedef/ @ane">
<xsl :vari abl e ="at t r Nane" ="attribut edef/ @ane"/>
<xsl :vari abl e ="keyref" ="subj ect def / @eyref"/>
<l-- For each key value -->
<xsl : for-each ="//*[@xeys=$keyref]/*// Geys">
<xsl :vari abl e ="attri buteVal ue" =."/>
<prop ="flag" ="{$attrNane}" ="{$attributeVal ue}"/>
</ xsl : for-each>
</xsl:if>
</ xsl : for - each>
</val >

</ xsl : tenpl at e>
</ xsl : styl esheet >

After you obtain the DITAVAL file, you can import it directly in the Colors and Styles preferences page. If the DITAVAL file
has flagging information, that information will be used directly to style each attribute value.

A possihility to enhance this workaround is to specify profiling styles for each attribute value directly in the Subject Scheme map
using the <dat a> element like:

<subj ect def ="1inux">
<dat a ="col or" ="yel | ow'/ >
</ subj ect def >

inthiscasethe XSLT stylesheet would create the DITAVAL file by picking colors directly from the Subject Scheme M ap:

<prop ="fl ag" ="{$at trName}" ="{$attributeVal ue}">

<xsl : choose>
<l-- Here you can al so set flagging colors depending on the profiling attribute value -->
<xsl : when ="dat a[@ane='color']">

<xsl:attribute ="col or" ="dat a/ @al ue"/ >

Blog | 3 - DITA | 143

</ xsl : when>
</ xsl : choose>
</ pr op>

In this way, your Subject Scheme Map will keep both the controlled attribute values and various colors and styles, which can
later be used to create aDITAVAL file and either publish with those styles or import the DITAVAL filein Oxygen to highlight
certain elements with various colors: https://www.oxygenxml.com/demo/Colors_and_Styles for_Profiled_Content.html.

Converting .xpr Profiling Conditions to Standard DITA Files

Profiling Conditionsin the Oxygen .xpr Project File

When we first started using Oxygen and DITA, we defined our profiling conditions in the Oxygen . xpr project file:

* Attribute values were defined in Profiling/Conditional Text > Attributes and Condition Sets > Profiling Attributes:

profiing ® 'ZEZ' Editor / Edit Modes / Author / Profiling/Conditional Text / Attributes and Condition Sets
4 Editor

Toimport the profiling attributes defined in a set of DITAVAL files and create profiing condition sets Import from DITAVAL. ..
4 Edit Modes based on these files, dick Import from DITAVAL"

4 Author [P]
4 Profiling/Conditional Text [P]

Profiling Attributes

Document type Attribute Values
Attributes and Condition £ , , J y y
DITA roduct rodA(A1) prodA(AZ) prodB(B1) prodB(B2Z]
4 Colors and Styles [P] P P (Dp “2p By ®2)
DITA* props future hide
Attributes
DITA audience expert novice

4 NITA

* Colorswere defined in Profiling/Conditional Text > Attributes and Condition Sets> Colorsand Styles:

£\
profiing X 'ZEZ' Editor / Edit Modes / Author / Profiling/Conditional Text / Colors and Styles
4 Editor To import the profiling colors and styles defined in a set of DITAVAL files, didk “Import from Import from DITAVAL...
4 Edit Modes DITAVALT,
4 Author [P]
‘fou can set here the text colors and styles assodiated with a profiling attribute value,
4 Profiling/Conditional Text [P]
Attributes and Condition € | D@cument type Attribute Value Example
4 Colors and Styles [P] 4 Defined attributes values ~
Attributes *DITA* product prodA(A1) Sample text to preview the profiling styles.
4 DITA *DITA* product prodA(AZ) Sample text to preview the profiling styles.
Maps DITA* product prodB(B1) Sample text to preview the profiling styles.
Topics “DITA* product prodB(B2) Sample text to preview the profiling styles.
Menu Shortcut Keys DITA* product [AanY] Sample text to preview the profiling styles.
DITA props future Sample text to preview the profiling styles.
DITA* props hide Sample text to preview the profiling styles.
DITA* props [ANY] Sample text to preview the profiling styles.
DITA* audience expert Sample text to preview the profiling styles.
DITA* audience novice Sample text to preview the profiling styles.
DITA* audience [AanY] Sample text to preview the profiling styles.

We organized our DITA content into three different Git repositories. The DITA content in each Git repository used different
profiling conditions. But we wanted to share asingle . xpr file across all three repositories, so we defined all profiling
conditionsin that file.

Storing profiling conditionsin ashared . xpr file caused some issues:

» Writers were shown profiling conditions from other repositories that were not relevant to them.

This was okay in the beginning because we did not have many profiling conditions. But over time, the number of
profiling conditions increased as we increased content reuse and converted more content to DITA.

* It was time-consuming to add or update profiling conditions.

https://www.oxygenxml.com/demo/Colors_and_Styles_for_Profiled_Content.html

Blog | 3 - DITA | 144

Writers are not permitted to modify our . xpr file, so | needed to understand and implement each new condition. Then |
had to roll out the updated . xpr fileto al three Git repositories (and sometimes to multiple branchesin arepository).

* Color definitions could become desynchronized.

Colors were defined in two places—in the . xpr file for the Oxygen Ul and in DITAVAL filesfor transformations—and
| needed to remember to update the colors in both places.

Oxygen supports DITA subject scheme files for defining profiling condition attribute values in a DITA-standard way, so we
started using them. This allowed writers to add or update attribute values, which was a step in the right direction. But | still
needed to update and distribute the corresponding colorsinthe. xpr file.

When we decided to add a fourth Git repository that required many new profiling conditions, we decided we needed a better
approach. And fortunately the Oxygen v26.0 release saved the day with a solution.

Profiling Conditionsin Standard DITA Files

The Oxygen v26.0 release provides a new feature that allows profiling condition colors to be loaded dynamically from
DITAVAL files:

profiing X 'ZEZ' Editor [Edit Modes [Author / Profiling/Conditional Text / Colors and Styles
4 Editor . . o
(Automatically apply colors and styles from DITAVAL files referenced in the Main Files folder)
4 EditModes
4 Author [P] To import the profiling colors and styles defined in a set of DITAVAL files, didk Import Import from DITAVAL...
from DITAVAL™

4 Profiling/Conditional Text [P]
Attributes and Condition & You can set here the text colors and styles assodiated with a profiling attribute value.

4 (Colors and Styles [P] Document type Attribute Value Example

In previous versions, Oxygen could statically import colors from DITAVAL filesinto the. xpr file, but that did not resolve the
fundamental challenges with ashared . xpr files described above.

With this new feature, Oxygen loads the color definitions directly from the DITAVAL filesin the Main Files list when you open
aDITA map or topic.

Now we can define profiling conditions entirely with standard DITA files, with no product-specific information needed in the
. xpr file:

* Attribute values are defined by DITA subject scheme files

* Attribute colors are defined by DITAVAL files, for both editing and publishing

Finaly, profiling condition updates are completely self-service for writers! They can freely add or update profiling condition
values or colors as they want.

What Are DITA Subject Scheme Files?

A DITA subject schemefileis a speciaized type of DITA map file that can constrain attributes and elements to particular defined
values. Itisincluded asasubmap in aDITA content map. In this case, we can use it to constrain profiling attributes.

Subject scheme maps accomplish thistask in two steps:

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/controlled-values-for-attributes.html

Blog | 3 - DITA | 145

* A <subj ect def > element defines a set of values for a subject.
o For example, a subject could be a product family, and its values are variants within that product family.

* An<enurer ati ondef > element binds the values for one or more subjects (products) to the attribute specified by
<attri but edef >.

In our environment, we keep a centralized set of value definition filesin a"warehouse” folder:

Blog | 3 - DITA | 146

my-map.ditamap

<map>

;.mapref href="my-map/pr ofiling.ditamap"/>

</map>

Reference subject scheme submap

my-map/profiling.ditamap

<subjectScheme>

<!-- thisis a map-specific <enumerationdef> file that constrains profiling
conditions to the values defined in one or more <subjectdef> files -->

<schemeref href="../warehouse/subj ectdefs-audience.ditamap"/>
<schemeref href="../warehouse/subj ectdefs-product.ditamap"/>

<enumer ationdef>

<attributedef name="audience"'/>

<subjectdef keyref="subjectdefs-audience"/>
</enumer ationdef>

<enumer ationdef>

<attributedef name="product"/>

<subjectdef keyref="subjectdefs-product"/>
</enumer ationdef>

</subjectScheme>

Bind values to attributes
using <enumer ationdef>
and <attributedef>

>

warehouse/subjectdefs-audience.ditamap

<subjectScheme>
<subjectdef keys="subj ectdefs-audience">

<topicmeta>
<navtitle>@audience values</navtitle>
</topicmeta>

<subjectdef keys="novice">
<topicmeta>
<navtitle>Novice users</navtitle>
</topicmeta>
</subjectdef>

<subjectdef keys="expert">
<topicmeta>
<navtitle>Expert users</navtitle>
</topicmeta>
</subjectdef>

</subjectdef>
</subjectScheme>

Define values
using <subjectdef>

warehouse/subj ectdefs-product.ditamap

<subjectScheme>
<subjectdef keys="subjectdefs-product">

<topicmeta>
<navtitle>@product values</navtitle>
</topicmeta>

<subjectdef keys="A">
<topicmeta>
<navtitle>Product A</navtitle>
</topicmeta>
</subjectdef>

<subjectdef keys="B">
<topicmeta>
<navtitle>Product B</navtitle>
</topicmeta>
</subjectdef>

</subjectdef>
</subjectScheme>

Define values
using <subjectdef>

Blog | 3 - DITA | 147

DITA subject scheme structures might seem intimidating at first. However, they can be easier to understand when populated with
attributes and values that are familiar to you.

Converting .xpr Profiling Conditions With Refactoring

To make it easier to move from . xpr -defined profiling conditions to standard DITA profiling conditions, | created a refactoring
operation that processes an input . xpr file asfollows:

» Converts profiling condition value definitions to DITA subject scheme files
A profiling.ditamap fileiscreated that can be referenced by DITA content maps.
 Converts profiling condition color definitionsto asingleal | _col ors. di t aval file

Thisfile can be added to the Main Fileslist defined in the Oxygen . xpr project file. Although the color definitions
might change over time, the file location does not, and so no changes are needed to the . xpr file.

* Removes the converted value and color definitions from theinput . xpr file

Y ou can use the following test case to experiment with this refactoring operation:
converting_xpr_profiling.zip

Theoxygen. xpr filein thetest case contains profiling conditions that you can convert to DITAVAL and DITA subject
schemefiles:

topics/converting_xpr_profiling/converting_xpr_profiling.zip

Blog | 3 - DITA | 148

[A preview X
Changes to be performed

B ® C:loxygen_convert_xpr_profiing_to_dita\oxrygen.xpr
a3 C:\oxygen_convert_xpr_profiing_to_dita\oxygen. xpr-profiling\all-colors. ditaval
fe| C:\oxygen_convert_xpr_profiing_to_dita‘oxygen. xpr-profiing\subjectdefs-proda. ditamap
fs| C:\oxygen_convert_xpr_profiing_to_dita‘oxygen. xpr-profiing\subjectdefs-prodB. ditamap
fs| C:\oxygen_convert_xpr_profiing_to_dita‘oxygen. xpr-profiing\subjectdefs-props. ditamap
fs| C:\oxygen_convert_xpr_profiing_to_dita‘oxygen. xpr-profiing\subjectdefs-audience. ditamap
fs| C:\oxygen_convert_xpr_profiing_to_dita‘oxygen. xpr-profiing\profiing. ditamap

Select all Deselect al * Next Change
v U IGA LU IDULEI L IE a1 Ay o e sy T =
” <profiingAtirbuteStyle> H.xn'!l version="1.0" encoding="UTF-8"2> Ta 1]
- S <project> 2
2 <field attributeValue™> Py n
3 <String=A1</5tring >
<fiters 4
4 < ffigld > “False”f>
15 <field “foregroundColor™= <ontions> :
16 <Integer=0+</Integer > pUonS . . -
<zerialized preserve”> 6
T <ffield> .
. <serializableQrderedMap = 7
] <field “backgroundColor™> <entry>]
. el S e «String >author. profiing. styles < /String > :]
20 <ffield> : :
- . . <profilingAttributeStyle-array = 0
: — e «fprofilingAtiributeStyle-array =
2 <5tring>*DITA®< [String > proting ¥ N
P </field> it :
4 <field “attributeName™ > NEili I
n)) «String >auto.apply.styles. ditaval. main. files < /String > 4
25 <String >product<String = :
o <ffield> «Boolean>true < Boolean »
2 <field “attributeGrouphlame = :ii?;y: ;
2))
25 = ;;jg? S E «5tring =custom, refactoring, dir </String » 18
= Feld textDecoration”s «String >${pd} refactoring </5tring > i
. <fentry= 20
3 <nullf= o
2 < field> <entry> :
= Feld ol «5tring enable. project. master. files, support < Siring > o
<Boolean>true< Boolean> 3
4 <Boolean »false < /Boolean > .
% <ffield> TP "‘
= e ez qe:g;ii »key.author editor, option.pane </5tring > i:
7 <Boolean »false < /Boolean > B |g };' B II > plon.p g ,;
v < lRelds <Boolean>true< Boolean Tvl,
< b3 < > -

'; < Back Finish] Cancel

To try the refactoring operation,

1. (Optional) Create a backup copy of the. xpr file.

The refactoring operation removes converted profiling conditions from theinput . xpr file, so you might want to save a
copy of theorigina file.

2. Openthe. xpr filein an Oxygen editing window.

Locatethe. xpr filein the Project view, then right-click it and choose Open with > Internal editor. When prompted
for the format, accept the default of XML Document.

3. Run the refactoring operation on thefile.
In the editing window, right-click and choose Refactoring > Profiling conditions > Convert .xpr profiling conditions.

4. In the configuration dialog, specify how to perform the conversion:

Blog | 3 - DITA | 149

o For Attributesto convert, specify the space-separated list of profiling attributes to convert.

o For When writing <subjectScheme> files, specify how to distribute the value definitions (<subj ect def >) and
attribute bindings (<enuner at i ondef >) across one or more subject schemefiles.

For example, if you are using profiling attribute groups (the testcase uses groups for the @r oduct attribute),
having each group defined inits own <subj ect def > file can help different writers track their own changes over
timein Git.

5. Click the Preview button to preview the operation, then complete the refactoring operation.
6. Add theoxygen. xpr - profiling/ folder tothe Main Fileslist.

Right-click the folder in the Project view, then choose Add to Main Files.
7. Configure Oxygen to dynamically load colors from the newly created DITAVAL file.

In Profiling/Conditional Text > Attributesand Condition Sets> Colorsand Styles, enable the Automatically apply
colorsand styles... checkbox.

profiing X (F) Editor / Edit Modes | Author / Profiling/Conditional Text / Colors and Styles
4 Editor (B Automatically apply colors and styles from DITAVAL files referenced in the Main Files folder)
4 Edit Modes
4 Author[P] ;zmﬂtp)?g?:ﬁroﬁling colors and styles defined in a set of DITAVAL files, dick “Import Import from DITAVAL...

4 Profiling/Conditional Text [P]
Attributes and Condition § 'You can set here the text colors and styles assodated with a profiling attribute value.

4 Colors and Styles [P] Document type Attribute Value Example

The newly created pr of i | i ng. di t amap file defines al profiling condition values. If a particular DITA map needs only some
conditions, you can create a map-specific copy of thepr of i | i ng. di t amap file that binds only the values of interest. In our
environment, we use the convention of mapdi r/ profil i ng. di t amap, keeping the same"pr of i | i ng. di t anap" file
name but placing it inside the relevant map content folder.

To create a map-specific copy of profi | i ng. di t amap inthetest case,

1. Perform the conversion as described above.
2. Copy theprofiling. di t amap filefromtheoxygen. xpr - profil i ng/ folder totheny- map/ folder.

3. Open the newly copied my- map/ pr of i | i ng. di t amap fileand fix any <schener ef > referencesto * -
subj ect def s. di t amap files.

This step is only necessary if you configured the refactoring operation to create "two" or "many" <subj ect Scheme> files.
4. Add amap reference to the map-specific profiling file.

Opentheny- map. di t amap fileinthe DITA Maps Manager, then add a map reference to the my - map/
profiling.ditamapfile

Related information
Controlled Attribute Vaues for your DITA Project (on page 140)

https://www.oxygenxml.com/doc/ug-editor/topics/dita-profiling-attribute-groups.html

Blog | 3 - DITA | 150

Other

DITA For Small Technical Documentation Teams

There are many cases in which a handful of technical writersin a company need to collaborate on a DITA project and they may
not have the resources to invest in an open source content management system. So this blog post is about setting up aviable, cost
efficient DITA documentation editing and publishing solution which can scale up (both in number of writers and content) using
Oxygen XML Author and Github. As a showcase for the proposed solution we will have the Oxygen XML Blog (on page 5).

Overview of Tools Proposed for the Solution

Thefollowing list of tools and application will be used in our solution:
Content Management and Wor kflow
Github for storing the DITA content.

Github for creating and managing issues.

Editing
Oxygen XML Author for editing the DITA content and for offline publishing.
[Optional] Oxygen Web Author for online editing/reviewing of DITA content.

Review

[Optional] Oxygen Content Fusion for creating review tasks for subject matter experts.
Publishing

Oxygen XML Author for publishing from inside the application.

[Optional] Oxygen Publishing Engine for publishing to PDF and WebHelp DITA content on an integration server.
[Optional] Oxygen WebHelp Feedback engine for embedding feedback formsin the HTML pages.

[Optional] Gradle to script the publishing in preparation for an integration server.

[Optional] Netlify to build and host aweb site for the DITA content.

[Optional] Oxygen Validate and Check for Completeness used with a scripting license to check for validation
problems on an integration server.

The same set of tools has been used for editing and publishing the Oxygen XML Blog: Welcome! (on page 5).

Learning DITA

There are various online resources for learning DITA, there are a so learning DITA courses held by consulting companies. This
older blog post has some useful links: Resources for learning DITA with Oxygen (on page 8).

Project Storage - Using GitHub

Y ou need a system to:

* Store your DITA content.

* Collaborate with your colleagues on writing content in the same project.

* Allow for reviewers to propose changes without having the right to commit changes.

* Have ahistory of changes on each DITA resource, being able to revert to previous versions of topics.
* See who changed what content in each DITA topic and map.

* Be able to tag releases so you can build manuals for older releases with some changes applied to them.
* Maintain alist of issues which are closed as your work progresses.

https://github.com/
https://github.com/
https://github.com/
https://www.oxygenxml.com/xml_author.html
https://www.oxygenxml.com/xml_web_author.html
https://www.oxygenxml.com/content_fusion.html
https://www.oxygenxml.com/xml_author.html
https://www.oxygenxml.com/publishing_engine.html
https://www.oxygenxml.com/oxygen_feedback.html
https://gradle.org/
https://www.netlify.com/
https://www.oxygenxml.com/oxygen_scripting.html

Blog | 3 - DITA| 151

Some small teams instead of using aversion control system resort to shared network drives. Shared network drives do not
address all the features above and they are dangerous in the fact that you can overwrite other people's work and there is no way to
revert changes.

A free Github account can cover all these use cases listed above. GitHub exposes through a web interface access to a Git
repository. Thisblog post is not about learning Git, it's about having minimum Git skillsto get you started. There is a good book
about learning Git Here: https://www.manning.com/books/learn-git-in-a-month-of-lunches.

Well outline below some steps to get you started with a GitHub project:

1. Create a GitHub account: https://github.com/join.

2. Create anew public or private repository in the organization for your project.

3. Create an organization: https://github.com/settings/organizations. The organization will be useful to group work-related
projects. For adding private repositories in an organization you will need to switch to a paid plan.

4. Add your team members to the organization. Using the team member GitHub user names you can send them invitations
to be contributors to the project.

Creating and Modifying Content in the Repository

Y ou can create and edit DITA topicsin anumber of ways:

* Edit topics offline and use GitHub's user interface to upload them, or modify existing topics using GitHub's web
interface.

» Use the Oxygen Web Author to connect to the Git Repository and create a new topic or modify an existing one.

* Clonetherepository to the local file system using Oxygen XML Author with the Git Add-on installed.

Using Oxygen XML Author to Create/M odify Content in the Repository

* Instal the Git Add-onin Oxygen XML Author.

* Open the Git Staging view and use the + toolbar button to paste the reference to the reference to your project, for
example https://github. com oxygenxm /bl og.

* Choose alocation on the local drive where the project will be cloned.

* The Git Staging view does not show all existing resourcesin the project, it will just show the modified resources, so go
to the Project menu and create a new Oxygen project in the folder where the project was cloned.

* Inthe Git Staging view the newly created pr oj ect . xpr should now appear. Select it, use the Stage Selected button
to stage it, then write a commit message and use the Commit message to commit it. Now the file is committed in your
local repository. Y ou can use the toolbar Push button to push it to the GitHub account.

* Create aDITA Map and a couple of topics using Oxygen's Project view.

» Using the same Git Staging view you can see the newly added files, stage, commit and push them to the remote GitHub
repository. Y ou can check on the remote GitHub repository that the files were updated.

* If changes are made by someone €l se using the same technique or if changes to maps and topics are made directly from
the GitHub web interface or from the Oxygen WebAuthor, the Git Staging view has a Pull toolbar button allowing you
to obtain those changes locally.

* On resources which have been modified a number of times you can right click in the staging area and choose Show
in history to see ahistory of changes. Y ou can also choose Show blame to see who modified each of thelinesin the
document.

Here's asimplified overview of how you could work with Oxygen and Git:

* Every time you start Oxygen or every time before you commit use the Pull toolbar button from the Git Staging view to
get changes locally.

* Stage and commit your changes, then push them to the remote repository.

* If you attempt to pull changesincluding afile which is aready modified locally by you, the pull operation will not
succeed. You will need to copy that file separately, pull the content from the server and then compare your changes to
the ones coming from the server and merge your changes.

https://github.com/
https://www.manning.com/books/learn-git-in-a-month-of-lunches
https://github.com/join
https://github.com/settings/organizations
https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html
https://github.com/oxygenxml/Oxygen-Git-Plugin
https://github.com/oxygenxml/Oxygen-Git-Plugin
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic-2.html

Blog | 3 - DITA | 152

* If you have already committed to your local repository a resource modified also on the remote repository, you have a
conflict, the Git Staging view allows you to edit the conflict, merge the changes locally and then commit to the local
repository and push changes to the server.

* You do not have to pull and push changes from and to the remote repository very often, you can continue working with
your local repository for days and push all changes at the end but not pulling changes from the server often might result
in various conflicts if the same resources are modified both on the server and in your local repository.

Organizing Your Project Structure using the Master Files Support
Y ou can now start to organize your content. The Oxygen user's manual contains a Getting Started guide for DITA editing.

You can right click the Project root and enable main files, then in the Main Files folder add a reference to the main DITA map
(or maps). All refactoring operations (move resources to subfolders, rename topics or resources) will properly update references
intheentire DITA project hierarchy. A minimal DITA project would probably contain:

* Oneor more main DITA Maps.

* Oneor more DITA submaps, defining keys for reusable content.
* One or more folders containing reusable DITA elements.

* A folder containing one or more DITAVAL filter files.

* A folder containing images or binary resources.

Overall management of the DITA project

* The Search References contextual menu actions from the DITA Maps Manager and from the main editor allow you to
check where a topic, map or imageis being used.

* The Remove from disk action in the DITA Maps Manager view will warn if the removed topic is used in multiple
places.

* Vadlidation errors are issued for references to missing topics or images.

* Move/Rename actions located both in the Oxygen Project and DITA Maps Manager view alow you to move topics/
maps or images and have references to them automatically updated.

 Search for references to IDs or rename I Ds in the entire project.

* The Find unreferenced resour ces contextual menu action in the DITA Maps Manager alows you to find orphan topics
or other resources (images, €tc).

* You can define profiling condition sets and use them to seein the editing area what content is filtered, then use the same
profiling condition sets for publishing.

* The Open/Find Resour ce side view allows you to locate files by content.

* The change tracking support in Oxygen alows you to make changes with change tracking or to add or reply to existing
comments.

Y ou can find out more DITA editing tipsin the DITA Editing Tips And Tricks blog (on page 171).

Sharing Common Settings using the Project

The Oxygen project configuration can save various sets of global options at project level. As an example:

* Go to the Oxygen Preferences->Editor / Spell Check page and change the radio button at the bottom to Pr oj ect
Options. Then check the Automatic spell check checkbox.

* The Git Staging view should have a modified version of the XPR showing as modified, stage, commit and push it.

* Now everybody using the same pr oj ect . xpr project file loaded in Oxygen will have spell check enabled.

Other useful settings you could switch to Project Options:

* The Project Level Settings preferences dialog allows you to control if various settings are saved at project or global
level. For example you can save the Validate and check for completeness settings at project level and share them with
others.

* The Editor / Spell Check / Dictionaries preferences page can contain your own set of dictionary terms.

https://github.com/oxygenxml/dita-project-best-practices
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/spell-dictionary-Hunspell.html

Blog | 3 - DITA | 153

* The Document Templates preferences page allows you to use your own custom new file templates.

* Inthe Editor / Save preferences you can save at project level various save options.

» Switching the Menu Shortcut K eys preferences page to project level alows you to share with others custom menu
shortcut keys.

Y ou can use the ${pd} editor variable to refer to resources located in the current project folder. Y ou can read more about editor
variables here (on page 292).

Manual Publishing

Y ou can open DITA Mapsin the application DITA Maps Manager view and publish them to various outputs using the
Configure Transformation Scenarios toolbar button. A transformation scenario can also specify aDITAVAL filter, parameters
and can be saved at project level. The published content can be later uploaded to aweb server.

For WebHelp output you can create a publishing template containing custom CSSs, headers, footers and logos. The publishing
template can be saved in the project and referenced from the transformation scenario.

For the PDF output the same publishing template can be used. To build your custom CSS you can use the Oxygen Styles Basket
online CSS-builder.

If you are publishing multiple DITA Maps or you have multiple filters or multiple deliverable formats you may want to create
aDITA Open Toolkit project file: https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html. A sample
DITA OT project file can be found in the Oxygen XML Blog project on GitHub.

Working with Branches

Y ou may need to mark releases of your product and also to be able to contribute small fixes to those releases. So here's how you
work with branches:

* The default branch in the project is called master and thisis the branch we've been working until now.

* Using GitHub's web interface you can create your own branch.

* Check out again in the Git Staging view the project, this time with the separate branch in a separate folder.

* Opentheproj ect . xpr from that branch's checkout, make changes to the content there, stage, commit and push as
usual.

Establishing a Workflow

Y ou can use the GitHub issues list for your project to create new issues. Y ou can attach files to the issue, assign the issue,
discuss with other participants, register to watch particular issues. Once a commit is made with a particular #issue_number, the
issue will get an automatic link pointing to the commit.

Inside an organization or inside a repository you can create project boards. A project board can define states for your issues.
When an issue is opened it can be assigned to a certain project board. It can also be assigned various |abels. | ssues can also be
assigned to various peoplein your team.

Oxygen's change tracking support allows you to insert or delete content with change tracking or to make comments on content.
The Web Author online editing tool alows you to also make changes with change tracking.

The Oxygen Content Fusion add-on allows you to create review tasks and to allow subject matter expertsto give you feedback on
DITA content directly from aweb browser.

Adding Custom Validation Checksto the Project

There are a couple of ways in which you can add custom validation checks to your project:

https://www.oxygenxml.com/doc/ug-editor/topics/whr-create-publishing-template-x.html
https://styles.oxygenxml.com/
https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html
https://github.com/oxygenxml/blog/blob/master/blog-project.xml
https://help.github.com/en/github/managing-your-work-on-github/about-project-boards
https://www.oxygenxml.com/doc/ug-editor/topics/author-managing-changes.html
https://www.oxygenxml.com/content_fusion.html

Blog | 3 - DITA | 154

* You can create a custom Schematron schema containing custom validation rules: Sharing Schematron Validation Rules
(on page 262).

* The Validate and Check For Completion action from the DITA Maps Manager view contains various settings which
can be saved at project level. In the Preferences->Project L evel Settings page thereisa Save DITA Map validate and
check for completeness settings at project level checkbox.

* You can also add terminology checking in the application: Checking Terminology with Oxygen XML Editor (on page
286).

* In GitHub projects you can configure custom actions and run validate and check for completeness with a special
scripting license on pull requests. An example for such avalidation action isin the Oxygen XML Blog: https://
github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml. The validation runs on any opened pull
request: https://github.com/oxygenxml/blog/pull/25.

Adding Custom Actions

Y ou can use aframework customization saved at project level to add custom actions which can be used in the Author visual
editing mode and can be mounted in the toolbar, menus and the content completion window: Implementing a Custom Author
Action to Split a Table (on page 267).

Dynamic Publishing using an I ntegration Server

Using a bit of scripting you can publish the modified content on the fly with either using free online services like Netlify or
Travis or using an internal Jenkins server. The Oxygen XML Blog (on page 5) is an example for this. It has a Gradle script which
isrun as part of a Netlify account whenever changes are made to the topics.

Trandating your content

The Oxygen Trandation Package Builder add-on allows you to find the changed resourcesin a DITA project and then to pack
those changed resources and send them for trandation. It also helps with integrating the received trandlation in the project. This
blog post (on page 176) has more details and useful links about translating DITA projects.

Related information
Webinar: Using DITA for Small Technical Documentation Teams

Using Git For Technical Writing

The Git version control system is afeasible solution for working and collaborating on technical documentation projects
regardless of their scale and number of resources.

In this blog post, well look into why technical writers should use Git and how various technical writing workflows can be
accomplished using the Git distributed version control system.

Definition of Git taken from Wikipedia:

"Git isadistributed version control system that tracks changes in any set of computer files, usually used for coordinating work
among programmers collaboratively developing source code during software development. Its goals include speed, data integrity,
and support for distributed, non-linear workflows (thousands of parallel branches running on different systems). (wiki)."

So, since Git was originally intended for developers, why did technical writers start using it and why isit agood ideafor
technical writersto useit?

The following small articles cover various aspects of atechnical documentation solution using Git:

* Advantages of Using Git (on page 155)

* Disadvantages of Using Git (on page 155)

* Useful Resources (on page 156)

» Applications for Working with Git (on page 156)
 Typical Editing Session (on page 157)

* Vdlidation (on page 159)

* Common Workflows (on page 160)

https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml
https://github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml
https://github.com/oxygenxml/blog/pull/25
https://github.com/oxygenxml/oxygen-dita-translation-package-builder
https://www.oxygenxml.com/events/2020/webinar_using_dita_for_small_technical_documentation_teams.html

Blog | 3 - DITA | 155

* Propose Changes (on page 166)

* Handling Translations (on page 167)

* Sharing Common Settings (on page 167)

* Publishing Content From Git (on page 168)

Advantages of Using Git

* Git asaversion control system is present in most software development companies. In my opinion, knowing Git isanice
asset for any technical documentation writer to have in their resume.
* Free and stable system, used by many, with relatively few bugs, has available tutorials, documentation, easy access to
people who might help with Git-related questions.
* Version control:
o History of changes made to a project.
o Ability to revert to previous changes and to see who made certain changes.
* Collaborate on the same project with support to:
o Check out.
o Update.
o Commit/Revert changes.
o Resolve conflicts.
 Support for branching (branches used for versioning the documentation or for working on larger features) and for
merging between branches.
* Support for working on your own repository even without online access and then to merge changes in the remote
repository when the online connection is available.
* Collaborate with other teamsin the same company on projects, either by having the documentation as part of the larger
Git repository of the product, or by allowing devel opers who know Git to contribute reviews.
* Support for creating pull requests for people who might not have write access or want to have their work reviewed.

Related information
https://www.atlassian.com/git/tutorial swhy-git

Disadvantages of Using Git
* No built-in support for aticketing system.

Tip: Thissupport is added on the side either by using acommercial ticketing system (such as JJRA) or by using
Git-based servers (such as GitHub or GitLab), which have their own basic ways of adding and closing issues.

* No built-in support for publishing.

0 Tip: Publishing pipelines need to be built separately.
* No way to lock resources when editing to avoid conflicts.

0 Tip: However, there are ways to easily resolve most conflicts.
* Mistakes can be made when using Git.

0 Tip: Usually mistakes made that break the Git history or project structure can be reverted, or you can check out
the entire project again.

https://www.atlassian.com/git/tutorials/why-git

Blog | 3 - DITA | 156

* Sometraining is required to use and understand the branching and history models in Git. Ideally, you should have a Git
per son who understands how to resolve conflicts, revert and cherry-pick commits, and in general, recover from any Git
issues or at least who iswilling to invest some time in understanding the Git model.

0 Tip: Such training tutorials and courses are readily available.

* Native Git isinefficient when asked to store large binary files (videos) or large numbers of binary files (images, PDFs)
because every revision of every fileis stored locally.

* No granular support for user roles. Users usually either have full read-write access to arepository or read-only access.

0 Tip: When using GitHub or GitLab, users with read-only accessto arepository can still create pull requests
with the changes they want to incorporate into the main repository.

Related information
https.//www.atlassian.com/git/tutorial s'why-git

Useful Resources
Learning Git

* Git Basicstutorial by Atlassian.

* The Pro Git Book.

* Learn Git Braching Interactive Tutorial.

* Lotsof courses about learning Git on Udemy.

Workflows and Collaboration

* DITA For Small Technical Documentation Teams (on page 150)
* Docs as Code:
o GitLab Docs As Code blog post
o Docs as Code blog post
o Write the Docs - Docs as code blog post
* Git Workflows
* Tactical Git - Micro Commits

Applications for Working with Git
Server-side solutions

* GitHub (either online or on-premise).
* GitLab (either online or on-premise).

Both of these solutions come with:
* Support for creating and managing private/public repositories.
* Basic support for creating and handling tickets/issues.

 Support for creating pull/merge requests.

Client-side applications

There are lots of free client-side applications that can be used to work with Git repositories:

https://www.atlassian.com/git/tutorials/why-git
https://www.atlassian.com/git
https://git-scm.com/book/en/v2
https://learngitbranching.js.org/
https://www.udemy.com/topic/git/
https://about.gitlab.com/blog/2022/10/12/five-fast-facts-about-docs-as-code-at-gitlab/
https://betterprogramming.pub/solution-architecture-docs-as-code-366a7b40f9e5
https://www.writethedocs.org/guide/docs-as-code/
https://www.atlassian.com/git/tutorials/comparing-workflows
https://stackoverflow.blog/2022/12/19/use-git-tactically/
https://github.com/
https://about.gitlab.com/

Blog | 3 - DITA | 157

* Git Fork

* Git Tower

* SourceTree

* GitHub Desktop

* Git console

* Git Client add-onin Oxygen XML Editor

* Web-hased clients like Oxygen Web Author

Typical Editing Session

Usually, an editing session has the following stages that are repeated throughout the day:

Checkout Remote Repository Branch

v
Edit Content

\ 4
Pull Content From Remote Repository

h 4
Commit Content

v
Push Content To Remote Repository

* Clone/Checkout Branch From Remote Repository - Checkout a branch from the remote repository on which you want
to work. Usually done only once.

[) [C] Clone Repository

Repository URL: |https://github.com/syncro-tech-writer/mobile-phone

Checkout branch: = <Default branch>
Destination path: /Users/raducoravu/mobile-phone B
Cancel (CIBHED

» Edit Content - The project is edited and modified in the current working copy.
* Commit Content - Commit the changes to the local working copy.
* Pull Content From Remote Repository - Obtain the latest content for the edited project branch.

https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.oxygenxml.com/xml_web_author.html

Blog | 3 - DITA | 158

* Push Content To Remote Repository - From time to time, push the commits to the remote repository so that others can
use them aswell. Y ou must always pull content from the repository before pushing to it, otherwise the pull will fail.

4 b E Git Staging
1
L = =
| .
Working copy: mobile-phone
Branch: main
Unstaged files: M E
[] Error
g ton
r Cannot push. Your current branch is behind. Pull first.
ide @ ,&,
roduct

s A R — T

Commit Message

Each commit has a commit message. The commit messageisin general a brief description of the changes. When using a ticketing
system, as a best practice the commit message contains the ID of the ticket.

Graph Commit message

Uncommitted changes
© (TX) CII G 0PA-640: Improved .. |
DCP-745 Add a new topic about how to styl...
DCP-745 Add small detail
Merge branch 'dev' of https://github.com/o...
DCP-745 Remove outdated topic
OPA-640 Added section about Al Refactoring
EXM-53823: Documented new DITA and PD...

Micro Commits

Commit often, whenever a small change in the documentation is beneficial and makes sense by itself. Useful links: https:/
stackoverflow.blog/2022/12/19/use-git-tactically/

CO e—e—o—o

Handling Simple Conflicts

Conflicts are usually caused by trying to push changes made to resources that, in the meantime, have been modified by others on

the remote repository. Conflicts normally occur when working with Git, they can be resolved and they are not asign that anyone
did anything wrong.

https://stackoverflow.blog/2022/12/19/use-git-tactically/
https://stackoverflow.blog/2022/12/19/use-git-tactically/

Blog | 3 - DITA | 159

* If changes are made to text files on different lines, the conflicts are automatically merged.

« If the conflicting changes are on the same lines, you can resolve the conflict.

4 b BE Git Staging
1

L v - 3
Working copy: mobile-phone
Branch: main

Unstaged files:

[) Pull status

I Pull successful with conflicts:

| mobile-phone ftopics/adjustVolume.dita

The conflict can be resolved by keeping your version, or the version of the remote collaborator, or by manual merging:

Git Staging
M- -0 ¥
Working copy: ~ mobile-phone B
Branch: main
Abort merge
Unstaged files: B

© mobile-phone/topics/adjustVolume.dita

Open in compare editor

Open
Stage
Open in compare editor Resolve Conflict >
ttg Discard
L | Resolve Using "Mine"
Resolve Using "Theirs" Show history
. Mark Resolved Show blame
i Restart Merge

Validation

DITA XML content needs to be validated against the DITA schemas and possibly with additional business rules (usually
implemented using Schematron checks). There are various ways to ensure the proposed content changes are valid:

 Vadlidate the entire DITA project on the server side (on page 154). Examples:
o Run validation on an integration server like Jenkins.
o Run validation as a GitHub action.

Blog | 3 - DITA | 160

* Validate on the client side before committing or pushing changes. For example, the Oxygen Git Client add-on allows two
types of client side validation:
o Validate modified resources before committing.
o Validate the entire DITA project before pushing.

Common Workflows
Workflows are recipes for working and collaborating successfully on a Git project.

Common workflows for working with Git:

* Centralized Workflow (on page 160)
* Feature Branches (on page 161)

* Release Branches (on page 162)
GitFlow (on page 166)

Centralized Workflow

We al work with the same project(s) on the main repository branch. We have separate branches which mark past rel eases.
Both for small bug fixes and for features which may take alonger time to implement, we work on the main branch. https://
www.atlassian.com/git/tutorial S comparing-workflows

main @l e——f
& e

version-21

version-22

Common workflow:

* Check in the project (one time operation).

* Pull to get changes from the main repository.

* Commit and push changes.

* Deal with possible conflicts which may appear.

* Request review either before commit or after the change was incorporated in the main branch.

Workflow for updating documentation for a past release:

» Switch to branch specific for that release.

* Pull to get changes from the main repository.

e Commit and push changes.

 Deal with possible conflicts which may appear.

https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html#git-addon__section_lvb_pqy_kpb
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows

Blog | 3 - DITA| 161

Cherry Pick

Pick a commit from another branch and incorporate it. Useful to take small fixes for a version branch and add them to the main
branch.

https://www.atlassian.com/git/tutorial s/cherry-pick

* cherry-pick: 5mall fix 1

version-21 - eieeessssesi il -------

Feature Branches

We work on the smaller fixes on the main branch, we create separate branches for larger features/fixes. We also create separate
branches for past released versions of the documentation in order to add small fixes and be able to re-publish documentation for

them.
main

version-21-1-fixes

feature-bookmarks-side-view

G & S
kL3 R [ha
i *d“ *é‘
S8
L
o o &
o <

* Create a branch on which you work on alarger feature either by yourself or with some other colleagues.
* You can also request review on the branch.
* When finished, merge the branch in the main repository branch or create a pull request to merge the branch.

Related information
https://www.atl assian.com/git/tutorial s'comparing-workflows/feature-branch-workflow
https://betterprogramming.pub/sol ution-architecture-docs-as-code-366a7b40f 9e5

Branches For All Changes

We create branches for any change, either for large features or small fixes. We also create branches for past released versions of
the documentation in order to be able to add small fixes and re-publish documentation for a specific past version.

https://www.atlassian.com/git/tutorials/cherry-pick
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://betterprogramming.pub/solution-architecture-docs-as-code-366a7b40f9e5

Blog | 3 - DITA| 162

small-changes

v21-fixes-branch

bluetooth-feature

* Create abranch on which you work to fix small problems or to work on alarger feature either by yourself or with some
other colleagues.

* You can also request review on the branch.

* When finished, merge the branch in the main repository branch or create a pull request to merge the branch.

Release Branches

My name is Chris Papademetrious and | work for Synopsys Inc., a semicoductor design automation software company. | am an
occasional guest contributor to the Oxygen XML blog, and | wanted to share how we use Git.

Our team writes documentation for many different products. And for the most part, al products follow a common software and
documentation release schedule (every three months). Our technical writers are knowledgeable on the products they write for, but
they tend to be novices with Git.

Our Attempt at the Centralized Workflow

When we first adopted DITA and Git, we used the centralized workflow. However, we ran into issues when a particular product
group needed to delay their release schedule. When the rest of the group began working on the next release in the main branch,
the delayed group could not stay in the main branch because then "last-release” and "next-release” content would get mixed and
there was no single point where the main branch represented the final release state. And so in these cases, we had to fork arelease
branch off the main branch and move the delayed product writers there. (And sometimes writers would keep working in the main
branch out of inertia, and so the main branch content would get mixed up anyway...)

Blog | 3 - DITA | 163

main W -------------------
e
4 <

M~ i e » X W 5 o
& & & & 2 & & &
& § < & & & & &
& & & & F & &
L L L [o o 3 «
releasel
release‘l ..
7
a
#
g
‘dg * releasel * releasel
rlzmns | RN RN——.
% » 4
& & «
o & &
& & &

...

We considered using the feature branch workflow. However, this would require writers to be responsible for branch actions
(forking feature branches and submitting pull requests), which they had never done before. Many products have multiple writers,
which would require those feature branches to be synchronized on the server for collaboration. Some products have 40+ features
in arelease cycle, and our past experiencestold us that writers could sometimes forget to switch branches. And so we decided not
to use this workflow.

We needed aworkflow in which awriter could simply continue to write for a release and not worry about switching branches
until the rel ease was done—regardless of whether their product finished its release early or late. So, we moved to arelease
branch workflow.

The Release Branch Workflow

In our release branch workflow, we create a branch for each release, named by the scheduled release date. A writer can work in
arelease branch aslong as they like, and they can move to the next release branch whenever they are ready. If afeature requires
collaboration by multiple writers, they can collaborate in that release branch.

The key feature of our release branch workflow is the cascaded release merge. Each week, we merge new commit activity
forward from earlier release branches to | ater release branches. If abranch has no new commit activity since the last merge, no
merge is performed from it.

2 y 5

& & & & & & &
3 o 5 3 4

K“‘e 4 s\a‘c} &5""‘} v @"@ ¢

In the preceding diagram, the releasel branch is completed and quiet. Product writers are finishing work in the release? branch
and moving to the release3 branch. Their work in the release2 branch is automatically propagated to release3. At some point, a
product team finds that a retroactive documentation fix is needed for afeature in the releasel branch. Thisfix is automatically
propagated forward into the release? and release3 branches.

In this workflow, the writer must remember only to check out the next release branch after they complete their current release.
And thisis a notable enough accomplishment that they tend to remember to do this.

Blog | 3 - DITA | 164

However, writers can work in multiple release branches if they want to. Most products have major releases on every third release
interval. In this case, writers can make minor typo fixes and rewordings in the next minor release branch, but get an early start

on feature documentation in the next major release branch. (Although in this case, the writers must be diligent again about
remembering to switch branches!)

For the most part, writers don't need to worry about the logistics of the release merges. However, there are some cases in which
they do need to be aware of them. For example,

* If awriter writes content for one release and wants to incrementally modify that content for the next release, they must
wait for the merge to propagate the work forward to the next branch to be able to continue work on it.

* If awriter wants to add content that should not propagate forward to subsequent rel eases (such as a temporary bug or
limitation that is fixed in the next release), then they add content to the earlier release, wait for amerge, then removeitin
the next release.

In these cases, the writers can ask me to run a merge manually so they do not have to wait.

The Branch-Merging Per| Script

The release branch merge is performed by a perl script called mer ge_r epo. pl . The usageis asfollows:

$ nmerge_repo.pl --help
Usage:
--dry-run
Do not actually commit any changes
--starting-at branch_nane
Start nmerging at this branching (nerging from previ ous branch)

The script uses the command-linegi t client to perform its work. One notable requirement is that the script needs alocal
repository to perform its merging work in. The script automatically fetches and pulls all remote updates, creating new local
branches and deleting local branches that no longer have matching remote branches as needed.

The script obtains the chronological list of release branches by querying and sorting all branches that match r el ease/ * - thereis
no need to update any branch list text files or databases as new release branches are created.

Hereis an example of its output:

$ nerge_repo. pl

Checking for commits to nmerge from'rel ease/ 2022. 09' to 'rel ease/ 2022.12'. ..
Merging 1 commits from'rel ease/ 2022.09' to 'rel ease/ 2022.12' ...

Pushing nerge to 'rel ease/ 2022. 12' upstream ..

Merge from'rel ease/ 2022. 09" to 'rel ease/ 2022. 12' succeeded.

Checking for commits to nerge from'rel ease/ 2022.12' to 'rel ease/ 2023.03'. ..
Merging 4 commts from'rel ease/ 2022.12' to 'rel ease/ 2023.03" ...

Pushing nerge to 'rel ease/ 2023. 03' upstream ..

Merge from'rel ease/ 2022. 12' to 'rel ease/ 2023. 03' succeeded.

Checking for commits to nmerge from'rel ease/ 2023.03' to 'rel ease/ 2023.06' ...
Merging 8 commits from'rel ease/ 2023.03"' to 'rel ease/ 2023.06' ...

Pushing nerge to 'rel ease/ 2023. 06' upstream ..

Merge from'rel ease/ 2023. 03" to 'rel ease/ 2023. 06' succeeded.

Here is the resulting commit graph as shown on the Gitlab server web page, from the previous merge to the just-compl eted
merge:

Blog | 3 - DITA | 165

|B [J Begin with the selected commit

EEEE PR R

.someone’s
.someone’s
.someone’s
.someone’s
.someone’s
.someone’s

.someone’s

work
work
work
work
work
work

work

in
in
in
in
in
in

in

2823,

2822.

2823,

2822.

2823,

2822.

2823

86...

1z2...

83...

ao...

83...

1z2...

83...

iﬂmmerge branch "release/2823.83" into release/2823.86
mﬂerge branch "release/2822.12" into release/2823.83

mr-ler*ge branch "release/2822.89" into release/2822.12

| ! mHer‘ge branch "release/2823.83" into release/2823.86
mHerge branch "release/2822.12" into release/2823.83

mﬂerge branch "release/2822.89"' into release/2822.12

As mentioned earlier, no matter how many "earlier" branches exist, no forward merge is performed from a branch unlessiit
contains new activity since the last merge.

If arelease merge result cannot be pushed (perhaps because awriter just pushed something new to the server), the script abort its
current merge, updatesitslocal repository, and retries the merge.

If the script encounters a merge conflict, it prints information to STDERR about how to manually reproduce and resolve the
conflict, then continue the merge:

$ nerge_repo. pl

Checking for commits to nmerge from'rel ease/ 2022. 09'
Merging 1 commits from'rel ease/ 2022. 09'
Pushing nmerge to 'rel ease/ 2022. 12"

Merge from'rel ease/ 2022. 09'

Checking for conmits to merge from'rel ease/ 2022. 12
Merging 4 commits from'rel ease/ 2022. 12’

Merge from'rel ease/ 2022. 12'

Aut o- mer gi ng sonme_topic.dita
CONFLI CT (content):
Aut omatic nerge fail ed;
some_topic.dita:
sone_topic.dita:
sone_topic.dita:
sonme_topic.dita:

Merge conflict in
fix conflicts

| ef t over
| ef t over
| ef t over
| ef t over

to 'rel ease/ 2023. 03" fail ed:

conflict marker
conflict marker
conflict marker
conflict marker

Performthe follow ng conmands manual | y:

git checkout rel ease/2023. 03

git nmerge rel ease/ 2022. 12
...resolve conflict...

git push

merge_repo. pl --starting-at

rel ease/ 2023. 06

sone_topic.dita
and then commit the result.

succeeded.

to 'rel ease/ 2022.12' . ..
to 'rel ease/ 2022.12' . ..

upstream.
to 'rel ease/ 2022. 12'

to 'rel ease/ 2023.03' . ..
to 'rel ease/ 2023.03'. ..

Blog | 3 - DITA | 166

The script runs every Wednesday asacr on job. For conflicts or other errors (like server downtime), the resulting output to
STDERR causes cr on to email the command output to the script owner (in this case, me). Thanks to this behavior of cr on, the
script operates quietly unless attention is needed.

GitFlow

Gitflow isalegacy Git workflow that was originally a disruptive and novel strategy for managing Git branches.

The main branch holds the official content which will be released, we maostly commit small fixes on a development branch and
use feature branches based on it.

_*
develop -l s

feature-new-ui-changes

Related information
https://www.atl assian.com/git/tutorial 'comparing-workflows/gitflow-workflow

Propose Changes

Besides the team of technical writers who have full write access to the documentation repositories, there may be other
collaborators (e.g. subject matter experts) who have read access to the repository and sometimes want to propose changes.

The workflow for proposing changes to a repository usually works like this:

* The collaborator creates a branch of the project on which they make changes and add comments.
* The branch isintegrated back into the main project branch by the technical writer.

M

review-feedback T, e S S

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Blog | 3 - DITA | 167

Git Serverslike GitHub or GitL ab may add some extra functionality to help technical writers review and accept changes.

Related information
Pull Requests

Handling Trandlations

Some useful advice for trandating a DITA XML-based project can be found here: Trandating your DITA Project (on page
176).

Thetrandated DITA content can also be stored on Git:

» Keep the trandation for each language in a separate folder in the same Git project. As a benefit, binary resources can be
shared between projects.

~ 7 mobile-phone

—-—

v en

> T tasks
> [topics
v 03 fr

—-—

_ tasks

> &
> [topics
> [images
"% mobilePhone_en.ditamap
-

mobilePhone_fr.ditamap

» Keep aseparate parallel project with al the translations.

—

~ || mobile-phone

> [image

“%¥ mobilePhone.ditamap

> [topics
~ [mobile-phone-translations

v fr
> 7] image

"% mobilePhone.ditamap

> [topics

—_—

> ja

Sharing Common Settings

It makes sense to share various common editing settings when working on a common Git project:

* Spell check dictionaries and learned words.

* Checking Terminology (on page 286).

 Actions and behaviors for editing content (on page 269).
* Custom validation and quick fixes (on page 178).

* Publishing templates.

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

Blog | 3 - DITA | 168

There are various ways to share these custom editing settings between the people who collaborate on the same Git projects:

* Use aweb editing tool to edit the Git content directly in aweb browser with all settings being common in the tool.
Example: Oxygen XML Web Author Git connector.

* Manually share acommon set of settings.

* Share the common settings directly in the Git project. Example: DITA Startup Project. When an Oxygen project that
contains settings is distributed in a Git project, writers automatically get the latest updates to the Oxygen environment
without any work on their part.

Publishing Content From Git

There are two main ways to publish:

* Publish on the client side using the local Git repository and then manually upload the published content to aweb server.

* Publish by connecting an integration server to the Git project. For example, for publishing DITA XML content to PDF,
you can create a Jenkins or Travisjob or run it from acommand line. For each version branch, a separate server-side job
could be created to run when the content is modified on that branch.

Supporting the DITA OT Project asa Commercial Company

Overview

Thissmall articleis about the relationship between our company, Syncr o Soft (which produces the Oxygen XML tools), and the
open source DITA Open Toolkit project.

Asacommercial company using the DITA Open Toolkit in multiple projects, we try to base this relationship on:

* Giveand take
* Respect
* Growth

but asin any relationship, there is probably always room for improvement.

History and Context

We started integrating the DITA Open Toolkit into Oxygen about 14 years ago, some time around 2008 in Oxygen XML Editor
version 10. The DITA Open Toolkit remains avery important part of the DITA XML editing and publishing solution provided by
us.

Currently, we are using the DITA Open Toolkit as a publishing component in our Oxygen Publishing Enginein multiple
projects:

* Oxygen Publishing Engine (based on the DITA OT)
* Oxygen XML Editor

* Oxygen XML Author

* Oxygen XML Developer

and there will probably be more to come in the future.

Implementing Pluginsfor the DITA Open Toolkit

During these years, we've implemented a number of commer cial plugins for the DITA Open Toolkit, plugins bundled in the
Oxygen Publishing Engine:

* DITA to WebHelp Responsive
* DITA to PDF (using CSSfor styling)

https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html
https://github.com/oxygenxml/DITA-Startup-Project
https://www.oxygenxml.com/doc/ug-editor/topics/dcpp_generating_pdf_output.html
https://www.dita-ot.org/
https://www.oxygenxml.com/publishing_engine.html

Blog | 3 - DITA | 169

* DITA to Zendesk
* CodeBlock Syntax Highlight

We also created a considerable number of open-source DITA Open Toolkit plugins (about 23) available on the Oxygen GitHub
organization, with some of the most popular ones being:

* DITA Metrics Report

* Export DITA Map

* DITA Media Support

* DITA PDF Track Changes

* Embed PlantUML and Mermaid diagrams
* Embed L atex Equations

These open-source plugins are useful both for their original purpose but also as sample plugins for people wanting to implement
something similar. We try to maintain the open-source plugins (as time alows) and answer any questions related to them.

Helping with Publishing-related Questions

There are various channels where people ask questions about DITA OT publishing:

* DITA UsersList (about 1000 answers and replies so far)
* DITA OT Users Google Group

* DITA OT Discussions List

* DITA OT Slack Channel

* Stack Overflow (about 80 answers so far)

There are a so Oxygen-specific channels:

* Oxygen XML Forum (2328 DITA editing/publishing related topics so far)
* Oxygen Users List

Astime allows, we try to help people with DITA Open Toolkit-related questions on these channels.

DITA Open Toolkit Publishing-related Articles

The Oxygen XML Blog has more than 20 DITA Open Toolkit publishing related articles.
Registering and Analyzing | ssues, Opening Pull Requests

Our general procedure when encountering DITA Open Toolkit bugsisto:

* Open issues for them on the DITA Open Toolkit list.
* If possible find time to analyse the issues.
* Propose workarounds or fixes.

We are possibly the biggest contributor of bug and improvement requests to the DITA Open Toolkit. Most of these bugs and
improvements are discovered by our end users and added by us on the DITA OT issueslist. During these years we've opened
more than 400 issues on the DITA Open Toolkit project.

In the last few years, we became amajor contributor of pull requests that contain bug fixes (more than 70 contributed pull
requests so far).

Contributing with Improvement Ideasto the DITA Open Toolkit Project

During these years, we contributed improvement ideas to the DITA Open Toolkit and were involved in the process where they
were implemented. Here are some improvement ideas in which we were involved:

https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://www.dita-ot.org/contributing
https://dita-users.groups.io/g/main
https://groups.google.com/g/dita-ot-users
https://github.com/dita-ot/dita-ot/discussions
http://slack.dita-ot.org/
https://stackoverflow.com/questions/tagged/dita-ot
https://www.oxygenxml.com/forum/dita-editing-and-publishing-dita-content/
https://www.oxygenxml.com/mailinglists.html
https://blog.oxygenxml.com
https://blog.oxygenxml.com/search.html?searchQuery=label_DITA_Publishing_Customization
https://github.com/dita-ot/dita-ot/issues/created_by/raducoravu
https://github.com/dita-ot/dita-ot/pulls?q=is%3Apr+is%3Aclosed+author%3Araducoravu
https://github.com/dita-ot/dita-ot/pulls?q=is%3Apr+is%3Aclosed+author%3Araducoravu

Blog | 3 - DITA| 170

* The DITA Open Toolkit Project file.
* Metadata to specify parameter names, descriptions, and default values in the plugin descriptor files.
* Processing RelaxNG-based DITA Maps and topics.

Contributionsto the DITA Open Toolkit Documentation

The DITA Open Toolkit documentation has relevant content for people who want to get started using and customizing the DITA
Open Toolkit. We frequently help our users by giving them links to the DITA OT documentation.

When necessary, we contribute issues on the DITA Open Toolkit documentation issues list: https.//github.com/dita-ot/docs. |
contributed to the DITA OT Docs project about 20 issues so far.

The DITA Open Toolkit Day

We started hosting and sponsoring the DITA Open Toolkit Day about 8 years ago, back in 2014, as away to bring the
community of plugin/customization devel opers together with the main contributorsto the DITA OT project. The DITA OT Day
is also ameansto celebrate the work of the main DITA OT contributors. Recordings for all videos from past DITA OT Day
events can be found here: https://www.dita-ot.org/dev/topics/dita-ot-day-videos.html.

DITA Map Metrics Evolution

The DITA Map Metrics Report transformation scenario available in Oxygen can be applied on aDITA Map and produce all
kinds of interesting metrics for your DITA project:

* The number of processed maps and topics.

* Content reuse percentage.

* Number of elements, attributes, words, and characters used in the entire DITAmap structure.
* DITA conditional processing attributes used in the DITA maps.

* Processing instructions.

* External links.

* All @ut put cl ass attribute values gathered from the DITA project.

Thereis also an open source DITA Open Toolkit plugin on the Oxygen XML GitHub organization which can be used to generate
ametrics report either in HTML or XML format.

If you generate metrics for various stages in the history of your DITA project (for example for various releases) you can combine
those metrics and generate graphs which can show various indicators like:

* Fluctuations in number of topics and maps.
* Fuctuationsin content reuse.

Metrics reports and metrics evolution reports are useful to get an overview of a DITA-based documentation project and to discuss
its future directions. They are also useful indicators to discuss with management.

Here are some steps to generate a metrics evolution report for aDITA project hosted on a Git server:

1. Install this DITA Open Toolkit plugin which can publish DITA tables as SV G graphs: https://github.com/oxygenxml/
dita-table-svg.

2. Install the DITA Metrics report plugin in your DITA Open Toolkit installation (if not yet installed): https://github.com/
oxygenxml/dita-ot-metrics.

3. Switch your Git project to various tagged versions, after each switch apply the metrics-report-xml transformation type
on the DITA Map and generate an XML file representing the metrics for that particular version. As an example | created
4 metrics reports for 4 previous Oxygen XML User's Guide versions: https://github.com/oxygenxmi/dita-ot-metrics/tree/
master/evolution/samples.

https://www.dita-ot.org/dev/
https://github.com/dita-ot/docs
https://github.com/dita-ot/docs/issues/created_by/raducoravu
https://www.dita-ot.org/dev/topics/dita-ot-day-videos.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-dita-map-transformation-scenarios.html
https://github.com/oxygenxml/dita-ot-metrics
https://github.com/oxygenxml/dita-table-svg
https://github.com/oxygenxml/dita-table-svg
https://github.com/oxygenxml/dita-ot-metrics
https://github.com/oxygenxml/dita-ot-metrics
https://github.com/oxygenxml/dita-ot-metrics/tree/master/evolution/samples
https://github.com/oxygenxml/dita-ot-metrics/tree/master/evolution/samples

Blog | 3 - DITA| 171

4. Apply the provided XSLT stylesheet to generate a DITA topic containing tables which show how various indicators
change between versions.

5. Apply the DITA to HTML5 transformation on the topic to create an HTML document showing the evolution of
different indicators as a graph.

Oxygen XML Editor DITA Editing solution strong points.

We are sometimes asked which are the differentiating features between Oxygen XML Editor and its competitors when it comes
to DITA Editing. So below | tried to list some differentiating features (strong points) that Oxygen has:

» User based license which allows somebody to install Oxygen on multiple computers (work computer, home computer) as
long asthey are the only ones using it: https://www.oxygenxml.com/eula.html.

* Transparent pricing, prices are available on the web site: https://www.oxygenxml.com/buy.html.

* Great technical support. Y ou can ask us questions via email or viathe forum.

* Cross platform availability. Being able to run Oxygen on Windows, Mac or Linux.

* Complete DITA Editing support: (on page 56)

o Lots of pre-defined actions to insert reusable content, images, links, videos.

o DITA-specific helper views (DITA Maps Manager, DITA Reusable Components)

o Support to customize the editing environment: add custom actions, remove current actions, customize content
completion items, create custom validation or transformation scenarios.

o Powerful publishing solution for producing responsive WebHelp and PDF using CSSto style the outpuit.

o Publishing to output formats like Windows Help (CHM), Ms Word, EPUB, Eclipse Help included.

o Lotsof commercial DITA CMSs have integrations with Oxygen.

* Support for change tracking and for adding comments in the editor along with a special Review view to review changes:
https.//www.oxygenxml.com/doc/ug-editor/topi cs/author-managing-changes.html

* Support to add third party plugins and enhance Oxygen's functionality. And lots of free add-ons already available to add
support for Git integration, DITA translations and Batch conversions from various formatsto DITA.

* Support to add custom validation rules based on your internal style guide. The rules can be implemented using the
Schematron standard and you can also add quick fixes for them: Schematron Checks to help Technical Writing (on page
178).

 Support to send DITA content to reviewers using the Content Fusion add-on.

DITA Oriented Tips And Tricks

Oxygen XML Editor has about 18 years of development under its wings. During these years, we added |ots of functionality and
many of our users usually do not know more than 20-30% of Oxygen's features. So this presentation is intended for technical
writers using Oxygen to write DITA content and who may want to find out more about their tool.

Add-ons

There are lots of free add-ons provided by the Oxygen team that can beinstalled in an Oxygen standalone version. | will
enumerate some of the most interesting one:

* Git add-on. This plugin adds a side view allowing you to do some common Git operations like pull, commit, push
(mostly 90% of what aregular Git user would do).

» Content Fusion Connector add-on. Collaborate with your peers by sending them links that allow them to give you
feedback on your work using aweb browser without the need to pre-install anything on their side.

* Trandation package builder. Small plugin that can be used to prepare a zip file containing only the topics that have
changed from one version to another.

* Batch convertor add-on. Converts multiple HTML, Markdown, Excel filesto DITA.

Project-related Functionality:

The Oxygen Project view is the place where you can organize and apply batch changesto all your DITA resources:

https://github.com/oxygenxml/dita-ot-metrics/blob/master/evolution/generateDITATables.xsl
resources/generated-metrics-evolution.html
resources/generated-metrics-evolution.html
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/technical_support.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-reusable-components-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/whr-html5-pages.html
https://www.oxygenxml.com/doc/ug-editor/topics/pdf-css-customization.html
https://www.oxygenxml.com/partners.html#cmssolutionpartners
https://www.oxygenxml.com/doc/ug-editor/topics/author-managing-changes.html
https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories
https://www.oxygenxml.com/content_fusion.html
https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories
https://github.com/oxygenxml/oxygen-git-plugin
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/translation-package-builder-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

Blog | 3 - DITA| 172

* Main files support. Enable main files support in the DITA project, add your top level DITA Maps as main files and any
structure changes, renaming or moving files will automatically update all linksin the DITA Project. Also works for
renaming/moving image resources.

* Store options at project level. Almost all of Oxygen's preferences pages can be saved at project level. Once you do that,
you can share the project.xpr file with somebody else and when they open it, they will also get the settings set inside the
project.

* Compare filesfolders.

* Refer to multiple folders.

* Batch operations: Select afolder in the project and use the "Transform", "Validate", "Format and Indent", "Find/Replace
inFiles', or "Spell Check in Files". Or use the "XML Refactoring” action to apply arefactoring stylesheet over all the
selected files.

* Filter files. You can instruct the Project view to hide various file types.

Navigation:

Actionsto find opened files, find files containing a certain content or navigate between files.

* In the main Window menu, you can find the Next/Previous Editor actions and their shortcuts. Together with the Switch
editor tab action, these help you navigate between opened XML documents.

* The Open/Find Resour ce view (main menu Window->Show View) alows you to search for file names, searchin file
contents, or search for files containing comments or change tracking.

* Right-click the tab of an opened DITA document and use the Copy location action. Or use the Show in Explorer/
Finder action to locate the file.

» Use the main menu File->Reopen last closed editor action to re-open the last closed file.

* Open aDITA topicin the Text editing mode, right click, choose Go to definition to open the DTD, XML Schemaor
RelaxNG Schema at the precise location where that DITA element is defined, something useful for debugging DITA
specidlizations.

* Usethe Navigation toolbar to Go back/forward/last modification.

Find/Replace Functionality

The Find/Replace functionality is the bread and butter of any editing application and Oxygen has lots of functionality in this
regard:

* Find/Replacein Files.
o Restrict to XPath - If you want to make replacements only in certain parts of the XML document, the XPath
restriction can be used to focus only on certain attributes or element content.
o |gnore Whitespaces - Y ou should usually check this checkbox as thereis always there is a possibility what the
words you are searching for may be split on multiple linesin the XML content.
* The Find menu — Find Next/Previous actions allow you to find the next/previous occurrence of the current selected
word(s). Or you can use the Find All action to find and highlight all occurrences of aword or a sequence of words.
* The Find menu = Find all Elements action shows a dialog box allowing you to find elements or attributes containing a
sequence of words.
* The Find menu — Quick find toolbar isacompact toolbar giving you access to search functionality.
* The XPath alows you to use XPath expressions (i.e. // comment () [contai ns(., ' TODO)]) to search the current topic or
aset of topics for elements, attributes, or comments matching a set of conditions.

DITA Maps M anager

The DITA Maps Manager view's contextual menu gives you quite an impressive array of useful actions:

* Fast create new topics. Create a set of DITA topics by specifying only their titles.

* Add references to multiple topics.

* Create key definition with keyword.

* Edit Properties - Y ou can even set profiling attributes on multiple selected topic references.
* Export DITA Map - Export your DITA Map to azip archive ready for translation.

https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-storing.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/open-find-resource-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/find-and-replace-text-in-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/fast-create-topics.html

Blog | 3 - DITA| 173

* Find Unreferenced Resources - Find all resources which are no longer used in a DITA project.
Refactoring menu
o Rename/Move topic - Renames atopic and all referencestoit.
o Rename key - Rename aDITA key and al its references in the entire project.
o Conversions between topics - Convert between topics, tasks, concepts, and references for multiple selected
DITA files.
o Convert nested sections to new topics - Convert al sections located inside a topic to new topics.
o Convert nested topics to new topic - Convert all nested topics to new topic files.
o Apply custom refactoring scripts - Create and apply your own XSLT or XQuery refactoring scripts.
* Find/Replacein Files.
* Spell Check in Files.
» Search References - Search all referencesto a particular referenced topic.
* Remove from Disk - Check in how many places atopic is referenced and then remove it from disk.
* Open with resolved topics - Open the DITA Map with al topic references expanded, useful if you want to have an
overview of the entire publication.
» Synchronized selection between DITA Maps manager and main editor area- Anytime aDITA topic is opened both in the
DITA Maps Manager and the main editing area, moving the selection in one instance will also move the selection to the
corresponding place in the other.

Editing in the Author Visual Editing Mode

* Maximize editor area - Double-click the opened editor's tab to hide all side views and maximize editing space, double
click again to show the side views.

Increase/decrease editor font - Use Ctrl/CMD +/- to increase or decrease the font in the current edited document.
Inserting elements - Pressing ENTER in the Author visual editing mode will show you alist with al possible elements
that can be inserted. If you choose an invalid element, Oxygen will find a place for it. Y ou can also add custom actions or
code templates to the content completion list.

Select content then press ENTER to surround the content in a new element.

Select multiple intervals - Press the Ctrl/CM D button when selecting text to select multiple text intervals. Once you do
that, you can use toolbar actions like Bold, Italic, or Underline or you can use the Edit Profiling Attributes action to
set profiling attributes on all the selected items.

In-place attributes editor - Instead of using the Attributes view, you can press Alt-Enter to edit attributes for the current
element in asmall pop-up dialog box.

* Select an entire element - Triple-click inside an element's contents to select the entire element. After this, you can move
the element to a new place.

Double-click to select by word, then drag the mouse to select the content word by word.

Move elements (especially paragraphs, list items) up or down (AL T-UP/DOWN), indent or unindent list items (T ab,
Shift-Tab).

Select content and then use the Toggle comment action (contextual menu Refactoring submenu) to quickly add an
XML comment around it.

In the contextual menu the Text submenu contains useful actions to count the number of words in the entire document
(or in the selected text), convert the selection to upper, lowercase, or sentence case

Bookmarks - Click the vertical |eft side bar in the editing areato add a bookmark. Navigate to that bookmark even after
the file has been closed using the Ctrl/CMD + number shortcut.

Collapse other folds - Click afold triangle in the Author visua editing mode and you can choose to close all other folds,
useful when working with multiple sections in the samefile.

Code templates - Define small fragments of XML content that can be inserted either by defining a shortcut key or by
pressing ENTER in the editing area.

Editor variables - Certain Oxygen-specific macros can be automatically expanded. For example, a code template that
inserts the current author name can use this editor variable:

<aut hor >${ aut hor . nane} </ aut hor >
or a code template that surrounds the selection inside a <keywor d> element:

<keywor d>${ sel ect i on} </ keywor d>

https://www.oxygenxml.com/doc/ug-editor/topics/find-unreferenced-resources.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-convert-topics.html
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-content-completion-tab.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-contextual-menu.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-navigate-document-content.html
https://www.oxygenxml.com/doc/ug-editor/topics/folding-author-mode.html
https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html
https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html

Blog | 3 - DITA | 174

or acode template that first asks the end user for their name and then inserts it in the document:

<aut hor >${ ask(' Aut hor Nane', generic, 'John Doe')}</author>

Code templates can a so be used when creating new file templates (on page 264).
* Outline Quick find filter - The Outline view contains afilter that can be used to reduce the number of elements displayed
init (for example, display only the contained topics).

DITA-specific Editing in the Author Visual Editing Mode

* DITA Reusable Components view. Y ou can use this side view to quickly search for and insert references to keys or to
reusable components.
Inserting links to resources. Besides using the toolbar actions you can also:
> Drop afile from an outside location. Drag a DITA topic or other resource from the Explorer/Finder or from the
Oxygen Project and drop it inside an opened DITA topic to insert areferenceto it.
o Paste aURL in the editing areato insert areferenceto it.
Links to images:
> Drop images from the Project view in the main editing area to insert references to them.
o Copy an image and then paste it in the editing area to insert areference to it.
o Double-click broken image reference to modify attributes.
* Reuse content:
o Copy an element that has an ID set on it and then right-click elsewhere and use the "Paste Special = Paste as
content reference” to insert a content reference to the element.
Select multiple sibling paragraphs and use the I nsert list item toolbar item to convert them al to list items. Select
multiple list items and use the I nsert table toolbar action to convert them to atable.
* Working with tables:
o You can right-click inside a table and use the Table Properties action to change lots of table-related settings.
° You can sort tables based on certain criteria.
o In the contextual menu Refactoring submenu you can find actions to convert between CALS and simple tables.
o You can select an entire table by clicking its Ieft corner and select an entire row by clicking to the left of it.
» Add hotspots to images - Y ou can right-click any image reference and use the | mage M ap Editor to configure target
links for various parts of the image.
* You can right-click inside an element and use the About Element contextual menu item to find out more about it.
* Pasting content from web browsers, Excel spreadsheets, or Word documents inside a DITA topic produces the equivalent
DITA content.
* The Styles drop-down toolbar menu allows you to choose between various CSS styles to apply while editing. The Hints
and Inline actions layers should be interesting for you to experiment with. Or you can add your own (on page 137).

Preferences:

Oxygen has alot of global settings that can be configured, | will just list what | consider to be the most important ones:
Menu shortcut keys - Y ou can use this preferences page to assign or to see the shortcut for any action available in Oxygen.
Fonts - This page allows you to change the default fonts used in the application.

Appearance - Change the default color theme in Oxygen (the Graphyte theme is quite popular).

Spell check - Customize the spell checker settings, use custom spell check dictionaries.

Save - Settings to automatically save or to check for errors before saving the file.

External tools - Define various command line tools that you can launch from Oxygen.

Annotations - Disable the tooltips which appear when hovering over various elements (useful if you have asmall screen).

https://www.oxygenxml.com/doc/ug-editor/topics/dita-reusable-components-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/image-map-dita-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-menu-shortcut-keys.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-fonts.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-appearance.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-spell-check.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-save.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-external-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-content-completion-annotations.html

Blog | 3 - DITA| 175

Tools

The Tools main menu is worth exploring sometimes. Y ou can invoke XML refactoring actions from it or open other small
applications like the SV G viewer.

Import

The File menu offers the possibility to import HTML, CSV, Excd files, or database content as XML.

Other Viewsand Toolbars:

Y ou can right-click in the toolbar area and use the Configur e T oolbar s action to see what toolbars are available or what toolbars
can be removed.

The Symbolstoolbar is quite interesting if you often want to insert symbols that are not on the current keyboard.

Other Small Tips:

The main Window menu has actions to tile all opened XML documents and also to enable synchronous scrolling in them (useful
if you want to look at similar XML documents and maybe to copy/paste between them).

Keepingin Touch

Oxygen's Help menu allows you to use the Report problem action to contact us directly. The Support Tools->Randomize
XML Content action allows you to randomize the content of an XML project before sending it to us for tests.

And there are alot of other waysto get in touch with us or to find various videos or tutorias to read: https:.//
www.oxygenxml.com/technical_support.html.

DITA Project Enhancements

A DITA project file defines a set of deliverables. For each deliverable you have a context containing the published DITA Map
and filters. The deliverable also specifies one or more transtypes, for each transtype specifying a set of parameter names and
values. Thefileformat of the DITA Project can be either XML or JSON. So what could we do with the DITA Project in Oxygen?

Publishing

In the future the DITA Open Toolkit (probably version 3.4 or 4.0) will allow publishing multiple deliverables by providing such a
DITA project from the command line.

Editing the DITA Project

We need a special framework containing a schema, custom CSS for editing the DITA project in the Oxygen Author visua editing
mode. We also need an ANT-based transformation scenario for publishing the DITA project.

Addingthe DITA Project in the" Master Files' folder

Once such aDITA project is added to the "Master Files" folder Oxygen could parseit and obtain alist of (root map, filter) pairs.
We can use thislist of root maps when renaming or moving content (topics, maps, resources) in the Project view. We can use
the (root map, filter) pairsto allow in the DITA Maps Manager selecting such a pair if somebody wants to edit atopic in such a
particular context.

Using the DITA Project information for editing

We have a specific drop-down "Filters' button both in the DITA Maps manager view and in the main editing area. The button
takes effect over all the files opened in the application. We also have a"Root map" combo box in the DITA Maps Manager.
Again, it takes effect over all the maps and topics opened in the application. The DITA Project would contribute (root map, filter)
pairs which could be contributed in the UI. Where could we contribute them? Maybe the "Root map" combo box could become
a"Contexts" combo box listing either DITAVAL files or (map, filter) pairs. If we want to allow for certain files people to use

https://www.oxygenxml.com/technical_support.html
https://www.oxygenxml.com/technical_support.html
https://github.com/dita-ot/dita-ot/blob/develop/src/test/resources/org/dita/dost/project/simple.xml
https://github.com/dita-ot/dita-ot/blob/develop/src/test/resources/org/dita/dost/project/simple.json

Blog | 3 - DITA| 176

certain editing contexts (thus avoiding to apply the editing context on a per-application wide basis) we have an architectural
problem, the DITA Keysresolver is more or less a singleton object, but you would need sometimes multiple such keys resolvers.

Using the DITA Project for the" Validate and check for completeness' action

Right now the "Validate and check for completeness' starts validation from a particular DITA Map and has aset of DITAVAL
filters which can be set. Maybe if aDITA Project is opened in the main editing area, we could have a special "Validation" button
for it on the toolbar, validating all the DITA Maps with al the filters specified inside it.

DITA Project extensibility

From what | discussed with Jarno, ideally in the DITA project file we could include our own XML tags from a specific
namespace. In this way, for acertain deliverable context we could for example also define the "reusable" content folders, the
"images’ folders, information which could be used for information displayed in our "DITA Reusable Components' view.

Trandating your DITA Project

Usually when working with a DI T A-based project you can either store the project contents using a Content M anagement
System (CM S) or some open-source version control system like Git or SVN. CM Ss usually come with their own trandation
support so this blog post is mostly for end users who use Git or SVN to store and collaborate on their DITA project.

Choosing a Translation Agency

Ideally your trandation agency should be able to handle DITA content directly, without you needing to convert the DITA to
someintermediary format. This means that you will have the full benefit of DITA reuse features to minimize trandation costs.

Asavery important rule, if you plan to translate your project you should get in touch with a DI T A-aware trandglation agency

very early in your project's timeline. Reliable trandation agencies that translate DI TA content directly (for example WHP)
usually need to have a preliminary discussion with you about how the project is structured, what terms need to be skipped when
translating, how various measuring units are translated, content reuse, taxonomy, and the handling of screenshots that appear

in your DITA content. So the way that you write your DITA content will be influenced by your discussion with the transdlation
agency.

If your trandation agency does not directly handle DITA content, there are commercial tools that can be used to convert DITA to
XLIFF: https://www.maxprograms.com/products/fluenta.html.

Optimizing Content for Tranglation

In general, there are three main principles to take into account when writing DITA content that will be translated at some point:

1. Use acontrolled vocabulary (usually the Simplified Technical English vocabulary).

2. Avoid reusing inline elements other than product names. The following DITA Users List discussion describes the reasons
for this: https://lists.oasis-open.org/archives/dita/201301/msg00029.html.

3. Avoid profiling/filtering content at inline level. For the same reasons as (2).

General DITA Project Structure
Usually you need to keep afolder that contains all your DITA maps/topicsin English and have separate folders for

other languages with equivalent DI TA topics trandated in that specific language. This article could be useful: https:/
www.maxprograms.com/articles/organize files.html.

General Translation Workflow when the Translation agency accept DITA documents
When trandating DI TA content, the most common process involves these steps:
1. You create your content in the primary language using a DI TA authoring tool (Oxygen XML Editor).

2. Before each release, you gather al the DITA topics that have been changed and need to be transated. The Oxygen
Translation Package Builder plugin might be handy for this.

http://www.whp.net/en/dita-localization/
https://www.maxprograms.com/products/fluenta.html
https://en.wikipedia.org/wiki/Simplified_Technical_English
https://lists.oasis-open.org/archives/dita/201301/msg00029.html
https://www.maxprograms.com/articles/organize_files.html
https://www.maxprograms.com/articles/organize_files.html
https://github.com/oxygenxml/oxygen-dita-translation-package-builder

Blog | 3 - DITA| 177

3. Send a copy of the relevant DITA filesto the translation agency (known also as "localisation service provider").
4. Receive trandated DI TA content back from the translation agency and integrate it in each language-specific project
folder.

Trandlation Workflow when the Translation agency accepts XLIFF files

XLIFF (XML Localization Interchange File Format) is an XML-based format created to standardize the way data are passed
between and among tools during a localization process. If your translation agency accepts this format, the translation workflow
usually has these steps:

1. At various milestones (for example, when anew version is released), you generate XLIFF files for each language you
tranglate to.

2. You send the XLIFF file to the trandl ation service provider.

3. Oncethe XLIFF returns from translation, you generate a translated version of your map and topics from the XLIFF file.

! Important: The Fluenta DITA Translation add-on can help with all of these steps.

Publishing your Trandated Content

All your translated DITA maps and topics should have the xml:lang attribute set with the appropriate value on the root element.
Besides the actual translated content, the published output may contain various static text (such as the word Table followed

by the table number, Figure following by the number, or Note appearing before each DITA <not e> content). The DITA Open
Toolkit includes support for various languages for HTM L -based output and PDF-based output. Y ou can also add support for
other languages: http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html#ariaid-titlel. Thereis also a specific topic that
describes how to add a new language to the Oxygen-specific WebHelp Responsive output: https.//www.oxygenxml.com/doc/ug-
editor/topics/localize-webhel p-responsive. html.

Liability

So who is responsible for a bad translation that may produce damage to a client following a set of mis-translated steps? From

my discussions with translation service providers, the trandation agencies do not assume any liability for incorrectly translated
content. Usually a company that needs to translate their DITA content in multiple languages has regional headquartersin various
countries and somebody from the company's regional headquarters would be responsible to review and accept the trandated
content as appropriate.

This concludes my DITA translation overview. Aswe do not translate the Oxygen User's Manual in various languages, our
internal knowledge of trandating DITA content is quite limited so any feedback on this small article is welcomed.

DITA Map Validate and Check for Compl eteness Overview

The Validate and Check For Completenessis an action available on the DITA Maps Manager view toolbar and it can

be used to perform thorough checks on the entire DITA Map structure and set of referenced topics. We've made this action
available to you a couple of years ago and during these years, based on your direct feedback we kept adding additional checks
and functionality to it. We always took care to optimize the processing speed in order to allow for validating projects containing
thousands of resources in 10-15 seconds.

In this blog post | will try to make alist of all the checks that the action does in order to ensure you that your DITA content is
valid and proper:

 Vadlidate each DI TA resource directly or indirectly referenced from your DITA Map with its associated DTD or XML
Schema and report any errors which may arise.

* Validate each DITA resource with an additional Schematron resource which you can provide. Schematron is quite
handy when it comes to enforcing internal rules on the DITA content and we use it quite alot for checking our user's
manual (on page 178).

» Batch validate referenced DITA resources. This setting validates each DI TA resource according to the validation
scenario associated with it in Oxygen. Thiswill decrease the validation speed quite a bit but if you have DITA 1.3

https://www.oxygenxml.com/doc/ug-editor/topics/fluenta-dita-translation-add-on.html
http://www.dita-ot.org/2.0/readme/DITA-globalization-xhtml.html
http://www.dita-ot.org/2.0/readme/DITA-globalization-pdf.html
http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html#ariaid-title1
https://www.oxygenxml.com/doc/ug-editor/topics/localize-webhelp-responsive.html
https://www.oxygenxml.com/doc/ug-editor/topics/localize-webhelp-responsive.html

Blog | 3 - DITA| 178

resources which are Relax NG based you should check it in order to validate each resource according to the Relax NG
Schema.

Use specific DITAVAL or profiling condition filters when performing the validation. From a single published DITA
Map you may get multiple publications based on the profiling filters applied. Because these filters are used to remove
entire topics or parts of topics, you may have links and conr efs which become invalid when certain filters are applied
on the map. So it makes sense to validate your DITA project by applying al profiling filters you would apply when
publishing it in order to be aware of these potential broken references.

Report profiling attributes or values which are not valid according to the Subject Scheme Map associated with your
project. Y ou can read more about controlling profiling attributes and values here:Controlled Attribute Vaues for your
DITA Project (on page 140).

Identify possible conflicts in profile attribute values. When the profiling attributes of atopic contain values that are not
found in parent topic profiling attributes, the content of the topic is overshadowed when generating profiled output.
Check the existence of non-DI TA referenced resources. Y ou will get reportsif links to local images or other resources
are broken. Y ou can also decide to verify the existence of remote links. For example if you have links to various external
web sites, you might be interested in seeing if those remote servers are still there.

Report links to topics not referenced in DITA maps. Checks that all referenced topics are linked in the DITA map.
Otherwise you may get working links to topics which are not included in the table of contents.

Check for duplicate topic IDs within the DITA map context. By default the topic ID can be used in the WebHelp output
for context sensitive help. Also certain CM Ss require that a certain topic 1D would be unique in the entire DITA Map.
Report elements with the same ID placed in the same DITA Topic according to the specification.

Report missing domains attribute which may indicate an improper DITA specialization.

Report invalid class attribute values according to the specification.

Report invalid key names according to the specification.

Report references to missing keys or links which refer to keys which have no target resource defined on them.

Report problems when elements referenced using DITA content reference range are not siblings or are not properly
sequenced.

Report links which have no target set on them either via href or keyref.

Report non-portable absol ute references to DI TA resources.

Report when links contain invalid encoded characters or Windows-like path separators.

Report when resources are referenced with incorrect path capitalization.

Report a mismatch between the referenced resource type and its format attribute.

Report a mismatch between the referenced resource type and its type attribute.

Report topic referencesin aDITA Map pointing to non-topic elements in the target topics.

Report invalid content references and content key references, references to non-existing resources, to non-existing IDs,
report when the source element is not a specialization of the target element.

| think | covered most of the checks that this validation does.

Are there other checks you would like to see in afuture version? Would you like to see this validation available as a separate
process which could be run on a server?

Schematron Checks to help Technical Writing

The Oxygen XML Editor User's Manual iswrittenin DITA. In an older post | described in more detail (on page 290) how
we collaborate internally on our User's Guide Project. And we also made available a copy of our User's Manual as a project on
GitHub.

During these years on working on it, we progressively developed a set of simple rules which were originally kept in aplain
text document. The problem is that nobody can really remember all these rules when actually writing. So recently we started to
migrate these rules to Schematron and have them reported automatically has validation warnings and errors while editing the
topics. And we can also add quick fixes for each of these problems.

So below | will try to tell you what each rule imposes and what it's Schematron implementation looks like. If you want to quickly
test these rules on your side, you can add them to the Schematron file which is used by default to validate DITA topics located in:
OXYGEN_| NSTALL_DI R/ framewor ks/ dita/resources/dita-1.2-for-xslt2-mndatory. sch.

https://www.oxygenxml.com/doc/ug-editor/index.html#topics/context-sensitive-help-system.html
https://github.com/oxygenxml/userguide
https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/doc/ug-oxygen/#topics/schematron-quick-fixes.html

Blog | 3 - DITA| 179

1. Try as much as possible to add at least an indexterm element in each topic. Thisis useful when the Index pageis created
for the PDF output or the Index tab is created for the WebHelp output. Asthisis not a requirement, we wanted to report
thisissue as an error. The end result looks like this:

[]
Y| @ Itis recommended to add an ‘indexterm’ in the current ‘topic’ element.

+ Add the 'indexterm’ element

Author Actions

And the Schematron pattern looks like this:

<pattern ="http://ww. schematron- qui ckfi x. conf val i dat or/ process" >
<rul e ="/ x>
<assert ="prol og/ net adat a/ keywor ds/ i ndext er ni' ="war n" ="addFr agnent " >
It is reconmended to add an 'indexternml in the current '<nane/> elenent.
</ assert>
<l-- Quick fix to add the indexterm el ement elenent and its parents -->
<sqgf:fix ="addFr agnment " >

<sqf: descri pti on>
<sqgf:title>Add the 'indexterm elenment</sqgf:title>
</ sqf : descri pti on>

<sqf : add ="(title | titlealts | abstract |
shortdesc)[last()]" ="after" ="not (prol og) ">
<xsl:text>
</ xsl : t ext ><pr ol og =""><xsl|:text>

</ xsl : t ext ><met adat a><xsl : t ext >

</ xsl : t ext ><keywor ds><xsl : t ext >
</ xsl : t ext ><i ndext er np<xsl : text > </ xsl :text> </indexternmp<xs|:text>

</ xsl : t ext ></ keywor ds><xs| : t ext >

</ xsl : t ext ></ met adat a><xsl : t ext >

</ xsl : t ext ></ pr ol og>
</ sqgf : add>
</sqgf:fix>
</rul e>
</ pattern>

2. The ID of each topic must be equal to the file name (minus the extension). One of the outputs we produce (I think CHM)
had a limitation when building the context mapping between help IDs and actual HTML content so this was an important
rule for us, thus an error is reported on this. Also aquick fix is added to auto-correct the topic ID based on the file name.
The end result looks like this:

Author Actions

@ Topic ID must be equal to file name.

=]

= 4

+ Set "author-actions” as a topic ID

and the Schematron patternis:

<l-- Topic ID nust be equal to file nane -->

<sch: pattern>

<sch:rul e ="/*[1] [contai ns(@l ass, ' topic/topic ')]">
<sch: | et ="reqld" ="repl ace(tokeni ze(docunment-uri(/), '/")[last()], '.dita, '")"/>
<sch: assert ="@d = $reqld" ="set | d">

Topic | D nust be equal to file nane.
</ sch: assert>

<sqgf:fix ="set|d">
<sqf: descri ption>
<sqgf:title>Set "<sch:val ue-of ="$reqld"/>" as a topic ID</sqf:title>

<sqf: p>The topic ID nust be equal to the file nane.</sqf:p>
</ sqgf : descri pti on>

Blog | 3 - DITA | 180

<sqf: repl ace =@d" ="attribute" ="id" ="$reqld"/>
</sqf:fix>
</ sch:rul e>
</ sch: pattern>

3. Report when plain links or related links to web resources have the same text inside them as the value of the @hr ef
attribute. We had cases in which writers would input web links like this:

<xr ef ="http://ww. googl e. cont’ ="htm" ="external ">http://ww. googl e. conx/ xr ef >

which is redundant because when you set no text to the link, the publishing uses the @hr ef attribute value as the link
text. So we wanted to report such cases as warnings and to have a quick fix which removes the link text:

v <& phttp://www.google.comd following actions in

Q Link text is same as @href attribute value. Please remove.

[Ty Remove redundant link text, text is same as @href value.

T A= s — = ~F= A ForF -l = F I 7 +

The Schematron pattern looks like this:

<sch: pattern>
<sch:rule "*[contai ns(@l ass, ' topic/xref ') or contains(@lass, ' topic/link ")]">
<sch: report " @cope="external' and @ref=text()" ="renoveText ">
Link text is same as @wref attribute value. Please renove.
</ sch: report>
<sqgf:fix ="renoveText ">
<sqf: descri ption>
<sqgf:title>Renove redundant link text, text is sane as @ref value.</sqf:title>
</ sqf : descri pti on>
<sqgf:del ete ="text()"/>
</sqf:fix>
</ sch:rul e>
</ sch: pattern>

4. Avoid using the @scale attribute on images. We wanted to smooth scale imagesin an external image editor so it was
prohibited to use the @scale attribute on images. The Schematron pattern for this:

<pattern>
<rul e ="*[contains(@l ass, ' topic/imge ')]">
<assert ="not (@cal e)">

Dynamical |y scal ed i mages are not properly displayed, you
shoul d scale the image with an i mage tool and keep it within
the reconmended with and height limts.
</ assert>
</rul e>
</ pattern>

We have an upcoming event dedicated to Schematron Quick Fixesif you want to become more familiar with the technology. And
we also have a GitHub project which tries to combine the notion of a style guide for writing documentation inside a company
with avery simple manner of defining checks which can be applied to impose the styleguide rules.

I would be interested in your feedback, especially if you have checks that you perform right now on your content and you
consider that they might benefit others.

Implementing your own Style Guide

Let's say you are ateam of tech writers collaborating on a DI TA-based project and doing things your way, maybe you have
various best practices about what elements to use and when to use them, maybe you want to impose a set of controlled values for
certain attributes. So at some point you gather on an internal server a set of HTML resources which explain how various DITA
elements should be used. This blog post will attempt to show you how these best practices can be shared with your team so that
they are readily available when editing DITA content in Oxygen.

https://www.oxygenxml.com/events/2015/webinar_oxygen_17_xml_quick_fixes.html
https://github.com/oxygenxml/dim

Blog | 3 - DITA| 181

Custom " Style Guide" toolbar button

Asyou have your style guide HTML resources on a server, you can add a custom toolbar button which will appear on the DITA
toolbar when editing DITA topics in the Author editing mode. When you press that toolbar button, a web browser opens up and
shows you the style guide main page. Here are some steps about how to do this:

1. In the Oxygen Prefer ences->Document Type Association page edit the DITA framework. Instead of editing the DITA
framework directly you may choose to extend it in order to share the extension more easily:Document Type Extension
Sharing (on page 261).

2. Inthe Author tab go to the Actionstab and there is an action with the ID styleguide. If you edit the action, it
invokes an operation with a parameter called resour cePath. Y ou can edit that parameter to point to your internal
(or public) server where the WebHelp output is stored. Y ou should also set an icon to it, you can use /images/
BrowseReferenceM anual 16.png (it's a default icon which comes with Oxygen). Save your changes in that dialog.

3. Inthe Author tab thereisa Toolbar sub-tab in which you can add the styleguide action to the toolbar in the place where
you want it. Press OK acouple of timesin the dialogs and then action should become available on the toolbar for each

topic.

File Edit Find Project Options Tools DITA Document Window Help

DNEGRRC I VIQRkhik e

EL‘(F‘ath 2.0 = [~Execute XPath on 'Current File' - El;r
LI AR B |5 +|EY Y isyles ~ | B|R
Project 5 g x styleguide.dita x
sample.xpr + - | & topic body section p ol i b
- | relaxng Py
’ .
e Implementing 1

Link to Style Guide for each element in the content completion window

When you pressthe ENTER key in the Author editing mode, you get alist of available elements. For each element thereis
documentation available, that documentation can be customized, for example you could add links for each element to a specific
section in your style guide. This topic should tell you more about how this can be achieved:https://www.oxygenxml.com/doc/ug-
editor/#tasks/author-styl eguide-annotations.html

 New p ~
ed | the element is typically used to apply bold highlighting to the cantent of the element. This element is ¢ %ms'f(web link)
part of the highlighting domain. Use this element only when a more semantically appropriate element is not £ image
Bb
1 da

yutg available. For example, for specific items such as GUI controls, use the <uicontrols> element.
@ parameterentity

gtegory: Highlighting elements

g P9o1ra Style Guide ol ahprewated-Form
ALz 5pecs ® Eplnlame
@ boolean
I er - rito i

o

https://www.oxygenxml.com/doc/ug-editor/#tasks/author-styleguide-annotations.html
https://www.oxygenxml.com/doc/ug-editor/#tasks/author-styleguide-annotations.html

Blog | 3 - DITA | 182

Impose controlled attribute values

For certain attributes (for example profiling attributes, @outputclass attributes) you may want to impose a set of controlled
attribute values. This blog post will tell you how: Controlled Attribute Values for your DITA Project (on page 140).

Show validation errorsor warning when guidelines ar e br eached
If possible, some of your rules can be converted to Schematron, allowing the application to signal to the writer when aruleis not

obeyed. You can aso add quick fixes to show writers various ways to rectify the problem. This blog post should give you more
details about this:Schematron Checks to help Technical Writing (on page 178).

Bringing all of thistogether

Thereis an Oxygen XML GitHub project called DIM which attempts to approach most of these aspectsin an unified manner:
https://github.com/oxygenxml/dim.

Preprocessing DITA-OT Project Files

Project fileswere introduced in the DITA-OT 3.4 release. They provide a standardized XML way to define how input DITA files
should be published to output content files, including details such as filtering, transformation parameters, and output directory
locations.

Our basic publishing requirements are as follows:

* We publish some books multiple timesin multiple DITAVAL filtering conditions.
* We publish to both PDF (using PDF Chemistry) and online help (using Oxygen WebHelp).
o PDFsare published individually per-book.
o WebHelp is published as a collection of books, with in-help linksto the PDF files.
* We have "review" and "final" versions of our output.

o These versions use different DITA-OT parameters and different DITAVAL flagging files.

As| attempted to create a DITA-OT project file to produce our deliverables, | encountered some limitations. This blog post
describes how | created an X SLT-based preprocessing approach to work around these limitations.

Quick Overview of Project Files

A project file uses three primary building block elements:

* <content > - aninput DITA map to process

o Caninclude one or more associated DITAVAL files

* <publ i cation> - atransformation to apply

o Can include transformation parameters

* <del i ver abl e> - output content to create, by transforming a<cont ext > with a<publ i cati on>

o Can include an output subdirectory path (relative to the overall output directory)

Initssimplest form, a<del i ver abl e> can provide its own <cont ext > and <publ i cat i on> information within itself:

https://github.com/oxygenxml/dim

<deliverable id="del-pdf-A">
<context>
<profile>

</profile>
</context>

<output href="olh-A/pdf">
<publication transtype=" pdf2" >
<param name="..." />
<param name="..." />

</publication>

</deliverable>

<input href="dita/common_UG.ditamap" />

<ditaval href="filter_A.ditaval" />

— 0 @ ©

Blog | 3 - DITA | 183

For more complex output content situations, a<del i ver abl e> can reference shared <cont ext > and <publ i cat i on> €lements by

@dref referencesto @ d values:

<context id=" context-A" >
<input href="dita/common_UG.ditamap"/>
<profile>
<ditaval href="filter_A .ditaval"/>
</profile>
</context>

<publication transtype="pdf2" id=" pub-pdf" >
<param name="..."/>
<param name="..."/>

</publication>

<deliverable id="del-pdf-A">
<context idref=" context-A" />

_) <output href="olh-A/pdf">

<publication idref=" pub-pdf" />

</deliverable>

— 0 0 @

This @ dref mechanism allows many deliverables to share common context and publication definitions. If thereisachangeto a

<cont ext > (perhaps a different map or new DITAVAL condition) or a<publ i cati on> (perhaps an updated DITA-OT parameter),
then al relevant deliverables inherit the change automatically.

In addition, DITA-OT project files can use <i ncl ude> statements to structure their information across multiple files. This
allows contexts to be organized by product writer teams, publications to be placed in files maintained by aDITA environment

maintainer, and so on.

Limitation — Specify Per-Deliver able PDF File Names (#3682)

When | publish multiple PDFs from the same map using DITAVAL conditions, | needed to define the out put Fi | e. base
parameter on a per-<del i ver abl e> basisto control the output PDF file name:

<publication transtype="pdf2" id="pub-pdf">
<param name="..."/>
<param name="..."/>

</publication>

<context id="context-A">
<input href="dita/common_UG.ditamap"/>
<profile>
<ditaval href="filter_A.ditaval"/>
<Iprofile>
</context>

\ 4

<deliverable id="del-pdf-A">
<context idref="context-A"/>
<output href="olh-A/pdf">

p—| <puiblication idref="pub-pdf">

<param name="outputFile.base" value="userguide A"/>
</publication>
</deliverable>

EEN

userguide A.pdf

Blog | 3 - DITA | 184

DITA-OT versions before 4.0 do not allow <par am> elements to be controlled from a<publ i cat i on> referencein a
<del i ver abl e>. | filed the following DITA-OT enhancement request for this:

#3682: In DITA-QOT project files, allow a PDF <deliverable> to specify its output file name

It was implemented for DITA-OT 4.0 in the following pull request:

#3907: Support param in publication reference

Limitation — Consider DITAVAL in Both <context> and <publication> (#3690)

| needed to apply DITAVAL from both <cont ext > (for @r oduct filtering) and <publ i cati on> (for
@udi ence/@lel i veryTar get /@ ev filtering/flagging of "review" and "fina" deliverables):

<context id="context-A">
<input href="dita'common_UG.ditamap"/>
<profile>
<ditaval href="filter_A.ditaval" />
<lprofile>
</context>
<publication transtype="pdf2" id="pub-pdf-review"> \ 4
<profile> <deliverable id="del-pdf-A">
<ditaval href="filter_audienceditaval"/> <context idref="context-A"/> —
<ditaval href="filter_deliveryTarget.ditaval" /> <output href="olh-A/pdf">
<ditaval href="flag_rev.ditaval" /> : <publication idref="pub-pdf-review"> _>
</profile> <param name="outputFile.base" value="userguide A"/>
<param name="..."/> </publication>
<param name="..."/> </deliverable>
</publication> .
review/

userguide A.pdf
DITA-OT versions before 4.0 do not properly combine <cont ext > and <publ i cati on> DITAVAL filtering. | filed the following
DITA-OT issuefor this:
#3690: In DITA-OT project files, apply both <context> and <publication> DITAVAL filtering
It was implemented for DITA-OT 4.0 in the following pull request:
#3907: Add profiles to publication project file
Using Preprocessing to Work Around the Limitations

To work around these limitations in earlier DITA-OT versions before 4.0 isreleased, | created an XSLT file to do the following:

* Read the input DITA-OT project file
o Resolve <i ncl ude> statementsto pull al content into asinglefile
* Convert all DITAVAL file references to absol ute paths (to work around #3873)

* In<del i verabl e> elements, replace all @ dr ef 'ed <cont ext > and <publ i cat i on> elements with copies of the referenced
elements (so we can modify them per-<del i ver abl e>)

* Find <par an» elementsin <del i ver abl e>, move them to <publ i cat i on> instead (to work around #3682)

* Find <di t aval > elementsin <publ i cat i on>, move them to <cont ext > instead (to work around #3690)

| then applied this XSLT file as a preprocessing step to trans ate the unsupported project file constructs into supported constructs
in atemporary preprocessed project file, then ran DITA-OT publishing using that temporary file. For example,

#! / bi n/ bash
rm-rf ./out

export DI TAOT=$(dirname $(dirname $(which dita)))
export SAXON_JAR=~/ saxon/ saxon- he-10. 6. j ar

https://github.com/dita-ot/dita-ot/issues/3682
https://github.com/dita-ot/dita-ot/pull/3907
https://github.com/dita-ot/dita-ot/issues/3690
https://github.com/dita-ot/dita-ot/pull/3895

Blog | 3 - DITA | 185

echo "Creating preprocessed DI TA-OT project file..."
java \
-jar ${ SAXON_JAR} \
-xsl: frameworks/ ditalpreprocess_project_file.xsl \
-s:project.xm \
-0: proj ect.xnl - preprocessed. xnl

echo "Publishing preprocessed DI TA-OT project file..."

${ DI TAOT}/bin/dita --project project.xm -preprocessed.xm -t tenp --verbose

rm project.xm -preprocessed. xni

Thisworked well from alinux command line, but we also needed our writers to be able to run it from Oxygen. To do this, |
created a copy of Oxygen's project file build script at

<OXYGENL_I NSTALL>/ framewor ks/ di ta/ di ta_proj ect/build_dita_project.xmn

and added similar XSLT preprocessing to it using Ant commands, then placed the modified version at

framewor ks/ di ta/buil d_dita_project_preprocessed. xm

in our Oxygen project directory. Then | extended the DITA-OT project file framework and created an extended DITA-OT project
file transformation pointing to the modified build script:

Type filter text Q (F) Document Type Assodiation

Global Discover more frameworks by using add-ons update sites

> Appearance
Application Layout Enabled Document type Storage Priority
Add-ons DITA-OT Project - Synopsys [extension of: DITA-OT Project] External High ~
Project Level Settings DITA 2.x External Mormal

> Document Typ _— “:‘__'_: o o
Document Templz : i
Encoding

. Editor Name: DITA-CT Project - Synopsys Priority: |High
55 Validator Description: Support editing for DITA-OT Project files

» XML

» DITA
Markdown Storage: (O Internal (®) External C:\nobackup'project_file_experiments4\frameworks\dita\dita_ot_project_synopsys. framework B=

» Data Sources

> SWN

> Diff
Archive

» Plugins
External Tools
Menu Shortcut Ke
File Types
Open/Find Resou
Custom Editor Val
Network Connect
XML Structure Oy
Views

Messages

&)

Initial edit mode:

Association rules | Schema Classpath Author | Templates

Type filter text

Default

Editor specific ~

Scenario

| Publish DITA-OT Project (all deliverables)
™ Publish DITA-OT Project (select deliverable)

@_. Edit Ant Scenario x

Mame: Publish DITA-OT Project (all deliverables)

Options parameters Output

Working directory: S{cfd} B
(Bui\d file: 5{ﬁameworkDir}fbuild_ditajroject_exhended.xml) B
Build target:

Additional arguments:

Ant Home
(®) Default: [C:\Program Files\Oxygen XML Editor 24\tools\ant]

() Custom:

Java Home

(®) Default: [c:'\program files\oxygen xml editor 24'jre]

() Custom:

VM Arguments: -Xmx4096m

Libraries {10)

(3

Cancel

Blog | 3 - DITA | 186

This new transformation allowed Oxygen to publish project files that used the preprocessing workaround. The unsupported
constructs still result in schema violations when the original (non-preprocessed) project files are opened for editing in Oxygen,
but at least the publishing aspect works.

Note:

The preprocessing XSLT stylesheet requires Saxon to run. To support, this, the preprocessing-based DITA-OT project
transformations specify alist of additional . j ar librariesto use. To see these libraries, click the Libraries button in the
dialog box shown above.

The following Oxygen project demonstrates this preprocessing approach:
preprocessed_ditaot_project_files.zip
Torunit,

1. Extract the archive and open OPENVE. xpr in Oxygen.

2. Inthe Project view, expand the Main Fileslist, right click on deliverables-all. xml and choose Transform > Transform
With, and choose the Publish Preprocessed DITA-OT Project (all deliverables) transformation.

Thiswill build "review" and "final" versions of both the "Product A" and "Product B" online help collectionsin the
out / directory, complete with correctly-named PDF files integrated into each online help collection.

There are other deliverable files for specific subsets of deliverables, organized into logical foldersin the Main Fileslist.

To view the XSLT stylesheet without downloading the archive, click on the following link:
preprocess_project_filexsl

There are comments in the code to explain how it works.

Exploring How the XSLT Transformation Works

To help you explore how the XSLT transformation works, the Oxygen project also makes it available as a refactoring operation
that you can manually preview on project files.

To do this,

1. Inthe Project view inthe Main Fileslistinthepr oj ect _fi | es/ directory, right-click one of the
del i verabl e*. xm files, then choose Refactoring > XML refactoring.

2. In the refactoring operation list, choose Synopsys > Preprocess DITA-OT project file refactoring operation.

3. Click the Preview button to see what the XSLT transformation would do.

For example,

topics/preprocessing_ditaot_project_files/preprocessed_ditaot_project_files.zip
topics/preprocessing_ditaot_project_files/preprocess_project_file.xsl

Blog | 3 - DITA | 187

@'_\., Preview
Changes to be performed
¢=» Crnobackup'preprocessed_ditaot_project_files\project_files'deliverables-final-A.xml
Select all Deselect al * Mext Change f Previous Change
a1 |<?uml version="1.0" encoding="utf-8"?> [/ <1—a online help - final (POF and HTMLS) —= 2~
2 |« ?xml-model href="https://www.dita-ot,org/rng/project.rnc” <deliverable id ="del-pdf-book 1-final-a"> 3
type ="application frelax-ng-compact-syntax™? = <rontext name ="book 1-47= 10
3 |<project xmins="https: /fwww. dita-ot.org/project™> <input href=",. [dita/book 1. ditamap™/ > 11 =
4 il <profile= -2
5 [<indude href="contexts.xml"/=| <ditaval href=".. [ditaval/filter_A.ditaval™f= 12N =
& «<indude href="publications. xml™/ = <ditaval b "..[ditavalfflag_final.ditaval™/> 14 -
7 <ditaval href=",. fditaval ffilter _pdf.ditaval™/> 15
& <!— A online help - final (PFDF and HTMLS) —> < fprofile = 16
3 <deliverable id="del-pdf-book 1-final-4"> < feontext:> 17
10 <context idref="context-book1-A%f> <output href="finalfolh-A/pdf = 1B =
11| <output href="finalfolh-&/pdf" /> <publication transtype ="pdf2"> 180 =
12 <publication idre="pub-pdf-final"> <param name ="args.draft” value ="no"/> 2 E
13 <param name ="outputFile. base™ value ="book1-A"f> <param name ="outputFile. base” value ="book1-Af> 21 =
14 <jpublication = < fpublication = el
185 <« fdeliverable = < (deliverable = 3
18 <deliverable id ="del-pdf-book2-final-A"> 24
17 «<deliverable id ="del-pdf-book2-final-4"> <context name ="book2-A> LN =
18 <contextidref="context-book2-A" > <input href=". fdita/book2. ditamap™/ > il
18 <output href="final/olh-A/pdf = <profile= prll
2 <publication idre="pub-pdf-final™> <ditaval href=".. fditavalffilter_A.ditaval™/> @z =
2 <param name = outputFile. base™ value ="book2-A"f> <ditaval ~ "..[ditavalflag_final.ditaval™f> n =
22 <jpublication= <ditaval href=".. fditaval ffilter _pdf.ditavalf> 0
23 <fdeliverable = < profile = 3
24 < feontext> 2 =
25 <deliverable id ="del-html-clh-final-A"= <output href="final/olh-A/pdf[=> 3 =
3 <oontext idref="context-olh-AT > <publication trznztype ="pdf2"= 34 —
7| <output href="finalfolh-A7f> <param 1 args.draft” value ="no"f> a5
v 28 <publication idref="pub-html5-final" > <param name ="outputFile. base™ value ="book2-A7f> |38 v
78 2ldelivarahla - < Irnihliratinn = a7 .
L4 > £ > -
l?l < Back Cancel

Be sure not to actually apply the refactoring operation to the file. Otherwise, you will need to re-extract the archive to restore the
original project file.

Re: 10 reasons for moving away from DITA

I'm following Tom Johnson @ onj ohnson on Twitter and so should you for the very interesting articles related to technical
documentation. One of his recent posts reminded us about the 10 reasons for moving away from DITA article he wrote about 7
years ago so | re-visited the article and | wanted to reply to each of the points he makes in the 10 reasons to move away from
DITA section, 7 years after hisoriginal post:

1. DITA doesn't easily integrate into existing web frameworks.

| think the DITA to Markdown transformation developed by Jarno Elovirta (which is freely available in the
DITA Open Toolkit) has opened the possibility of using static web site generators. Here is an article | wrote where
| investigated using the MK Docs static site generator:

Publishing DITA Content Using the MKDocs Web Site Generator (on page 122).

2. DITA doesn't easily integrate with JavaScript libraries.
Again, once you can publish DITA to Markdown, you can use the existing static web site generator infrastructure.

https://twitter.com/tomjohnson/status/1498782382412816384
https://idratherbewriting.com/2015/01/28/10-reasons-for-moving-away-from-dita/

Blog | 3 - DITA | 188

3.1 never bought into DITA'sinformation typing model.

| partially agreed, as most writers who are not externally constrained by the company or by some publishing
customization to use explicit topic types (me included) would use the base DITA t opi ¢ type for all of their work.

4. Writingin XML isachore.

For me, when writing in Markdown, adding paragraphsis easy, but when adding links, image references, or
tables, it isachore. It depends on what you are comfortable with and what you use every day. If | were to write
Markdown every day, | would start to remember how | should encode alink and consider it a natural way of doing
things. But indeed, using a plain text editor to writein XML is more difficult, in general. With avisual editing
toal, it is much easier.

5. Open-source DITA solutions develop too slowly.

If we are discussing storage, DITA content (the content of this blog for example) can be stored in Git repositories
and used with regular Git client tools: DITA For Small Technical Documentation Teams (on page 150).

If we are discussing the publishing ecosystem, once you can publish DITA to plain HTML or Markdown using the
DITA Open Toolkit, you can benefit of all web based tools available for Markdown and plain HTML content.

6. You can't easily customize the output.

Again, it depends on what you are comfortable with. Y ou can use Markdown content produced from DITA

XML content with static web site generators like MK Docs or Jekyll. Indeed, if you use (for example) DITA

to produce Oxygen WebHelp, although most of the customizations are made with CSS, you might still need to
use XSLT for more advanced customizations. But as someone who spent hours trying to understand why Hugo
does not properly follow links between articles, thereis alearning curve for anything, and every static web site
generator out there has its own configuration capabilities that need to be learned and explored. Also, once you get
comfortable with a certain publishing process, you naturally consider that one easy and the others more difficult.

About publishing DITA to PDF, the default customization capabilities for the classic DITA to PDF publishing
require knowledge of both XSLT and XSL-FO. Thisiswhy we invested in the Oxygen Chemistry CSS-based PDF
processor, to be able to style the content using CSS and then use the CSS both for WebHelp and PDF publishing:
https.//styles.oxygenxml.com/.

7. DITA doesn't integrate well with other non-DITA content.

DITA content integrates well with Markdown. We contacted Tom less than ayear ago to again explore Oxygen's
capabilities with a docs-as-code approach and his well thought out and complete article about combining DITA
XML with Markdown is available here: https://idratherbewriting.com/learnapidoc/pubapis_oxygenxml.html.

In recent Oxygen versions, we also explored integrating other file typeslike Word or
HTML directly with DITA projects: https://www.oxygenxml.com/doc/ug-editor/topics/
dynamically_convert_word_excel_html_markdown_to_dita.html.

8. Everything | wanted to dowith DITA, | can do with Markdown and Liquid on Jekyll.

I am not familiar with Liquid, but | agree there are indeed ways that you can also reuse content with Markdown,
not part of a standard but part of how a particular framework decided to support such extensions, making the
solution 100% not portable when switching between web-based frameworks. | do think there are more powerful
ways to check if the structure is correct with XML -based standards using Schematron. The Oxygen Validate and
check for completeness (on page 177) action also does alot of consistency checks.

An article about thoughts on Markdown: https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/.

9. Innovation with DITA istoo reliant on vendors.

Once you can obtain plain HTML and plain Markdown from DITA XML content, you can benefit from all

the tools created to process and display HTML and Markdown. The web tools publishing space is much more
dynamic than the DITA XML publishing space. For me, looking into the web tools space from the outside, it'sin a
constant turmoil of innovation, which brings stress to any web developer who might want to choose a framework
since there are so many frameworks devel oped over night while re-inventing solutions for the same conceptsin
different ways that you end up not knowing what to choose and with the Markdown content containing various
framework-specific extensions not being able to easily switch between them. It's like tearing down the entire
house and re-inventing it each day and sometimes forgetting about various problems that have been fixed in the

https://styles.oxygenxml.com/
https://idratherbewriting.com/learnapidoc/pubapis_oxygenxml.html
https://www.oxygenxml.com/doc/ug-editor/topics/dynamically_convert_word_excel_html_markdown_to_dita.html
https://www.oxygenxml.com/doc/ug-editor/topics/dynamically_convert_word_excel_html_markdown_to_dita.html
https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/

Blog | 3 - DITA | 189

previous iteration. While Markdown might now be the future winning format when it comes to web tools, some
innovators want to switch to JSON even for writing web content: https://www.smashingmagazine.com/2022/02/

thoughts-on-markdown/.

10. DITA isthewrong language for the API doc space.

I would like to further explore using DITA XML in the API docs space, that's for sure. Now days, | think by "API
Docs', most people would be referring to Swagger, OpenAPI documentation, mostly APl documentation for web-
based end points. | experimented a bit using wi dder shi ns to generate documentation from APl docs to Markdown
and then converting this Markdown content to DITA XML, converting the DITA content to WebHelp Responsive.
Also, I'm not sureif the API docs world islarger than web-based end points using REST, but there are other
programming languages as well but probably most APl documentation is about accessing server end points now

days.

So these are my brief remarks on Tom's 10 reasons to move away from DITA article written some 7 years ago. Any feedback is

welcomed as usual.

DITA 2.0 Specification Support Cheat Sheet

You can use the Convert DITA 1.3 topicsand mapsto the DITA 2.0 standard XML refactoring action bundled with Oxygen
24 (or later) to convert DITA 1.3 content to the DITA 2.0 standard. The same XML refactoring action is also available as a

The DITA Open Toolkit publishing engine will support publishing amix of DITA 1.3 and 2.0 topics and maps. The list of
supported DITA 2.0 features in the publishing engine is available here: https://www.dita-ot.org/dev/reference/dita-v2-0-

support.html.

Table2. DITA 2.0 Support Cheat Sheset

Supported in DITA

attribute.

does not appear in the top-

Change Details Handled By Conversion OT Publishing Engine
The DITA 2.0 topics/maps Referencesto DTD/XML Yes Yes
have specific schemarefer- Schema/RNG schemas need
ences. to be changed in all topics and
maps.
Removed elements: Removed some seldom used | Yes, automatically removes |-
:) elements. the elements and shows mes-
titlealts, itengroup,
t opi cset, topicsetref, sages for each removed ele-
| ongquot eref, anchor, ment.
anchorref, haslnstance,
hasKi nd, hasNarrower,
hasPart,
hasRel at ed,
rel at edSubj ect s,
subj ect Rel Tabl e,
subj ect Rel Header,
subj ect Rel ,
subj ect Rol e
Removed attributes: Removed some seldom used | Yes, automatically removes |-
@rapkeyref . 1ink/ @uery. attributes. the attributes and shows mes-
hazar dsynbol / @ ongdescr Sages for each removed at-
ef tribute.
@trf, @trec,
@pectitle, Gpecentry
Removal of @avtitle/@ock- | Removed deprecated attribut- | Yes, automatically converts [Yes
title/@ocknet a atributes es, they can be replaced with | them to <t opi cret a> equiva
equivalents. lents.
Removal of @omei ns default | Thisisadefault attribute that | - Yes

https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/
https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/
https://github.com/oxygenxml/dita_1_3_to_2_x_converter
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html

Blog | 3 - DITA | 190

Table2. DITA 2.0 Support Cheat Sheet (continued)

Change

Details

Handled By Conversion

Supported in DITA
OT Publishing Engine

ic and map instances. It was
used mostly for defining new
attribute specializations, and
al attribute specialization
schemas need to be re-written
to usethe new @peci al i za-
tions default attribute.

ment.

defining akey pointing to a
small text fragment.

Needsto bereplaced witha | Yes No
Removal of @copy-to at- <resour cei d> element.
tribute
Removal of the @ri nt at- Needs to be replaced with the | Yes -
tribute @lel i veryTar get attribute.
Removed <subst ep> and Needsto be replaced with the | Yes No
<subst eps> task elements <st eps> and <st ep> elements.
Removed <sectiondi v> ele- | Needsto be replaced withthe | Yes -
ment. <di v> element.
Added new <audi o> and New elementswere addedto | - Partially
<vi deo> €elements. refer to multimedia audio and

video content and to define

parameters.
Added new <en» and New elementssimilar in style |- No
<st rong> €elements to and <i > but with more

semantics.
Added new <par t no>, <hw- New elements for document- | - No
control >. ing hardware.
Added new <di agnosti cs>, New elements added to the - -
<di agnost i cs- gener al >, <di - | troubleshooting topic type.
agnosti cs- st eps> elements.
Added new <i ncl ude> ele- Similar to <coder ef >. - Yes
ment.
Titles, cell and row span at- Simple tables can havetitles |- Yes
tributesfor <si npl et abl e> €l- | and their cells can span rows
ements. and columns.
Style output using ditaval Profiling attributes defined on | - Yes
@ut put cl ass attribute. DITA elements can be con-

verted to custom @| ass at-

tribute values in the generated

HTML output by adding spe-

cific @ut put cl ass attributes

onthefiltersinthedi t aval

filter file.
Added new <keyt ext > ele- Used to simplify syntax for - No

New Bookmap <mapr e-
sour ces> €lement.

A wrapper for various ele-
ments like <keydef >, <di -
taval ref > which could not be

Blog | 3 - DITA| 191

Table2. DITA 2.0 Support Cheat Sheet (continued)

Supported in DITA

Change Details Handled By Conversion OT Publishing Engine

used on thefirst level of the
DITA Book Map.

Refactoring

Sorting Glossary ListsinaDITA Bookmap

The idea behind this DITA refactoring action started from this forum post: https://www.oxygenxml.com/forum/viewtopic.php?
f=2&1=15284& p=45137#p45137.

Suppose you have a DITA Bookmap that at some point references all of its glossary entries:

<gl ossaryl i st>

<t opi cr ef ="gl ossary/ gl osslteml.dita"/>
<t opi cr ef ="gl ossary/ gl ossltenR.dita"/>
<t opi cref ="gl ossary/glossltenB.dita"/>
<t opi cref ="gl ossary/glossltem. dita"/>

</ gl ossarylist>

and you want to have all of these glossary topics sorted alphabetically by title as they appear in the PDF output.

One option for thisisto create a PDF customization that automatically sorts the glossary entries no matter what order they were
originally specified inthe DITA Map.

The other option isto create a custom Oxygen XML Refactoring operation that, when applied on the DITA Bookmap containing
the "glossarylist", will sort the glossentries in a phabetical order according to the title of each glossentry.

The following steps will help you achieve this:

1. Somewhere on disk, create afolder (for example, customRefactor) and add areferenceto it in the Oxygen Prefer ences-
>" XML / XML Refactoring” page.

2. Inthat custom folder, create an XML file (for example, sortGlossentries.xml) that has the following content:

<refactori ngOperati onDescri ptor
="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
="ht t p: / / ww. oxygenxm . coni ns/ xml Ref act ori ng" ="op_tck_rpl_hch" ="Sort glossentries">
<description>Sort gl ossentries.</description>
<scri pt =" XSLT" ="sortd ossentries.xsl"/>
</ refactoringOperationDescriptor>

This particular descriptor file contains the name of the operation, its description, and pointsto an XSLT stylesheet that
will be applied to sort the entriesin the DITA Bookmap.

3. Inthe samefolder, create afile called sortGlossentries.xd with the following content:

<xsl : styl esheet ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or ni'
="http://ww. w3. or g/ 2001/ XM_Schena"
="xs"
="2.0">
<xsl :tenpl ate ="node() | @">
<xsl : copy>
<xsl : appl y-tenpl at es ="node() | @"/>

</ xsl : copy>
</ xsl : tenpl at e>

<xsl:tenpl ate ="gl ossarylist | topicgroup[@utputclass="glossarylist']">
<xsl : copy>
<xsl : appl y-tenpl ates =@"/>
<xsl :vari abl e ="cl osest XM_Lang" ="ancestor-or-self::*[attribute::xnm:lang][1]/@m :|ang"/>

<xsl : choose>
<xsl : when ="exi st s($cl osest XM_Lang) ">

https://www.oxygenxml.com/forum/viewtopic.php?f=2&t=15284&p=45137#p45137
https://www.oxygenxml.com/forum/viewtopic.php?f=2&t=15284&p=45137#p45137
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations.html

Blog | 3 - DITA | 192

<xsl : for-each =R >
<xsl :sort ="docunent (@ref, .)/
*/ gl ossterm text()" ="{$cl osest XM_Lang}" ="lower-first"/>
<xsl : appl y-tenpl at es =" >

</ xsl : for-each>
</ xsl : when>
<xsl : ot herw se>

<xsl : for-each =R >
<xsl:sort ="docunent (@ref, .)/*/glosstermtext()" ="lower-first"/>
<xsl : appl y-tenpl at es =" >

</ xsl : for-each>
</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : copy>
</ xsl : tenpl at e>
</ xsl : styl esheet >

This particular XSLT processing copies amost all the Bookmap content unchanged. However, the topicrefsin the
glossarylist are sorted according to the glosster m titles specified inside each of them.

4. Restart Oxygen.

5. Open the bookmap that contains the glossarylist in the Oxygen main editing area, right-click, choose Refactoring and in
the Other operations submenu you will find the new Sort glossentries refactoring action. Invoke the action and use the
Preview button to check if the sorting is properly done.

The XML Refactoring XML descriptor and XSLT stylesheet can also be found here: https://github.com/oxygenxml/dita-
refactoring-exampl es/tree/master/18.%620S0rt%20Gl ossentries.

Replacing Direct Image References with Key Referencesin aDITA Project.

Suppose that you have alarge DITA project and all the image referencesin your topics are direct references, using the @hr ef
attribute like this:

<i mage ="../../limges/Iris_sanguinea.jpg" ="50"/>
For better scalability and reuse possibilities, suppose you want to convert these direct referencesto DITA 1.2 key references:
<i mage ="lris_sangui nea.j pg" ="50"/>

Doing something like this manually means making replacements in hundreds of places and also manually building aDITA map
that maps the image file name to the image location.

This blog post will try to describe some steps that you will help you to automate this change in your project:
1. Thefirst big step isto generate the DITA Map that maps each image file name (which will be used as akey) to the image
location. So, the generated DITA map will ook like this:

<! DOCTYPE map PUBLIC "-//OASI S//DTD DI TA Map//EN' "map.dtd">
<map>

<keydef ="lris_sangui nea.j pg" ="lris_sangui nea.j pg"/>
We will assume that all images are placed in an images folder and we can create an ANT build file that lists all the
images in a parameter and then callsan XSL T script to process the list of images further:

<pr oj ect =" ="Create | nage Keys Definition Map">
<fil eset ="di st.contents" ="i mages/ " =tEN >
<property ="prop. di st.contents" ="di st.contents"/>
<xslt ="cr eat eKeyr ef sMap. xsl " ="cr eat eKeyr ef sMap. xsl " ="i mages/ i nageKeydef s. di t amap"

<par am ="filesList" ="${prop. dist.contents}"/>

https://github.com/oxygenxml/dita-refactoring-examples/tree/master/18.%20Sort%20Glossentries
https://github.com/oxygenxml/dita-refactoring-examples/tree/master/18.%20Sort%20Glossentries

Blog | 3 - DITA | 193

</ xslt>
</ proj ect >

The XSLT stylesheet createK eyrefsMap.xdl isresponsible for creating the mapping DITA map:

<xsl:styl esheet xnlns:xsl="http://ww.w3. or g/ 1999/ XSL/ Tr ansf or n{
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
excl ude-resul t-prefixes="xs"
versi on="1.0">
<xsl : param nane="fil esList"/>
<xsl : out put doctype-public="-//0ASIS//DID DI TA Map//EN' doctype-systen="map.dtd" indent="yes"/>
<xsl:tenpl ate match="/">

<map>
<xsl:call-tenpl ate nane="t okeni zeString">
<xsl:with-param name="list" select="%filesList"/>
</ xsl:call-tenpl at e>
</ map>

</ xsl : tenpl at e>
<xsl :tenpl at e nanme="t okeni zeStri ng">
<xsl : param nane="list"/>
<xsl:param nane="delimter" select="";""/>
<xsl : choose>
<xsl :when test="contains($list, $delimter)">

<keydef href="{substring-before($list,$delimter)}" keys="{substring-before($list,$delimter)}"/>
<xsl:call-tenpl ate nane="t okeni zeStri ng">
<xsl :wi t h- param nane="1list" sel ect="substring-after($list,$delinmter)"/>

</xsl:call-tenpl ate>

</ xsl : when>

<xsl : ot her wi se>
<keydef href="{$list}" keys="{$list}"/>

</ xsl : ot her wi se>

</ xsl : choose>
</ xsl : tenpl at e>
</ xsl : styl esheet >

After this step you will have anew DITA map with al image mappings and afterwards you can link it in your main
project's DITA map.

2. We till need to make changesto all DITA topics and replace all image hrefs with keyrefs. Oxygen has support for XML
Refactoring actions and you can define custom XSLT scripts that can be applied to modify an entire set of topics. In the
OXYGEN_INSTALL_DIR/refactoring folder, you can add an XSLT script along with an XML description of the
refactoring action. An XSL T script that would replace @hr ef attributes on images with @keyr ef would look like this:

<xsl:styl esheet xnlns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n{
versi on="2. 0"
xm ns: xs="htt p: // wwv. w3. or g/ 2001/ XM_Scherma"
xm ns: f="http://ww. oxygenxnl . con?’ ns/ functions">
<xsl:function name="f:getKeyref" as="xs:string">
<xsl : param nane="el ement" as="el enent()"/>

<xsl :variabl e nane="i mageFi | e" sel ect ="t okeni ze(transl at e($el enent/ @ref, "\', '/'),
“IY)[last()]"/ >
<xsl :variabl e nane="key" sel ect="substring-before($i mageFile, '.")"/>

<xsl : val ue- of sel ect ="$key"/>
</ xsl : functi on>
<xsl:tenpl ate nmatch="node() | @">
<xsl : copy>
<xsl : appl y-tenpl ates sel ect="node() | @"/>
</ xsl : copy>
</ xsl : tenpl at e>
<xsl:tenpl ate match="i mage[@ref and not (@eyref)]">
<xsl : copy>
<xsl : apply-tenpl ates select="@ except @ref"/>
<xsl:attribute nane="keyref" select="f:getKeyref(.)"></xsl:attribute>
<xsl : appl y-tenpl ates sel ect ="node()"/>
</ xsl : copy>
</ xsl : tenpl at e>
</ xsl : styl esheet >

Y ou can right-click anywherein the DITA Maps Manager view and choose Refactoring->XML Refactoring, then use
your custom refactoring action to modify all resources.

https://www.oxygenxml.com/doc/ug-editor/topics/xslt-refactoring-actions.html
https://www.oxygenxml.com/doc/ug-editor/topics/xslt-refactoring-actions.html

Blog | 3 - DITA | 194

A set of samples, including the build file, XSLT stylesheets, and refactoring action XML descriptor can be found here:https:/
www.oxygenxml.com/forum/files/batchimageHref ToK eyref.zip.

Deleting Elements in a Refactoring Operation

Recently, awriter wanted to remove the index from their DITA book. This required the following:

* Removing the <i ndexl i st s> element from the map:

<backmat t er >
<bookl i st s>
<i ndexlist/>
</ bookl i st s>
</ backmatter>

* Removing topic-level <i ndext er m» elements from topic prologs:

<topic ="feature_A">
<title>About Feature A</title>
<pr ol og>
<met adat a>
<keywor ds>
<i ndext er m>f eat ure A</ i ndexternp
</ keywor ds>
</ met adat a>
</ prol og>

* Removing inline <i ndext er m> elements from topic content:

<p>Thi s is about <indextern>feature B</indexternpfeature B.</p>

Oxygen provides a"Delete element" refactoring operation. However, it does precisely what it says—del etes the specified
elements, leaving everything elsein place:

<topic ="feature_A">
<title>About Feature A</title>
<pr ol og>
<net adat a>
<keywor ds>

</ keywor ds>
</ met adat a>
</ pr ol og>

| decided to create an XSLT refactoring operation that does the following:

* Deletes the specified elements
* Deletes any containing (ancestor) elements that became empty as aresult
* Updates whitespace/newline formatting around deleted elements as needed

* Serves as an easily customizable template for other element deletion uses

Fortunately, as described in Custom Refactoring Operations, Oxygen allows us to package up customized XSLT refactoring
operations in an easy-to-use way. For the XML descriptor file, put this content into ar enove- i ndex. xnl file:

<?xm version="1.0" encodi ng="UTF-8"?>
<r ef act ori ngOper ati onDescri pt or
="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
="ht t p: // ww. oxygenxm . conl ns/ xm Ref act ori ng" ="renove-i ndex"
="Renove index froma DI TA book">

<descri pti on>Renove index terns and backmatter index froma DI TA book. </ descri pti on>

<scri pt =" XSLT" ="renove- i ndex. xsl "/ >

<cat egor y>Dl TA</ cat egor y>
</ refactoringOperationDescriptor>

https://www.oxygenxml.com/forum/files/batchImageHrefToKeyref.zip
https://www.oxygenxml.com/forum/files/batchImageHrefToKeyref.zip
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations.html

Blog | 3 - DITA | 195

For the XSLT fileitself, put thiscontent into ar enove- i ndex. xsl file:

<xsl:styl esheet xml ns:xsl="http://ww.w3. or g/ 1999/ XSL/ Tr ansf or n{
xm ns: xs="http: // www. w3. or g/ 2001/ XM_Schena"
excl ude-resul t-prefixes="xs"
ver si on="2.0">

<l-- elements to delete -->

<xsl:vari abl e nane="el enents-to-del ete" select="("indexterm, 'indexlist')"/>
<l-- delete up to (and including) these elenents, if they becone enpty -->
<xsl :vari abl e nane="del et e-up-to" select="("'prolog', 'backmatter')"/>

<!-- baseline identity transform-->

<xsl:tenplate match="@| node()">
<xsl : copy>
<xsl : appl y-tenpl ates sel ect ="@| node()"/>
</ xsl : copy>
</ xsl : tenpl at e>

<l-- renove el enents-to-delete -->
<xsl:tenplate natch="*[nane() = $el enents-to-delete]"/>

<!-- renobve whitespace/new ines before elements-to-delete -->
<xsl:tenpl ate match="text ()
[follow ng-sibling::*[1]
[nane() = $el enents-to-del ete]]
[matches(., "~\s*\n\s*$')]"/>

<l-- renove el enents that contain our to-be-deleted el enents,
but only if they beconme enpty -->
<xsl:tenplate nmatch="*[ancestor-or-self::*[name() = $del ete-up-to]]
[descendant::*[nane() = $el enents-to-delete]]">

<I-- apply tenplates to this elenent's contents and see what we get -->
<xsl :vari abl e nane="contents" as="node()*">

<xsl : appl y-tenpl ates sel ect ="node()"/>
</ xsl :vari abl e>

<l-- if children elenents remain, copy this elenent (and its precedi ng whitespace/ new i nes)
and put its contents inside -->
<xsl:if test="$contents[self::*]">
<xsl : copy sel ect="precedi ng-sibling::node()[1][self::text()][matches(., '~\s*\n\s*$')]"/>
<xsl : copy select=".">
<xsl : sequence sel ect ="$contents"/>
</ xsl : copy>
</xsl:if>
</ xsl : tenpl at e>
<!-- renobve whitespace/ new ines before el ements-to-delete
(we re-add whitespace/ new i nes above, if needed -->
<xsl:tenpl ate match="text ()
[follow ng-sibling::*[1]
[ancestor-or-sel f::*[nane() = $del ete-up-to]]
[descendant:: *[name() = $el ements-to-delete]]]
[matches(., '~\s*\n\s*$')]"/>

</ xsl : styl esheet >
At the beginning of the refactoring operation, two XSLT variables are defined:

* el ement s- t o- del et e - the element names to delete, regardless of their contents

* del et e- up-t o - the highest-level containing element names to delete, if they become empty

The refactoring operation works as follows:

Blog | 3 - DITA | 196

* Theel enent s-t o- del et e elements are always deleted.
o Any whitespace/newlinet ext () nodes directly preceding them are also deleted.

* Any elementsthat (1) contain an el enent s-t o- del et e element as a descendant, (2) are contained by or are themselves a
del et e- up-t o element, and (3) become empty due to the element deletion, are deleted.

o To determineif a"containing" element becomes empty due to the deletion, <xsl : appl y-t enpl at es> iS
called, then the results are checked to see if any elements remain. Thisiswhat allows the deletion to continue
dynamically up through the containing elements.

* To conditionally keep the whitespace/newlinet ext () node directly preceding a"containing” element,

o A standalone unconditional template always deletes the whitespace/newline t ext () node preceding a containing
element, whether it will be kept or not.

o Inside the template that conditionally keeps containing elements, that same preceding t ext () nodeis re-included
if the containing element is kept.

The following example shows a <pr ol og> element that disappears completely because it does not contain anything other than an
<i ndext er > €lement:

Beforerefactoring After refactoring
<topic ="feature_A"> <topic ="feature_A">
<title>About Feature A</title> <title>About Feature A</title>

<pr ol og>
<net adat a>
<keywor ds>
<i ndext er n>f eat ure A</i ndexternp
</ keywor ds>
</ et adat a>
</ prol og>

The following example shows a <pr ol og> element that is partially kept because it also contains a<r esour cei d> element:

Before refactoring After refactoring
<topic ="feature_A"> <topi c ="feature_A">
<title>About Feature A</title> <title>About Feature A</title>
<pr ol og> <pr ol og>
<met adat a> <resourceid ="feature_A"/>
<keywor ds> </ pr ol og>

<i ndext er m>f eat ure A</ i ndexternp
</ keywor ds>
</ met adat a>
<resourceid ="feature_A"/>
</ pr ol og>

This same refactoring code can be adapted to other use cases by editing the el enent s-t o- del et e and del et e- up-t o variables as
needed.

Resolving DITA Cross-References in Refactoring Operations

We needed away to resolve DITA <xref > and <l i nk> elementsto their target element in a refactoring operation. We also needed
to determine whether the link was alocal or peer-map reference. Fortunately, Oxygen v25.1 provided us with the solution!

The Missing Piece - Resolving a @keyr ef

For <xr ef > and <l i nk> elements, we use amix of @ref and @eyref referencesin our content. In XSLT refactoring operations,
we could resolve @rr ef referencesto the target file (and optionally, an element in that file) by using the XPath docunent ()

Blog | 3 - DITA | 197

function. However, we had no way of resolving @eyr ef references because a refactoring operation only processes the current
file (it doesn't consider Oxygen's map context or the keys defined within it). In addition, writing such aresolver in XSLT that
properly considers keyscopes would be enormously difficult.

In the Oxygen v25.1 release, new API functions were introduced to provide information about @eyr ef references:

* Theget keyRef I nf o() function returns information about a reference's type (local, peer, unresolved, and so on).

* The get KeyRef Absol ut eRef er ence() function resolvesa @eyref toitsequivaent aref reference URL.

Note:

There were subsequent improvements to the API functions in Oxygen v25.1 build 2023070306, so you should use that
release or |ater for best results.

Thanksto thisnew API, we could use asimple @r ef resolver writtenin XSLT for @eyr ef referencestoo!

Resolving Cross-Referencesin Refactoring Operations

The attached test case provides the following XSLT file that you can include in your own refactoring operations:

framewor ks/dita/refactoring/util-get-referenced-el ement. xsl

Thisfile defines arode="get - r ef er enced- el enent " template that, when applied to any element with an @r ef or @eyr ef
attribute, returns the referenced element. If the reference cannot be resolved, the template returns an empty sequence.

The template works as follows:

1

References with @cope="ext ernal " always return an empty segquence.

. References with @ or mat set to avalue other than " di t a* aways return an empty sequence.
. If thereference has a @xeyr ef , it is converted to an @r ef value using get KeyRef Absol ut eRef er ence() .

. The @ref valueis parsed into its components as follows:

[file]#topic_id[/element_id]

. The target document is obtained as follows:

o If no fileis specified, the in-memory document that contains the cross-reference element is used.

o If afileis specified and that file contains the cross-reference element, the in-memory document that contains the
cross-reference element is used.

o Otherwise, the specified file document is loaded from disk using the XPath docurent () function.

This heuristic approach ensures that in multiple-pass refactoring operations, the in-memory version of the content is
preferred over the on-disk version.

. The topic that matches the topic_id value is obtained from the target document.

. If an element_id is specified, the element in the topic that matches the element_id value is obtained.

Because non-topic @ d values do not need to be unique, the code ensures that no subtopics within the matching topic are
searched to avoid incorrect matches.

Toview the XSLT stylesheet without downloading the archive, click on the following link:

util-get-referenced-element.xsl

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html
topics/resolving_refs_refactoring/util-get-referenced-element.xsl

Blog | 3 - DITA | 198

There are comments in the code to explain how it works.

The @xeyref API functions require that a map context be active in Oxygen. If no context is available (for example, no map is
openinthe DITA MapsManager), there will be no key information available to resolve the reference.

Example Test Case

The following Oxygen project provides examples of how cross-reference resolutions can be used in refactoring operations and
Schematron checks:

resolving_refs_refactoring.zip

Specificaly, it provides the following:

* An"Update Cross References' refactoring operation is provided that:

o Sets (or updates) the @ ype attribute for <xr ef > and <I i nk> elements.

A Preview X
@

Changes to be performed

@ < C:Vyesolving_refs_refactoring\bookA ink_test1.dita

Selectall Deselect all $ Previous Change

A1 «<?xml version="1.0" encoding="UTF-8"7 > «<?xml version="1.0" encoding="UTF-877 > 1Al
2 |<?xml-model href="urn:oasis:name: it «?xml-model hr 3 :dita:rng: topic.rng” 2
schematypens="http:/frelaxng.org/nsfstructure/1.077> schematypens="http://relaxng.org/ns structure/1.077>
3 <topic id="test1"> <topicid="test1™> 3
4 <titlesLink Test Topic 1 (References) </ftitle > <title =Link Test Topic 1 (References)</title> 4
5 <body> <body: 5
[<p><xref Tink_testl.dita™f></p> <p=<uref Tink_test1.dita” “topic™/><fp> [
T <pz<xref Tink_testl.ditastestl™/><fp> <p=<uref Tink_test1 dita¥test1” “topic”/></p> T
] <p><xref Tink_test1.dita #test1felement_id"/><[p> <p><xref Tink_test1. dita#test1felement_id” “fig=<fp>]
] <px<xref Tink_test1.dita#. felement_id"/></p> <px<xref link_test1. dita#. felement_id” “fig™/><fp>]
0 <pz<xref Tink_test1.dita#testl_subtopic™f></p> <p=<uref Tink_test1. dita¥testl_subtopic” “topic™/></p> 10
1 <pz<xref Tink_test1.dita#test1_subtopic/element_id™/><fp> <pz<uref Tink_test1 dita#testl subtopic/element id” “section”/></p> 1

o Populates the target text for <xr ef > and <I i nk> elements that reference topics in peer maps (i.e. cross-book
links).

Changes to be performed

B <> C:Vesolving_refs_refactoring\bookA\topicA. dita

Select all Deselect al & Next Change 4 Previous Change
a0 <[> <p/> w Al

11 <p=Peer map book B subtopic link: <p=>Peer map book B subtopic link: 1

12 <xref “books. subtopic_bookB™ “topic™/> <fp> <xref “bookE. subtopic_bookB™ “topic">Book B Topic Subtopic <?oxy-peertext? > < furef></p> 12

13 <p>Peer map book B shared topic link: <p>Peer map book B shared topic link: 3

14 <xref “books. shared” “topic™f></p> <xref "bookB.shared” “topic”>Shared Topic<?oxy-peertext? > <fxref></p> 4

15 </body> </body > 5

» Schematron checks are provided that:

o Warn about <xr ef > and <I i nk> elements that reference topics in peer maps (i.e. cross-book links) but do not
contain any target text.

@Peer map book B subtopic link: ol

. | Validation:
@Pea map book B shared topid oo .
@ Empty cross-book reference; please run the "Update cross references
refactoring operation.

1 quick fix{es) available:

+ Add the cross-book link target text.

This check also offersa"quick fix" that populates the target text for you.

topics/resolving_refs_refactoring/resolving_refs_refactoring.zip

Blog | 3 - DITA | 199

o Show the value of the get KeyRef I nf o() and get KeyRef Absol ut eRef erence() APl callsfor any element with a
@eyr ef attribute.

@Pea map book B subtopic link: £ [bookB subtopic_bookB]Book B Topic Subtopic <= _ @

@Pea map book B shared topic lin] Validation: E
0 getkeyRefabsoluteReference (bookB.subtopic_bookE) ==

file:/C: fresolving_refs_refactoring/books,topicE. dita # topicB-subtopi
@ getkeyRefinfo (bookB.subtopic_bookB) == PEER_MAP_KEY_HREF

Press F2 f

These informational checks are commented out by default. Y ou can uncomment them in the following file:

f ramewor ks/ di t a/ sch/ checks. sch

When target text is added to a peer map (cross-book) reference, an <?oxy- peer t ext 2> processing instruction is added to indicate
that the text was updated automatically. If you remove this processing instruction and customize the target text, your customized
text will not be disturbed by future automatic updates.

Inserting and Reformatting Content in Refactoring Operations

In Oxygen, refactoring operations are a powerful way to provide content modification functionality to users. This blog post
describes some challenges that can occur when adding, changing, or deleting content. It also provides solutions that you can use
in your own refactoring operations.

Re-indenting XML After Content Updates

In XSLT, all document content is represented by a node (elements, attributes, text, comments, and so on). In fact, even the
whitespace text surrounding indented elements are explicit text nodes in the document.

Note:

In the figures below:

* Notable space characters are represented by the Unicode "U+2420: Symbol For Space" (#) character.

* Notable line-end characters are represented by the Unicode "U+240A: Symbol For Line Feed" (#) character.

When you delete an element node in arefactoring operation, any preceding or subsequent text nodes are left in place:

HiHH<p>linel</p># #iHH<p>linel</p>#
#HH<p>line2</p># HHHHH
HHH<p>line3</p># #HH<p>line3</p>#

When you insert a new element node before or after an existing element node, no new indenting whitespace is added (unless the
refactoring operation explicitly insertsit):

HiHH#H<p>linel</p># #iH#H<p>linel</p><p>after </p>#
HiHH#H<p>line2</p># H#HHH<p>line2</p>#
H#H#H<p>line3</p># #HHH<p>befor e</p><p>line3</p>#

Blog | 3 - DITA | 200

The test case below provides anode="i ndent - st uf f* template mode that looks for @ ndent attribute directives (they are removed
as part of the reformatting process).

In the following example, the indent-reformatting template is applied around a <p> deletion:

<!-- TOP-LEVEL PASS - apply multiple processing passes to input document -->
<xsl:template match="/*" priority="100">
<xdl:variable name="result" as="element()">
<xsl:next-match/> <!-- apply #default mode templates first -->
</xsl:variable>
<xsl:apply-templates select="%result" mode="indent-stuff"/> <!-- process/remove @indent -->
</xsl:template>

<p>line 1</p> <p>line 1</p>#

<pindent="self">line 2</p># #t<p>line 2</p>#
HHHH _ _ H#HH<p>line 4</p>
<pindent=" self" >line 4</p>

. <p>line 5</p>
<p>line 5</p>

In the following example, the indent-reformatting template is applied to <p> insertions:

<!-- TOP-LEVEL PASS - apply multiple processing passes to input document -->
<xsl:template match="/*" priority="100">
<xsl:variable name="result" as="element()">
<xsl:next-match/> <!-- apply #default mode templates first -->

</xsl:variable>
<xsl:apply-templates select="$result" mode=" indent-stuff"/> <!-- process/remove @indent -->
</xsl:template>
: <p>line 1</p>#
<p>line 1</p> Ht<p>line 2</p>#
<p>line 2</p><p indent=" self adjacent-siblings'>after </p> #<p>after </p>#
<p>line 3</p> #i<p>line 3</p>#
<p indent=" self adjacent-siblings'>befor e</p><p>line 4</p> #itH<p>befor e</p>tt
<p>line 5</p> #H<p>line 4</p>
<p>line 5</p>

The @ ndent attribute contains a space-separated list that supports the following values:

* sel f - Reformat indenting whitespace before the current element (and after, for the last child of a parent).

* adj acent - si bl i ngs - Reformat indenting whitespace before the preceding and following sibling elements (and after, for
the last child of a parent).

si bl i ngs - Reformat whitespace around all sibling elements in the same parent element.

chi | dren - Reformat whitespace around al child elements.

* deep - Reformat whitespace around all child and descendant elements.

The @ ndent attribute allows you to control the scope of content change so that the revision control change footprint can be
controlled.

The mode="i ndent - st uf f * template works as follows:

* Different files can have different indenting width conventions.

o The template uses the most common indenting value (the statistical mode) in each file.

https://en.wikipedia.org/wiki/Mode_(statistics)

Blog | 3 - DITA | 201

* Elementsinserted in ablock context (i.e. <p>) should be indented, but elementsin an inline context (i.e. <codeph>) should
not.

o Some elements (i.e. <i ndext er m») should be treated as block or inline elements based on their context (such as
when they arein <pr ol og> Or <p>).

* There might or might not be existing indenting whitespace around an element, and it might or might not be correct.
o Indenting is added or repaired as needed.

* Thelast child element of a parent element requires one lessindent level before its parent's closing tag.

To determine where indenting is appropriate, the stylesheet definesi nner -t ag- t ype and out er - t ag- t ype XSLT3 maps that
indicate the expected type of content at the inside and outside of each element's tags. Possible values are bl ock (block elements),
text (text content or inline elements), or an empty string (unknown or ambiguous content type). For example:

Element outer-tag-type inner-tag-type
body bl ock bl ock
p bl ock t ext
ph text text
nmenucascade t ext bl ock
i ndext erm ' (empty string) text
entry bl ock ' (empty string)

For elements with unknown or ambiguous content types at the tag boundaries, the stylesheet applies heuristics to guess the
indentation needs.

Toview the XSLT stylesheet without downloading the test case, click on the following link:

util-indent.xsl

There are comments in the code to explain how it works.

Considering Content Models During Content Insertion

When inserting new content, the changes should not introduce any DITA content model (schema) violations. Some DITA content
models require a specific element ordering. For example, the content model for <pr ol og> is:

<prol og> =

<aut hor >*, <sour ce>?, <publ i sher >?, <copyri ght >*, <cri t dat es>?, <per ni ssi ons>?, <met adat a>*,

<resour cei d>*, (<dat a> | <dat a- about > | <f or ei gn> | <sort - as> | <unknown>)*

Commas in the content model indicate an ordering requirement. For example, a<r esour cei d> element must be inserted after its
preceding elements and before its following elements.

The test case below provides anode="i nsert - st uf f* template mode that inserts content at a specified element path inside the
selected element.

In the following example, the content-insertion template is applied to a <t opi c> element to insert a<r esour cei d> element in a
<prol og> €lement:

topics/refactoring_inserting_reformatting/util-indent.xsl

Blog | 3 - DITA | 202

<!-- insert a <resourceid> into /topic/prolog -->
<xsl:template match="/topic">
<xsl:apply-templates select="." mode=" insert-stuff">
<xsl:with-param name="path" select=""prolog'" as="xs:string*"/>
<xsl:with-param name=" content" as="element()*" tunnel="yes">
<resourceid appid="topic-id" indent=" self" />
</xsl:with-param>
</xsl:apply-templates>
</xsl:template>

topic.dita (before) topic.dita (after)

i id="tonic" <topic id="topic">
<topicid="topic™> <title>My Topic</titie>
<title>My Topic</title>

<prolog> <prolog>
<author>chrispy</author>#
<author>chrispy</author> |:> by

N . HitHHHHI<I esour ceid appid="topic-id" />
SR T <data name="my-data'/>
</prolog>

</prolog>
TP <body/>
itz ple= </topic>

In the following example, the content-insertion template is applied to a<t opi c> template to insert an <i ndext er > element using
amultiple-level insertion path:

Blog | 3 - DITA | 203

<!-- insert an <indexterm> into /topic/prolog/metadata/keywords -->
<xsl:template match="/topic">
<xsl:apply-templates select="." mode=" inser t-stuff" >
<xsl:with-param name=" path" select=""prolog/metadata/keywords" as="xs:string*"/>
<xsl:with-param name=" content" as="element()*" tunnel="yes">
<indexterm indent="self" >my-ter m</indexterm>
</xsl:with-param>
</x9l:apply-templates>
</xsl:template>

topicl.dita (after)
<topic id="topic1">
<title>My Topic</title>#
topicl.dita (before) #it#<prolog>#
#HHHH#H<metadata>#
<topic id="topic1"> <K eywor ds>#
<title>My Topic</title> it H<indexter m>my-ter m</indexter m>#
<body/> HHHHHHH< [k eywor ds>#
<ftopic> HiHHH</metadata>#
#Ht</pr olog>
<body/>
</topic>
topic2.dita (after)
topic2.dita (before) <topic id="topic2'>
<topic id="topic2"> <titIeI>My Topic</title>
<title>My Topic</title> <prolog>
<prol Og)y P <author>chrispy</author>
<author>chrispy</author> <metadata> o
<metadata> <audience type="user"/>#
<audience type="user"/> HHHHHHHHH< Kk eywor ds>#
</metadata> HHHHHHHHH#H<Indexter m>my-ter m</indexter m>#
<data name="my-data’"/> m#’#/ ;/ keywords>
</prolog> </metadata>
<body/> <data name="my-data"/>
</topic> :{)ngcglgP
</topic>

The mode="i nsert - st uf f* template works as follows:

* Thepat h parameter can be a sequence of element name strings, a path string value using slash (/") separators, or amix
of both.

o An empty string or sequence value inserts the content directly into the applied element.
* New elements are inserted into existing elements using content model information.

o The template creates or reuses intermediate element levels as needed, considering content models along the way.
* New elements created by a @at h specification have a default @ ndent value of sel f .

Y ou can override the default @ ndent value by specifying thei ndent parameter with the node="i nsert - st uf f* template.
For example:

Blog | 3 - DITA | 204

o Settingi ndent t0"sel f adj acent -si bl i ngs" reformats content more aggressively around newly created
intermediate elements.

o Setting i ndent to an empty string value disables reformatting for newly created elements.
* Theinsertion content itself is not indented unlessiit has explicitly defined @ ndent attributes.
* Only simple ordered-list content model modeling is supported.
Toview the XSLT stylesheet without downloading the test case, click on the following link:
util-insert.xd
There are comments in the code to explain how it works.
Example Test Case

The following Oxygen project provides the moded templates described earlier, along with an example refactoring operation that
demonstrates their use:

refactoring_inserting_reformatting.zip

Specifically, it provides the following:

e framewor ks/dita/refactoring/util-indent.xsl
This stylesheet file defines the node="i ndent - st uf f * template.

Theouter-tag-type andi nner-tag-type XSLT3 maps are defined at the top of thefile. Y ou can update or add to these as
needed.

frameworks/dita/refactoring/util-insert.xsl
This stylesheet file defines the mode="i nsert - st uf f* template.

The cont ent - nodel s map is defined at the top of the file. Only <pr ol og>-related content models are defined in this test
case. Y ou can add to these as needed.

framewor ks/ dita/refactoring/insert-by-content-nodel . xn
framewor ks/ di ta/refactoring/insert-by-content-nodel . xsl

This Oxygen refactoring operation allows you to interactively experiment with content insertion and reformatting. It
includes and uses both of the stylesheets above.

To try out the example refactoring operation:
1. Open the OPENME2. di t amap fileinthe DITA Maps Manager.
2. Open "My Topic" (t opi c. di t a) in the Oxygen editor.

3. Right-click in the topic editing window, then choose Refactoring > Content insertion > Insert element by content
model.

4. For the configuration parameters, enter the following:

topics/refactoring_inserting_reformatting/util-insert.xsl
topics/refactoring_inserting_reformatting/refactoring_inserting_reformatting.zip

Blog | 3 - DITA | 205

XML Refactoring *

Insert element by content model

Insertion configuration parameters

Insertion root element: topic

Element path inside root element: prolog/metadatakeywords

Content to insert: <indexterm “zelf” =my-term < indexterm =

< Back Mext = Finish Cancel

5. When you preview the refactoring operation, the results should be as follows:
Preview H

Changes to be performed

a o> Cr\Users\chris\DITArefactoring_inserting_reformatting\topic.dita

Select all Deselect all ¥ Next Change § Previous Change
a1 =7l version="1.0" encoding="UTF-8"? = <?uml version="1.0" encoding="UTF-8"7 > ial
2 < ?uml-model href="urn:oasis:names: tc:dita:rng: topic. rng” <?uml-model href="urn:oasis:names:tc:dita:rng:topic.rng” z
schematypens="http:/frelaxng.org/ns/structure/1.0"? = schematypens="http://relaxng.org/ns/structure/1.0"7 =
3 <topic id="topic™= < topic id ="topic™ > 3
4 <title =My Topic</title = =title=My Topic</tile = 4
& <prolog= <prolog= 13
<] <authar =chrispy < /author = <author =chrispy < fauthor = &
7 «data ="my-data™/> [<metadata = 7 =
& <jprolog= <keywords = 3
3 <body= <indexterm =my-term < findexterm =]
10 <p=This is some text, </p= < keywords = 10
i1 </body> < /metadata= 11
12 = ftopic= <data ="my-data"/> iz
12 < /prolog = 12
<body = 14
<p=This is some text, </p= 15
</body > 16
< ftopic= 17
i8
W]
.
£ > £ > -

'?' < Back Cancel

Surveys
Small Problems with the DITA Standard

Don't get me wrong, | think that DITA isagreat standard for writing technical documentation, it has lots of reuse possibilities
and linking potential, and in general, it's well thought out and comprehensive.

Blog | 3 - DITA | 206

Over the years, many of our Oxygen XML Editor clients (or me, personally) have encountered various limitations/quirks in the
DITA standard and | will share them below. These complaints are not related at all to the publishing part and | think that some of
them will probably be resolved asthe DITA standard evolves from one version to another. Also, many of these issues could not
be effectively fixed since the DI TA standard has strived (and succeeded) to be backward compatible and thus, the issues remain
from version to version. So here we go:

* When | create aDITA specialization, to add a new attribute according to the specification | need to add that attribute
to al DITA elements. | think the main idea was that the new attribute is a profiling attribute so it makes sense to be
added to all elements, but sometimes you need to funnel this behavior and make the attribute available only on a certain
element and still consider the specialization asavalid DITA specialization.
The existing xml:lang attribute cannot be used to profile and filter out content. In the past, we had users somehow
mixing languages in the same DITA Map and expecting to create output for one language or the other by filtering based
on the xml:lang attribute.
Y ou cannot easily profileffilter out an entire column from a CAL Stable. For example, you cannot add a profiling
attribute directly to the DITA colspec element to remove entire table columns when publishing. So the alternative isto
use aDITA simple table and define the profiling attribute on each of the cells in the column or to perform some kind of
output customization based on a magic outputclass attribute set on a certain element in the table.
There are too many constraints imposed when writing DITA specializations. Robert Anderson, the DITA OT project
manager and OA SIS member involved in defining the DITA standard, had two interesting blog posts on this:

o http://metadita.org/tool kit/ditasplainer.html

o http://metadita.org/tool kit/nonononodomains.html
With most of the material being published for web and with the need to dynamically include media resources (video,
audio) in the published HTML content, it's a pity that the DITA standard does not yet have specialized <audio> and
<video> elements. Again, we need to rely on the magic outputclass attribute to give semantic to the generic DITA
<object> element.
Sometimes there are two or more ways of doing something. For example, choosing between using aCALStable or a
simple table or choosing between using conkeyr ef, keyr ef, or conr ef to reuse small pieces of text. Why even have the
<simpletable> element in the DITA standard at all, since a CAL S table without cells spanning is simple enough? The
LightWeight DITA Project isan alternativeto DITA and it tries to simplify the standard and eliminate such problems:
http://docs.oasis-open.org/dita/LWwDITA/v1.0/LwDITA-v1.0.html.
DITA elements that have conr efs or conkeyr efs need to also have the required content specified in them. So | cannot
simply do this:

<t abl e ="path/to/target.dita#topiclDelementlD/>
Instead, | need to do this:

<tabl e ="path/to/target.dita#topiclDelenentlD'>
<t group ="1">
<t body>
<r ow>
<entry/>
</ row>
</ t body>
</t group>
</t abl e>

and have all the required table elements and tgroup elements (plus required attributes) filled out even if the expanded
conref will replace the entire original element.

Y ou cannot reference directly to a subtopic element using akey. If the standard would allow aDITA Map to reference
directly to a subtopic element like this:

<keydef ="t opi cs/ reusabl eConponent s. di t a#t opi cl D/ t abl el D' ="reused_t abl e"/>

you could reuse the table without needing to specify the ID to the reused element on each conkeyr ef:

<t abl e ="reused_tabl e"/>

Some DITA elements (eg: , <entry>, <section>) have a very relaxed content model in the specification allowing
both text and block elements, in any order. So when using visual editing tools, this leads technical writersto create DITA
content that looks like this:

Previ ew.

http://metadita.org/toolkit/ditasplainer.html
http://metadita.org/toolkit/nonononodomains.html
http://docs.oasis-open.org/dita/LwDITA/v1.0/LwDITA-v1.0.html

Blog | 3 - DITA | 207

<p>Here are sone of the preview</p>

as the visual editing tool cannot, by default, impose an editing constraint if the standard does not. Usually, for such cases
additional Schematron checks can be handy.
* The DITA content is not automatically profiled based on the new DITA 1.3 deliveryTarget attribute. So setting
deliveryTarget="pdf" onaDITA element will not automatically filter it out of the HTML based outputs, the attribute
istreated just like another profiling attribute, and it can be filtered out from the DITAVAL file.

This concludes my complaint list. Anything else you encountered in the DI TA standard that bothers you?

DITA Linking Usage Survey

A few weeks ago | published a survey that was intended to be an overview about DITA Linking habits. A big thank you to
everyone who participated.

Here are some of my thoughts in regards to the results:

* Most projects (including ours) seems to approach linking with a mixture between DITA 1.1 hrefsand DITA 1.2 keyrefs.
In my opinion, thisis caused by avariety of factors, of which the most important could be;
o Technical writers who are not comfortable using indirect references (keyrefs)
o The project was started using hrefs and not all links have been converted to keyrefs
» Almost everybody using related links uses a relationship table to manage them. And that's good.
* There are projects where related links, chunking and collection-type are not used at al. | think thisis not because the
projects are not complex, but because the main output delivery format for those projectsis PDF. In aDITA Reuse survey
| opened last year, there was a clear indication that PDF was still the most used output format.

Although harder to quantify, | usually like answers to open questions because you get a better idea about the difficulties of
linking in DITA:

* Thelarge set of DITA linking possibilities make the standard harder to use (too many options, harder for writersto
understand and use keyrefs or relationship tables). There seems to be a need to have a best practice involving linking and
DITA.

 Various writers have various writing styles, leading to inconsistent projects.

* Problems with the publishing part, even when the right DITA content is used for links (for example abbreviated-form).
The publishing engine might have issues that break the link in the final output.

* Problems with link management, with having a clear idea of outbound and inbound links and their target. Problems with
broken links.

* Thetools used for editing DITA sometimes hide the complexity and even the type of link that gets created. Also, the
tools should help make it easier for the writer to find the target content to link to.

DITA Inheritance Hierarchy

The DITA standard is based on the concept of inheritance that enables extending or restricting the vocabulary while allowing the
XML content to still be regarded asvalid DITA. Even in the DITA standard, there are various elements that are specializations of
others (for example "b" is a specialization of "ph"). The XSLT stylesheets that are used for publishing match all DITA elements
by the value of their @class attribute, so knowing how elements may extend each other may be useful when customizing the
DITA XSLT stylesheets.

A DITA inheritance hierarchy list for the base DI TA Topic specification is presented below:

* topic/copyryear
* topic/foreign
o mathml-d/mathml
o svg-d/svg-container
* topic/author
* topic/example

Blog | 3 - DITA | 208

topic/unknown
topic/titlealts
topic/linktext
topic/category
topic/data

o relmgmt-d/change-request-reference

o relmgmt-d/change-person

o relmgmt-d/change-request-id

o relmgmt-d/change-request-system
relmgmt-d/change-compl eted
relmgmt-d/change-started
ut-d/sort-as
relmgmt-d/change-item
relmgmt-d/change-organization
relmgmt-d/change-summary
concept/data

m glossentry/glossPartOf Speech

m glossentry/glossProperty

m glossentry/glossStatus

o relmgmt-d/change-revisionid
topic/longdescref
topic/audience
topic/abstract

o concept/abstract

m glossentry/glossdef

topic/related-links
topic/body

o task/taskbody

o concept/conbody

m glossentry/glossBody

o troubleshooting/troubl ebody

o reference/refbody
topic/ph

o

o

o

o

o

o

o

hi-d/overline

o hi-d/line-through
o hi-d/sub

o pr-d/sep
equation-d/equation-inline
o pr-direpsep

o equation-d/equation-number
o hi-d/tt

o task/cmd

o pr-d/synph

o sw-d/userinput

o ut-d/coords

o pr-d/oper

o hi-d/sup

o pr-divar

o sw-d/msgph

o pr-d/codeph

o ui-d/uicontrol

o hi-dfi

o hi-d/u

o sw-dffilepath

o

o sw-d/systemoutput
o pr-d/delim
o hi-d/b
o ui-d/menucascade
topic/object
topic/fig
o ut-d/imagemap
o pr-d/syntaxdiagram
° equation-d/equation-figure
topic/featnum
topic/lines
topic/brand
topic/state
topic/source
topic/link
topic/vrm
topic/dli
topic/navtitle
topic/figgroup
o pr-d/synblk
o pr-difragment
° ut-d/area
o pr-d/groupcomp
o pr-d/groupseq
o pr-d/groupchoice
topic/note
o hazard-d/hazardstatement
o concept/note
m glossentry/glossScopeNote
m glossentry/glossUsage
topic/ol
o task/substeps
o task/steps
topic/stentry
o task/choption
o reference/propvalue
o reference/propvaluehd
o reference/propdeschd
o reference/propdesc
o reference/proptype
o reference/proptypehd
o task/choptionhd
o task/chdesc
o task/chdeschd
topic/dlentry
o pr-d/plentry
topic/vrmlist
topic/entry
topic/fn
o pr-d/synnote
topic/xref
o mathml-d/mathmlref
o svg-d/svgref
o concept/xref

Blog | 3 - DITA | 209

Blog | 3 - DITA | 210

m glossentry/glossAlternateFor
o pr-d/synnoteref
o pr-difragref
o pr-d/coderef
topic/component
topic/series
topic/bodydiv
o reference/refbodydiv
o troubleshooting/troubleSol ution
o concept/conbodydiv
topic/data-about
topic/tgroup
topic/keywords
topic/boolean
topic/critdates
topic/strow
o task/chrow
o reference/property
topic/simpletable
o reference/properties
o task/choicetable
topic/linklist
topic/revised
topic/table
topic/dt
o pr-d/pt
topic/image
o hazard-d/hazardsymbol
o concept/image
m glossentry/glossSymbol
topic/ul
o hazard-d/messagepanel
o task/choices
o task/steps-unordered
topic/p
o concept/p
m glossentry/glossSurfaceForm
o troubleshooting/responsibleParty
topic/q
topic/linkinfo
topic/dd
o pr-d/pd
topic/lq
topic/prodinfo
topic/dl
° pr-d/parml
topic/prolog
topic/indextermref
topic/copyright
topic/div
o equation-d/equation-block
topic/sthead
o task/chhead
o reference/prophead

topic/tbody
topic/searchtitle
topi c/col spec
topic/created
topic/tm
topic/text
topic/cite
topic/li
o hazard-d/howtoavoid
o task/step
o task/substep
o hazard-d/consequence
o hazard-d/typeofhazard
o task/choice
o task/stepsection
topic/permissions
topi c/no-topic-nesting
topic/dlhead
topic/prodname
topic/index-base
° indexing-d/index-sort-as
o indexing-d/index-see
o indexing-d/index-see-also
topic/indexterm
topic/copyrholder
topic/longquoteref
topic/required-cleanup
topic/ddhd
topic/dl
topic/draft-comment
topic/section
o task/postreq
o task/result
o troubleshooting/remedy
o task/tasktroubleshooting
concept/section
m glossentry/glossAlt
o task/context
troubl eshooting/cause
o task/steps-informal
o reference/refsyn
o task/prereq
o troubleshooting/condition
topic/pre
o sw-d/msghlock
o pr-d/codeblock
o ui-d/screen
topic/topic

o

o

o troubleshooting/troubleshooting

o concept/concept

m glossgroup/glossgroup
m glossentry/glossentry

o reference/reference
o task/task

Blog | 3 - DITA| 211

Blog | 3 - DITA| 212

* topic/platform
* topic/alt
* topic/keyword
o ui-d/shortcut
o markup-d/markupname
m xml-d/parameterentity
m xml-d/xmlatt
m xml-d/numcharref
m xml-d/xmlpi
m xml-d/textentity
m xml-d/xmlnsname
m xml-d/xmlelement
o pr-d/parmname
o pr-d/option
o sw-d/cmdname
o ui-d/wintitle
o ut-d/shape
o sw-d/varname
o pr-d/apiname
° pr-d/kwd
o sw-d/msgnum
topic/thead
topic/publisher
topic/desc
topic/term
o abbrev-d/abbreviated-form
topic/title
o concept/title
m glossentry/glossShortForm
m glossentry/glossAbbreviation
m glossentry/glossSynonym
m glossentry/glossterm
m glossentry/glossAcronym
topic/itemgroup
o task/steptroubleshooting
o task/tutorialinfo
o task/info
o task/stepxmp
o task/stepresult
topic/row
topic/linkpool
topic/param
topic/shortdesc
topic/resourceid
topic/dthd
topic/metadata
o relmgmt-d/change-historylist
topic/othermeta
topic/prognum
topic/sectiondiv

A DITA inheritance hierarchy list for the base DITA Map specification is presented below:

abbrev-d/abbreviated-form
delay-d/anchorkey
delay-d/exportanchors
ditavalref-d/ditavalmeta
ditavalref-d/dvrResourceSuffix
hazard-d/hazardstatement
hazard-d/hazardsymbol
hazard-d/messagepanel
hazard-d/typeofhazard
indexing-d/index-sort-as
map/topicmeta
map/topicref

o ditavalref-d/ditavalref

o glossref-d/glossref

o mapgroup-d/anchorref

o mapgroup-d/keydef

o mapgroup-d/mapref

o mapgroup-d/topichead

o mapgroup-d/topicset

o mapgroup-d/topi csetref
mapgroup-d/topicgroup
pr-d/parml
pr-d/pd
pr-d/plentry
pr-d/pt
pr-d/synblk
pr-d/synnote
pr-d/synnoteref
relmgmt-d/change-historylist
sw-d/msgblock
sw-d/userinput
topic/data

o ditavalref-d/dvrK eyscopePrefix

o ditavalref-d/dvrK eyscopeSuffix
ditavalref-d/dvrResourcePrefix
relmgmt-d/change-compl eted
relmgmt-d/change-item
relmgmt-d/change-organization
relmgmt-d/change-person
relmgmt-d/change-request-id

o

o

o

o

o

o

o

o

relmgmt-d/change-request-system
o relmgmt-d/change-revisionid
o relmgmt-d/change-started
o relmgmt-d/change-summary
o ut-d/sort-as

topic/dd

topic/dl

topic/dlentry

topic/dt

topic/fig
o pr-d/syntaxdiagram

topic/figgroup

relmgmt-d/change-request-reference

Blog | 3 - DITA | 213

Blog | 3 - DITA | 214

o

o

o

o

o

topic/fn

pr-d/fragment
pr-d/groupchoice
pr-d/groupcomp
pr-d/groupseq
ut-d/area

topic/image
topic/index-base

o

o

indexing-d/index-see
indexing-d/index-see-also

topic/keyword

o

o

delay-d/anchorid
markup-d/markupname
m xml-d/numcharref
m xml-d/parameterentity
m xml-d/textentity
m xml-d/xmlatt
m xml-d/xmlnsname
m xml-d/xmlpi
pr-d/apiname
pr-d/kwd
pr-d/option
pr-d/parmname
sw-d/cmdname
sw-d/msgnum
sw-d/varname
ui-d/shortcut
ui-d/wintitle
ut-d/shape
xml-d/xmlelement

topic/keywords

topic/li

o

hazard-d/consequence
hazard-d/howtoavoid

topic/metadata
topic/note

topic/ph

o

o

o

o

o

o

o

o

o

o

o

hi-d/b

hi-d/i
hi-d/line-through
hi-d/overline
hi-d/sub
hi-d/sup
hi-d/tt

hi-d/u
pr-d/codeph
pr-d/delim
pr-d/oper
pr-direpsep
pr-d/sep
pr-d/synph
pr-divar
sw-d/filepath
sw-d/msgph

Blog | 3 - DITA | 215

o sw-d/systemoutput
o ui-d/menucascade
o ui-d/uicontrol
o ut-d/coords
* topic/pre
o pr-d/codeblock
o ui-d/screen
* topic/term
* topic/ul
* topic/xref
o pr-d/coderef
o pr-difragref
e ut-d/imagemap

DITA Usage Survey

A week or two ago | opened a survey about various ways in which people are using DITA. The survey was taken by more than
50 distinct DITA usersand | think it indicated quite clearly some trends in the industry. As| said from the beginning,

I will try below to sum up some of the results:

GlTisonarall
GIT overcomes Subver sion to be the most popular open source solution for version control used in DITA projects. Although
most users who responded seem to use open source solutions for version control, thereis a solid portion of them using

commercial CM Ss probably specialized in DITA content. | suspect that people with small to medium projects prefer open source
solutions because they are more affordable for their small group of writers.

PDF is still the most popular output format

Most of the participants identified PDF as being their primary output format. Most of them output both to PDF and XHTML but
the choice of PDF as the primary output format looks very clear.

Indirect addressing is becoming the main way of reusing content

Plain content references are still used more than content key references but key references are strongly used as well so it seems
that indirect ways of addressing content win this game.

DITA 1.3 features

Besides the use of key scopes and branch filtering (which comes as no surprise) it would see that the tr oubleshooting topic and
use of SVG embedded directly inside DITA content come as strong needs that DITA 1.3 fulfills.

Popular image for mats
The fact that PNG is the most popular image format comes as no surprise. But SVG coming in as a close second identifies an

increasing trend of using vectoria images in technical documentation. Besides the benefit of being vectorial and not losing
information when scaled, SV G alows you the unique capability of translating various parts of the image.

Major DITA frustrations

It would seem there are two major DITA frustrations:

Blog | 3 - DITA | 216

* PDF Customization difficulties. Thisin my opinion wins the cake in this category. Customizations for the standard PDF
output are hard, they required knowledge of XSLT, XSL-FO and of the PDF plugin architecture. But alternatives do
exist:Possibilities to obtain PDF from DITA (on page 100)

* "DITA is perceived as too complex for casua users." This quote saysit all, the entry level is high. There are also
complains about linking, filtering and reuse. All these come from the DITA flexibility and the fact that each new
version adds new elements and ways of working with content. And although DITA can be specialized and reduced as a
vocabulary, | suspect not many people are doing that.

That's all | wanted to cover in this post, so go ahead, enjoy the survey results and any comments are as usual welcomed.

Creating a Knowledge Base for the Google Diaogflow Chatbot using DITA XML content

A Chatbot is a computer program that simulates human conversation through voice commands or text chats or both. Chatbot
(short for chatterbot), is an artificial intelligence (Al) feature that can be embedded and used through any major messaging
application. Chatbots helps add convenience for customers, they are automated programs that interact with customerslike a
human would, and cost little to nothing to engage with.

Suppose you have asimple DITA topic that contains pairs of questions and answers placed asrowsin atable:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE topic PUBLIC "-//OASI S//DTD DI TA Topic//EN" "topic.dtd">

<topic ="frequent|y_asked_questions">
<title>Frequently Asked Questions</title>
<body>
<p>
<tabl e ="al " =1 ="1" ="t abl e_bkf_4dl _vsb">
<t group ="2">
<col spec ="cl" ="1" ="1xt/ >
<col spec ="c2" ="2" =1t >
<t body>
<r ow>
<entry>

<p>What is Oxygen XM. Editor ?</p>
<p>What is Oxygen XM.?</p>
</entry>
<entry>
<p>Oxygen XML Editor is a great tool.</p>
</entry>
</ row>
<r ow>
<entry>How do | |earn DI TA?</entry>
<entry>You can read the "Oxygen" user's guide, and the Oxygen XM. Bl og. </ entry>
</ row>
</ t body>
</t gr oup>
</ tabl e>
</ p>
</ body>
</topic>

We can use the following XSLT stylesheet to extract the training data asa CSV file from the XML content:

<?xm version="1.0" encodi ng="UTF-8"?>

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni'
="http://ww. w3. or g/ 2001/ XM_Schena" ="xs" ="2.0" ="abc" >
<xsl : out put ="text"/>
<xsl:tenpl ate ="/">
<xsl : text >Questi on, Answer
</ xsl :text>
<xsl : for-each ="//tbody/row' >
<xsl : for-each ="entry[1]">
<xsl : choose>
<xsl : when ="p">
<xsl: for-each ="p">
<xsl : val ue- of =" oxy: escapeFor CSV(normal i ze-space(.))"/>, <xsl : val ue- of

="oxy: escapeFor CSV(normal i ze-space(string-join(../../entry[2]//text(),
")) "/ ><xsl:text>
</ xsl : text>

Blog | 3 - DITA | 217

</ xsl : for-each>
</ xsl : when>
<xsl : ot her wi se>

<xsl : val ue- of =" oxy: escapeFor CSV(normal i ze- space(.))"/ >, <xsl : val ue- of

="oxy: escapeFor CSV(nornal i ze- space(string-join(../entry[2]//text(),
")) "/ ><xsl:text>

</ xsl :text>

</ xsl : ot her wi se>
</ xsl : choose>
</ xsl : for-each>

</ xsl : for-each>
</ xsl : tenpl at e>
<xsl:function =" oxy: escapeFor CSV"' >

<xsl : param ="val ue"/ >

<xsl : val ue- of
</ xsl : functi on>

</ xsl : styl esheet >

="repl ace(repl ace($val ue, '"', '""'), ',', '", "")"/>

Create a transformation scenario using these 2 files. Save the output to a CSV file, asin the picture below:

¥SLT FO Processor Output
Output file

O Prompt for file

@ Save as result.csy

|:| QOpen in Browser /System Application

Saved file

Cither lnestine
Lner 1ocan

Open in Editor

After applying the transformation, the following CSV file should appear:

What is Oxygen XML Editor?, Oxygen XML Editor is a great tool.
What is Oxygen XM.?, Oxygen XML Editor is a great tool.

How do | learn DI TA?, You can read the ""Oxygen"" user's guide"," and the Oxygen XM Bl og.

‘) Notice:

The structure of the CSV file contains atable with 2 columns, where the first column represents the question and the
second column the answer, separated by acomma. In generdl, alineisin the form: "Question, Answer". One limitation

isthat each question can have only one answer. For the same answer to be suitable for several questions, you can copy it
in the columns corresponding to the questions.

Next, follow these steps to use the data from the CSV filein the Google Dial ogflow chatbot:

1. Create an account on https://dial ogflow.cloud.google.conV.
2. Create a new agent and complete the required fields:

https://dialogflow.cloud.google.com/

Blog | 3 - DITA | 218

OxygenBotDemd

DEFAULT LANGUAGE @ DEFAULT TIME ZONE
English —en v (GMT+2:00) Europe/Kaliningrad v
Primary language for your agent. Other languages ter 1 s timezone if r

GOOGLE PROJECT

Enables Cloud functions, Actions on Google and permissions management

AGENT TYPE
I Setas Mega Agent

Combine multiple Dialogflow agents (i.e. sub agents) into a single agent (i.e. mega agent)

3. In Settings, enable BETA FEATURES.

BETA FEATURES
@ Enable beta features and APIs

Be the first to get access to the newest features and latest APIs. (Full V2-beta API reference)

4. Go to Knowledge > CREATE KNOWLEDGE BASE, enter aname for this knowledge base, and click the SAVE
button.

OxyKnowledge

No knowledge document has been created yet. Create the first one.

Knowledge documents are articles or FAQs that your Dialogflow agent
can use to generate responses to user queries. Read more here.

Responses @

Execute and respond to the user

Respond to your users with a simple message, or build custom rich
messages for the integrations you support. Learn more

ADD RESPONSE

5. Use the CSV document for training. For this: Press Create the first one and complete the fields. Select the Update file
from your computer option and select the desired file. Click the CREATE button.

Blog | 3 - DITA | 219

Create New Document

Document Name *

fag-demo

Knowledge Type *
FAQ -
Mime Type

text/csv -

DATA SOURCE
O File on Cloud Storage

gs://bucket-name/object-name

@ Upload file from your computer

SELECTFILE |[EEEVINsR

| \ Enable Automatic Reload @

CREATE

The document will be registered in the knowledge base, asin the image below:

OxyKnowledge :

Document Name Knowledge Type Mime Type Source/Path

fag-demo (View Detail) FAQ text/csv File uploaded

+ New Document

6. Convert questions and answers into intents.

Click the View link from the image above. Check all questions that need to be converted to intents. Click the
CONVERT TO INTENTS button.

Blog | 3 - DITA | 220

fag-demo

CONVERT TO INTENTS

Question

Question:
What is Oxygen XML?
Answer:

Oxygen XML Editor is a great tool.

Question:
What is Oxygen XML Editor?
Answer:

Oxygen XML Editor is a great tool.

Question:
How do | learn DITA?
Answer:

You can read the Oxygen user's guide, and the Oxygen XML Blog.

ENABLE

Now, when you click on I ntents, the converted questions should appear:

Intents

[l Default Fallback Intent

® Default Welcome Intent

® Knowledge OxyKnowledge.fag-demo.How do | learn DITA?

® Knowledge.OxyKnowledge.fag-demo.What is Oxygen XML E

® Knowledge OxyKnowledge fag-demo.What is Oxygen XML?

DISABLE

SAVE

CANCEL

Status C

® ENABLED

@® ENABLED

® ENABLED

CREATE INTENT

Qv

7. Do asimulation. Click Integration > Web demo, and if the demo feature is disabled, enable it.

Blog | 3 - DITA| 221

< OxygenBotDemo

What is Oxygen XML editor?

[Ask something...

8. Integrate the Chatbot in your HTML Content. Go to the Dialogflow I ntegrations page, click the Web Demo integration
and you will get an <i f rame> HTML element which can be pasted in your HTML page. Using aWebHelp customization
you can also integrate the Chatbot in the footer for each generated HTML page.

Thiswas a basic way to show how a chatbot can be trained with intents and answers by using a DITA topic to produce a comma-
separated valuefile.

Using ChatGPT inaDITA XML Project

The ChatGPT OpenAl bot has the potential to help with various technical documentation tasks (advice about the standard, small
conversions, content generation, writing style, and readability analysis).

Below, you can see alist of promptsthat | gave the bot along with the answers. The prompts to the chatbot are presented as
codeblocks.

Advice About DITA XML Standard Use

1. Ask about the type of DITA linksto usein atopic.

Should | use cross references or related links in nmy DITA XM topic?

https://chat.openai.com/chat

Blog | 3 - DITA | 222

Both cross-references and related links can be useful in DITA XML topics to help users
navigate and find relevant information. However, there are some differences between

the two that may make one more appropriate than the other depending on the context.

Cross-references are links within a document that point to another section within the
same document or to another document altogether. They are typically used to
reference specific information that is related to the current topic, such as a definition

or an explanation of a concept that is introduced in the current section.

Related links, on the other hand, are links to external resources that may be useful to
the user in understanding the current topic. These links may point to other documents
or websites that provide additional information on the same topic, or they may point to
related topics that the user may find interesting or helpful.

The choice between cross-references and related links depends on the specific use
case and the goals of your documentation. If you want to help users quickly access
related information within your documentation, cross-references may be more
appropriate. If you want to provide users with additional resources or further reading

on a topic, related links may be more appropriate.

In some cases, you may even want to use both cross-references and related links in
the same topic to provide users with a variety of options for finding information.

Ultimately, the key is to consider the user's needs and goals when deciding which

2. Ask information about a specific DITA XML element.

Blog | 3 - DITA | 223

Can | use the DITA XML uicontrol elenent for conpany nanes?

No, the “uicontrol™ element in DITA XML is specifically intended to be used for user
interface controls, such as buttons, checkboxes, and other interactive elements in
software applications or on websites. The “uicontrol” element is meant to visually
distinguish these elements from surrounding text and to provide consistent styling

across the document.

Using the “uicontrol” element for company names would not be appropriate, as it
does not accurately represent the meaning of the content. Instead, you should use an
appropriate element for company names, such as “orgname”, ~companyname™, or

“personname”, depending on the context of your content.

For example, if you are referring to a company name in your documentation, you could
use the ~companyname™ element to indicate that the text is the name of a company. If
you are referring to a person or group associated with the company, you could use the

“personname” or “orgname” element, respectively.

Using the correct element for the content will ensure that your documentation is

accurately structured and easy for users to navigate and understand.

Generate New Content

1. Instruct ChatGPT to generate DITA content about a very common task.
Wite a small DI TA XM. task about installing a software application on W ndows
Sure, here's a small DITA XML task about installing a software application on
Windows:

xml) Copy code

<?xml version= encoding=
<!DOCTYPE
<task id= >

<title>Installing a Software Application on Windows</title>
<taskbody>
<context>The following steps assume that you have downloaded the instal

<steps>
<step>
<cmd>Double-click the installation file to begin the installation p

2. Generate alist of index terms from existing DITA XML content.

Blog | 3 - DITA | 224

Create a DITA XM. prol og el enent containing 5-6 index termelenments related to the DITA XM topic
bel ow

Here's an example of a DITA XML prolog element containing index term elements

related to the topic:

php D Copy code

<prolog>
<metadata>
<keywords>
<indexterm>Sharing Application Settings</indexterm>
<indexterm>0xygen</indexterm>
<indexterm>Project configuration</indexterm-
<indexterm>Default options</indexterm>
<indexterm>Import and export preferences</indexterm>
<indexterm>Java API</indexterm>
</keywords>
</metadata>
</prolog>

Simple Conversions

1. Convert Markdown content to DITA XML topic.
Convert this Markdown content to a DI TA XM topic:
Cetting Started
Li st of steps:
- Install application

- Login
- Performtask

Blog | 3 - DITA | 225

Here's the DITA XML equivalent of the Markdown content:

xml |:| Copy code

<?xml version= encoding=
<!DOCTYPE
<topic id= >
<title>Getting Started</title>
<body>

<p>Install the application.</p>

<p>Login.</p>
</1i>

2. Convert CSV content to DITA XML table.

Convert this CSV content containing headers to a DITA XM. table el ement:

Conmon nane, Sci enti fi c name, Locati on, Tenper anent, Di et, Wat er, Si ze, Regi on of the Aquari um Breedi ng
Conpr essi ceps, Hapl ochrom s conpr essi ceps, Lake Tanganyi ka, Territorial,Omivore,"PH 7.0 - 8.0, Tenp. 73
- 77 F*,5 inches, Bottom Hard
Front osa, Cyphoti |l api a frontosus, Lake Tanganyi ka, Very peaceful , Omivore,"PH 7.8 - 8.5, Tenp 75F -
82F", 14 i nches, M ddl e- Bot t om Medi um

Here's the DITA XML table element for the given CSV content:

xml D Copy code

<table>
<tgroup
<colspec
<colspec

<colspec

Writing Style
1. Ask what terminology to use in certain cases.

Should | use for technical docunentation the phrase "click a button" or "press a button"?

Blog | 3 - DITA | 226

Both "click a button" and "press a button" are commonly used phrases in technical
documentation and have similar meanings. However, "click a button" is more
commonly used in documentation related to software applications and web interfaces,
while "press a button" is more commonly used in documentation related to hardware
devices such as remote controls, keyboards, or gaming controllers.

Therefore, the choice of using "click a button" or "press a button" depends on the
context of your documentation. If your documentation is related to software
applications or web interfaces, it would be more appropriate to use "click a button."
On the other hand, if your documentation is related to hardware devices, it would be

more appropriate to use "press a button."

2. Re-phrase documentation provided by engineers using the Microsoft Style Guide style and also change the point of view
from first-person to third-person.

Re-phrase the followi ng content to adhere to the Mcrosoft Style Guide, third person:
The action Show only keys with closest relative key scope from Dl TA Reusabl e Conponents / Keys tab was
al so added to Media tab Settings drop down nenu

The states of the two actions are synchronized. If you check it in Keys tab will autonatically get
checked in Media tab

The following is a rephrased version of the content in third person to adhere to the
Microsoft Style Guide:

The "Show only keys with closest relative key scope" action was added to the Settings
dropdown menu on the Media tab, located in the DITA Reusable Components [Keys
tab.

Both actions' states are synchronized. If the user checks the "Show only keys with
closest relative key scope" action in the Keys tab, it will also be checked automatically
in the Media tab.

3. Translate some notes from the engineer's native language (in this case, Romanian with amix of English words) to
English, re-phrase using the Microsoft Style Guide style, and aso change the point of view from first-person to third-
person.

Transl ate to English, rephrase to adhere to the Mcrosoft Style Quide, third person:

In tabul Media, in nmeniul Settings a aparut actiunea Show only keys with closest relative key scope
Cand o bifamtrebuie sa ramana in view doar cheile relative (cheile cu fornma cea mai scurta).

The "Show only keys with closest relative key scope" action has appeared in the
Settings menu on the Media tab. When selected, only the relative keys (those with the

shortest form) should remain in view.

Blog | 3 - DITA | 227

4. Re-write an entire DITA XML topic to increase its readability.

Re-write the following DITA XM. topic preserving all its original XM. el ements to increase its
readability:
<topic id="dita_oriented_tips_and_tricks">
<title>DI TA Oriented Tips And Tricks</title>
<pr ol og>
<aut hor >Radu Cor avu</ aut hor >
</ pr ol og>
<body>
<p><ph keyref="oxygen"/> has about 18 years of devel opnent under its w ngs. During these
years, we added |ots of functionality and nany of our users usually do not know nore than 20-30%
of Oxygen's features. So this presentation is intended for technical witers using Oxygen to
wite DI TA content and who may want to find out nore about their tool.</p>
<section id="section_gld_tbs_gfb">
<title>Add-ons</title>
<p>There are lots of free add-ons provided by the Oxygen teamthat can be installed in an

<xr ef
href="https://github. com sear ch?q=t opi c¥8Aadd- on+or g¥8Aoxygenxm &anp; t ype=Reposi tori es"
format="htm " scope="external ">Oxygen standal one version</xref>. | wll enunerate sone of

the nost interesting one: </ p>
<ul id="ul _xbw ccs_gfb">
<xref href="https://github. con oxygenxm /oxygen-git-plugin" format="htn"
scope="external ">G t add-on</xref>. This plugin adds a side view allow ng you to do sone
common Gt operations like pull, commit, push (nmobstly 90% of what a regular Gt user would
do).</1i>
<xref href="https://ww.oxygenxm . conm doc/ ug-editor/topics/content-fusion-addon. htm"
format="htm " scope="external ">Content Fusion Connector add-on</xref>. Collaborate with
your peers by sending themlinks that allow themto give you feedback on your work using a
web browser without the need to pre-install anything on their side.
</ ul >
</ section>
</ body>
</topi c>

Result:

<t opi c ="dita_oriented_tips_and_tricks">
<title>DITA Oriented Tips And Tricks</title>
<pr ol og>
<aut hor >Radu Cor avu</ aut hor >
</ pr ol og>
<body>
<p><ph ="oxygen"/> has been under devel opnent for about 18 years. During this time, we
have added a | ot of functionality, but many of our users are not aware of nore than
20-30% of Oxygen's features. This presentation is intended for technical witers who use
Oxygen to wite DI TA content and want to |earn nore about the tool.</p>
<section ="section_gld_tbhs_gfb">
<title>Add-ons</title>
<p>Oxygen provides a range of free add-ons that can be installed in the <xref
="https://qgit hub con sear ch?q=t opi c%3Aadd- on+or g¥8Aoxygenxm &anp; t ype=Reposi tori es"
="htm" ="ext ernal ">Oxygen standal one version</xref> Here are sone
of the nost inter esti ng ones: </ p>

<ul ="ul _xbw_ccs_gf b">
<l i ><xref ="https://github. coml oxygenxnml / oxygen-git-pl ugi n" ="htm "
="external ">Gt add-on</xref>: This plugin adds a side view that allows

you to performcommon Gt operations like pull, comrt, and push (simlar to
what a regular Gt user would do).

<l i ><xref

="https://ww. oxygenxml . conl doc/ ug- edi t or/ t opi cs/ cont ent - f usi on- addon. ht ni "
="htm " ="ext ernal ">Cont ent Fusi on Connector add-on</xref>:

Col | aborate with your peers by sending themlinks that allow themto give you
f eedback on your work using a web browser, w thout the need for themto
pre-install anything on their side.
</ ul >
</ section>
</ body>
</topic>

Remarks: If the prompt insists that all XML elements should be preserved, the re-write does few things, but if the prompt
does not insist that all XML elements should be preserved, the inline elements and links are removed.

Blog | 3 - DITA | 228

Statistics
Create readability analysisfor aDITA XML topic.

Create a readability analysis for the follow ng DITA XM topic:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<! DOCTYPE topic PUBLIC "-//OASI S//DTD DI TA Topic//EN" "topic.dtd">
<topic id="topic_whr_nly_c5">
<title>Sharing Application Settings</title><prol og><aut hor>Radu Cor avu</ aut hor ></ pr ol og>
<body>
<p>There are various ways in the Oxygen standal one version through which a teamof witers

The DITA XML topic "Sharing Application Settings" has an average readability level
that may be difficult for some readers to understand. Here's a breakdown of the

analysis:

* Flesch-Kincaid Grade Level: 10.1

* Flesch Reading Ease: 60.7

* Gunning Fog Index: 12.2

* Coleman-Liau Index: 11.7

* Automated Readability Index: 10.3

The average grade level for this topic is around 10.1, which means that a high school
student or a person with some college education may understand the content.
However, readers with lower education levels or those who are not familiar with

technical terms may have difficulty comprehending the text.

The Flesch Reading Ease score of 60.7 indicates that the topic is moderately difficult
to read, and readers may need to spend extra time understanding the content. The
Gunning Fog Index of 12.2 suggests that the text is difficult to read and may require a
higher level of education to comprehend. The Coleman-Liau Index of 11.7 indicates
that the text is slightly difficult to read, while the Automated Readability Index of 10.3

suggests that the text is easy to read for individuals with some college education.

Overall, the topic "Sharing Application Settings" has an average readability level that
may be difficult for some readers to understand, especially those who are not familiar
with technical terms.

Custom Validation (Schematr on-based)
1. Create an 1SO Schematron validation check that counts words.

Create an | SO Schematron schema which reports if a DI TA short description el enent has nore than 20
wor ds.

Blog | 3 - DITA | 229

Here's an example ISO Schematron schema that checks if a DITA short description

element has more than 20 words:

xml ﬂ Copy code
<?xml version= encoding=
<schema =

<pattern>
<title>Check if short description has more than 20 words</title>

<rule =
<assert =
Short description should have no more than 2@ words.
</assert>
</rule>
</pattern>
</schema>

‘> Regenerate response

Remark: The namespace declaration and usage iswrong (DITA elements are in no namespace). The assert test is correct.

2. Create an 1SO Schematron validation check from a description.

Create an |1 SO Schematron validation rule which reports an error if a DITA XM i nage el ement does not
contain a scale attribute

Here's an example ISO Schematron rule that checks if a DITA XML image element

contains a “scale” attribute:

xml ﬂ Copy code

<schema

<pattern>
<title>Check for presence of scale attribute on image elements</title>

<rule
<assert >Image element must have a scale attribute.</ass¢g

</rule>

Remark: The namespace declaration and usage iswrong (DITA elements are in no namespace). The assert test is correct.

Blog | 3 - DITA | 230

Oxygen Al Positron Assistant Add-on

We are proud to introduce our new Oxygen Al Positron Assistant add-on, which provides support for hel ping technical
documentation writers generate and re-write content by using the Oxygen Al Positron service.

The oxygen Positron Service usesthe OpenAl ChatGPT model GPT- 3. 5 to provide document generation, change suggestions,
and translation capabilities. A setting to switch to using the GeT- 4 model is aso provided.

More details about installation and al the Al Positron features can be found in the Oxygen User's Manual.
https.//www.youtube.com/embed/Do_KWY ZfCFg?si=2Mrm7Bh1pmPvehqV
Overview

In asimplified form, technical documentation is often done in two stages: analysis and implementation. In the analysis stage,
technical writers could use various resources such as web searches, ChatGPT, or discussions with colleagues or engineersto
further understand the subject that needs to be documented. In the second stage, technical writers would use tools such as Oxygen
to write the actual content.

The Oxygen Al Positron Assistant add-on provides various ways to use ChatGPT to help writers while editing or reviewing
the technical documentation. For example, it can be used to receive hints about what to write next, improve the readability of
content, or re-structure the content in various ways.

") Note: Content received from the OpenAl ChatGPT model may be inaccurate or contain misleading information, so it
needs to be thoroughly reviewed and revised accordingly.

Terms: Theterms of use for the service can be found here.

As aways, we areinterested in your feedback and improvement suggestions.

Manual I nstallation

To manually install this add-on, follow this procedure:

1. Goto Help > Install new add-ons to open an add-on selection dialog box. Enter or paste https://www.oxygenxml.com/
InstData/Addonsg/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.

2. Select the Oxygen Al Positron Assistant add-on and click Next.

3. Read the end-user license agreement. Then select the | accept all terms of the end-user license agreement option and
click Finish.

4. Restart the application.

Result: The Al Positron Assistant side view is now available.

Connecting to the Oxygen Al Positron Service

You can use the Al Positron Assistant side view to easily configure login details and connect to the oxygen Positron Service
in the web browser.

To initiate the connection process, use the Connect button in the Al Positron Assistant view (or from the user drop-down menu
at the top-right corner of the view).

") Note: The Oxygen Positron Service USES by default the OpenAl ChatGPT engine version 3. 5 API to propose
document generation and change suggestions.

https://www.oxygenxml.com/doc/ug-editor/topics/ai_positron.html
https://www.youtube.com/embed/Do_KWYZfCFg?si=2Mrm7Bh1pmPvehqV
https://www.oxygenxml.com/aipositron/user_terms.html

Blog | 3 - DITA| 231

Al Server Requests and Credits

Each user has alimit to the number of requests that are sent to the Al server each month and thisis managed through the use of

credits.

Generating and Refining Content

Once you log in to the server, the following actions for generating content are available in the Actions drop-down menu at the
top of the Al Positron Assistant side view (and also in the Al Positron Assistant submenu within the contextual menu, and in
the Al main menu). The progress and results of triggering an action are displayed in the main chat pane (on page 232):

Content Generation

Rewrite

Overview

Trandation

New DITA Topic - Generatesa DITA XML topic based on atext description entered in a popup dialog
box.

Continue Writing - Generates additional text based on the content preceding the cursor position.

Short Description - Generates a short description (inside a<shor t desc> element) based on a summary
of the selected text (or the entire document if there is no selection). Y ou can configure the style and the
approximate number of sentences to be generated.

Index Terms - Generates a<keywor ds> element that contains index terms obtained from the selected text
(or the entire document if there is no selection).

Follow I nstructions (available when editing schemas, XSL T stylesheets, and Schematron files) -
Replaces the selected instructions with content generated based on them.

Correct Grammar - Generates a suggestion for correcting the grammar and spelling within the selected
content.

Improve Readability - Modifies the selected content to improve readability and fix grammar/spelling
errors. If you hover the mouse prompt over this button, a Settings button becomes available in the top-
right corner. Clicking the Settings button opens a pop-up window where you can choose the writing
level of the content to be generated. Y ou can choose between: 5th grade (Very Easy), 8th grade (Plain
English), and College (Advanced).

Use Active Voice - Generates a suggestion for replacing the selected content with content that has been
converted from passive to active voice.

Itemize - Generates a suggestion for converting the selected content into alist of items.

Join Items - Generates a suggestion for converting the selected list of items into a paragraph.

Answer Questions - Generates answers to questions that the Al finds within the selected content (or the
entire document if there is no selection).

Generate Questions - Generates alist of five questions that are answered within the selected content (or
the entire document if there is no selection).

Summarize - Generates a summary of the selected content (or the entire document if thereisno
selection).

Readability - Generates suggestions for changing the selected content (or the entire document if thereis
no selection) to improve its general readability.

The actionsin this category translate the selected text to the target language (English, German, French,
Japanese), while preserving the original XML markup.

Marketing

https://aipositron.oxygenxml.com/

Blog | 3 - DITA | 232

* Release Notes - Creates release notes based on a set of features or issue ticket numbers with optional
descriptions.

* Marketing Post - Creates a marketing post based on alist of ideas or release notes.
* Improve SEO - Rewrites the content to enhance search engine optimization.

* Pain-Agitate-Solution - Rewrites the content using a marketing style based on the Pain-Agitate-Solution
framework.

* Features-Advantages-Benefits - Rewrites the content using a marketing style based on the Features-
Advantages-Benefits framework.

0 Tip: Custom actions can be configured in the Al Positron Assistant preferences page (on page 233).

Al Positron Assistant View

The add-on provides access to the Al Positron Assistant side-view. If the view is not displayed, it can be opened by selecting it
from Window > Show View.

Figure 1. Al Positron Assistant View

® named-user-licenses.dita X 1 P B Al Positron Chat =
topic bady Referances in map: [1of 2] + T
“H @

Named-User Licenses Me

Answer Questions
Generate answers o questions you ask based on the

B Metadata sefected text or on the entre document content
~ Al Positron
Kevwords: I am ready to answer your questions about the given

al 1y 7 Eoipic
(Named-User licenses)

What is a Named-User License?
A Named-Usar License can be used by a aingle Namead User

A "Named-User Licenseq can be used by a single F Named Userd on one or more computers.
on one or more computers. Named-user licenses are not transferable Certainty: High
Al Positron Assistant B Can a Named-User License be transferred to a new user?
; No, Named-Uiser licenses are not ransferable to a new
_'. X stevenhigosB@omail.com ~ Named Ligar. ! ° N
"~
Content Generation Certain l‘Y I ._gl:

Mew DITA Topic Continue Writing Short Desaiption
If I order multiple Named-User icenses, will I receive 2
Index Terms separate icensa key for each user?
Na, if you order multiple Named-User licenses, you wil

Rewrite receive a single license key that is good for a spedified
number of named users.
Correct Grammar Imorove Readabiity Use Active Voice
Certainty: High
Ttemize Join Ttems
I= it the responsibility of the user to keep tradk of the

Overview Named Users assgned to eadh beense?
Yes, itis your responsibiity to keep rack of the named

Answer Questions Generale Questions Summarize jears that each licenss is assqnad to,
Readability Certainty: High
Insert Prewsew Copy
Translation
Englsh French GErman

lapaness 5

Marketing
Heleass Notes Marketng Fost Pain-Agtate-Soluton
Features-Advantages-Bensfits - e ow 3 S

Al may provide macourate informator The answe Al-qenerated,

_E Project ”. DITA Maps Manager e‘ Al Posibron Assislanl

';‘3 AT Positron Chat -"r: Al Posifron Activity

The Actions drop-down menu at the top of the Al Positron Assistant view contains the available Al-powered actions that can be
used to generate and refine content (on page 231). Simply select the action to trigger it. Y ou can hover the mouse cursor over

an action to see a description of what the action does. A set of 5 recently used actions are also available in the Actions drop-down
menu.

Blog | 3 - DITA | 233

The l—_|! Record button in the top-left corner of the view allows you to create custom actions or prompts by recording changes
(on page 235).

Thereis also auser drop-down menu at the top-right corner of the Al Positron Assistant view that contains the following:

* My account - Opens a webpage where you can see your current subscription package and credit status.

* Disconnect - Disconnects Oxygen from the oxygen Positron Servi ce.

* Preferences - Opensthe Oxygen Al Positron Assistant preferences page (on page 233) where you can configure
the Al Positron service address and provide a Context for the user that the Al will use to create more relevant and
personalized responses.

The main chat pane presents the results after processing an action and allows you to further refine the responses by sending
messages to the Positron service platform. When an Al Positron action is triggered, the chat pane displays the progress and
results.

The response is received from the server in streaming mode (the Al sends chunks of the response asit is being generated rather
than waiting to send the entire response after it is generated). Once the entire response is received from the server, the following
actions are available under the response:

* Insert/Replace - Inserts the response at the cursor location within the document (or replaces the selected content).
* Preview - Allows you to preview the content that would be inserted at the cursor location within the document.
* Copy - Copies the response to the system clipboard.

The Chat History drop-down toolbar button makes it easy to go back to previous conversations and continue them.

Y ou can use the bottom pane to refine the response by sending a message to the Al platform and it will generate a new response
based upon your message. Y ou can create your own favorite prompts and use supported variables to specify the content that
is sent to the platform. Y ou can use the 533’ ¥ Favorites drop-down button to store a favorite prompt. Y ou can use the

oy nsert Variables drop-down button to select one of the supported variables:

* ${selection} - Expands to the currently selected content.
* ${document} - Expands to the content of the entire document.

Tip: Previously sent prompts can be modified directly in the chat thread. Once a prompt is edited, a new chat thread

is started based on the new prompt's content. For edited prompts, you can use the = Next/*® Previous buttons to
navigate between chat threads.

To clear the information in the chat pane and start a new chat, click the@ New Chat button in the top-right corner of the view.

Al Refactoring

The Al Positron Assistant add-on contributes an Al Positron Refactoring action in the contextual menu (Refactoring > Al
Positron Refactoring) of both the Project and DITA Maps Manager views in Oxygen XML Editor.

You can invoke the Al Positron Refactoring action to apply either a predefined Al action or a custom prompt to modify the
selected resources. The resulting Al Positron Refactoring dialog box presents an estimate of the amount of credits that will be
consumed by the operation, and you have the option to preview the changes before applying them over the original content.

For example, you could use the predefined Transate to action to translate multiple DITA topics into a certain language or apply
the Correct Grammar or I mprove Readability actions on multiple resources.

Al Positron Assistant Prefer ences Page

Various settings can be configured in Options > Prefer ences > Plugins > Oxygen Al Positron Assistant:
Al Positron Service address

Blog | 3 - DITA | 234

Currently, thereis only one public platform providing this service.
Default model
The default model is used for the chat pane and for actions that do not explicitly specify afixed model. Each
chosen model consumes a certain number of credits (on page 231) per token.
Context
The context provides useful information about the user to the Al and is used in each action and chat request to
create more relevant and personalized responses.
L oad default actions
Specifiesif default actions are |oaded.
Additional actionsfolder
Y ou can use this option to specify alocal folder where you have stored additional actions.
Enable XPath Functions

Enables the use of Al-specific XPath functionsin the application when applying Schematron validation or XSLT
transformations. This feature is disabled by default.

Cacheresponses and reuse them for identical prompts

If enabled (default), responses for identical requests are stored (cached), resulting in fewer requests
being sent to the Al server and faster completion times. A Clear cache button located to the right
of this option can be used to clear the cache.

Cachesize
Specifies amaximum limit for the cache size.
Notify mewhen the number of requests exceeds

Y ou can select this option and specify a number of Al requests that when exceeded, a confirmation
dialog box is displayed asking if you want to continue using the XPath Al functions. If you select
"No" for the answer, the XPath functions will be disabled.

Validation Quick Fixes

When validation problems are displayed in the Results pane, you can right-click on a problem and use the Al Positron Fix
action to ask the Al Positron platform for help with fixing the problem. It will propose content in the chat pane (within the Al
Positron Assistant view) that can be used to solve the problem.

o flowers.xml X 4 b E Al Positron Chat

topic body section ol 5%

Growing Flowers

“Flowers by Season

The various climatic changes that occur in cyclic pattern are termed as 'Seasons',
There are four general seasons occurring on Earth - Spring, Summer, Autumn and -

Winter.

l;w SRrin5 Flowers

2. Summer Flowers

@7 @ Ordered lists are not allowed, use unordered lists instead.
Text Crid

Results
Info Description - 1 item
flowers.xml, schema "flowers.sch” , scenario "DITA", document type "DITA" (1 item)
o - E [ISO Schematron] Ordered lists are not allowed, use unordered lists instead.

o

Send a message to the Al platform.

x

Yo v Lo~ Send

Blog | 3 - DITA | 235

Creating Custom Actions

In the Al Positron Assistant preferences page (on page 233), you can define areference to afolder that contains custom
actions.

Once the add-on isinstalled, the File > New Document wizard can be used to create anew Al Positron Custom Actions
file that contains a JSON array with multiple actions. If the actions file is saved in the custom actions folder defined in the Al
Positron Assistant preferences page, validation and content completion will be automatically provided for it.

The most simple action defines an action id, title, type, and context:

[

{

"id": "nmy.action.id",

“title": "lInprove G ammar",

"type": "replace-sel ection-wth-fragment",

"input-type": "markup",

"context": "Inprove granmar in the follow ng content preserving the XM. markup: "
}

]

Defined actions can contain expandable parameters and their values can be customized before invoking the action:

[

{
"id": "ny.action.id",
"title": "Inprove G ammar",
"type": "replace-sel ection-wth-fragnent",
"input-type": "markup",
"context": "${style} Inprove grammar in the follow ng content preserving the XM. narkup:",
"expand- parans": [
{
"nanme": "style",
"label": "Style",
"val ue": "",
"al ternate-val ues": ["Use active voice.", "Use passive voice."],
"al ternate-val ue-l abel s": ["Active voice", "Passive voice"],
"choi ce-type": "singl e-choice"
}
]
}

Create Custom Prompts/Actions by Recor ding Changes

The l-_li Record button in the top-left corner of the view allows you to create new Al actions. It opens the Recor d examples for
instructions dialog box where you can provide a set of instructions that are intended for the Al to follow. Then, after clicking the
Start recording button at the bottom of the dialog box, you can record a collection of examplesin the editing area that will help
the Al better follow the given instructions. The examples are recorded from the changes made in the open editors.

After providing examples, you need to click the |—_Il Record button again to stop the recording. Y ou will then have the
opportunity to save the final result as either a Positron action or as afavorite chat prompt.

For example, if you want to add DITA markup to menu cascades, you can follow these steps:

1. Click the l-_li Record button.

2. Inthe Record examplesfor instructions dialog box, enter some instructions like: You are a technical writer. Add DITA
markup to menu cascades.

3. Click Start recording.

4. Open aDITA topic that has a menu cascade without markup (for example: File > Export).

5. Edit the topic and add markup, transforming it to:

<menucascade>
<ui cont r ol >Fi | e</ ui control >
<ui cont r ol >Export </ ui control >
</ menucascade>

Blog | 3 - DITA | 236

6. Click the |—_|l Recor d button again to stop the recording. The system generates the following instructions with examples:
You are a technical witer. Add DI TA narkup to a nmenu cascades
H#Hi#t#
I nput :
<p>Fil e > Export</p>

Qut put :

<p><nenucascade><ui contr ol >Fi | e</ ui control >

<ui cont r ol >Expor t </ ui cont r ol ></ nenucascade></ p>

I nput: ${selection}
Cut put :

7. In the resulting dialog box, save the final result as either a Positron action or as afavorite chat prompt.

Custom Validation Rules

The add-on contributes two X Path extension functions (available in the content completion proposals for Schematron, XSLT,
XQuery, and XPath) that can be used to rephrase content or to perform validation checks on existing content:

ai :transformcontent (instruction, content)

Use this function from namespace http://mww.oxygenxml .convai/function to automatically transform content using
Al.

The function has two string parameters:

* instruction - The OpenAl instruction to be performed on the content.
* content - The content to be transformed.

It returns a string that represents the transformed content.

Hereis an example of a custom Schematron schemathat usesthetransf or m cont ent function to correct the
number of words used in a short description:

<sch: schema ="http://purl.oclc.org/dsdl/schenatron" ="xslt3"

="ht t p: // ww. schenat r on- qui ckfi x. com val i dat or/ process" >

<sch: ns ="http://ww. oxygenxm . coni ai / functi on" ="ai"/>

<sch: pattern>

<sch:rule ="short desc">
<sch: report ="count (t okeni ze(.,"'\s+'")) > 50" ="rephrase">
The phrase must contain | ess than 50 words. </sch: report>

<sqgf:fix ="rephrase">

<sqf: descri pti on>
<sqf:titl e>Rephrase phrase to be less that 50 words</sqf:title>
</ sqf : descri pti on>
<sqf: repl ace ="text()" ="ai : transform cont ent (
'Refornul ate phrase to be less that 50 words', .)"></sqf:replace>
</sqgf:fix>
</ sch:rul e>
</ sch: pattern>
</ sch: schenma>

ai :verify-content(instruction, content)

Use this function from namespace http: //www.oxygenxml .convai/function to automatically validate content using
Al.

The function has two string parameters:

* instruction - The OpenAl instruction to be performed on the content.
* content - The content to be validated.

It returns a boolean value that represents the result of the validation.

Blog | 3 - DITA | 237

Hereis an example of a custom Schematron schemathat usestheveri f y- cont ent function to check a short
description for instances of a passive voice:

<sch: schema ="http://purl.oclc.org/dsdl/schematron" ="xslt3"

="http://ww. schemat ron- qui ckfi x. conf val i dat or/ process" >

<sch: ns "http://ww. oxygenxm . conl ai / functi on” ="ai"/>
<sch: pattern>
<sch:rule ="shortdesc">

<sch:report ="ai:verify-content (' Does the follow ng content has passive voice? , .)"

="rephrase">The phrase uses passive voice. </sch:report>
<sqgf:fix ="rephrase">
<sqf: description><sqf:titl e>Rephrase text to be active voice</sqgf:title>
</ sqf : descri pti on>

<sqf: repl ace ="text()"

="ai:transformcontent (' Rephrase text to be active voice', .)"/>

</sqgf:fix>
</ sch:rul e>
</ sch: pattern>
</ sch: schena>

Resour ces

To seeavisual demonstration of the Al Positron Assistant add-on, along with various uses cases for using the tool, see the
following recorded webinar: Al asaTool for Technical Content Creation.

Seewaysto use Al tools from XSLT stylesheets and Schematron schemas in the following recorded webinar: Leveraging the
Power of Al and Schematron for Content Verification and Correction.

Related information

Blog Post About Al Positron Add-on By Tom Johnson

Webinar: Al asaTool for Technical Content Creation

Webinar: Leveraging the Power of Al and Schematron for Content Verification and Correction

Similarities Between Technical Doc Writers and Software Engineers

I'm a software engineer, working for Oxygen XML Editor along side my colleagues in devel oping tools used by technical
documentation writers. | also do lots of technical support and sometimes | write small blog posts like this one or update our
technical documentation.

Over time, I've come to view the aspects of atechnical writer's job (especially atech writer who is using standards that have lots
of potential for reuse, like DITA XML) quite similar to many of the aspects of a software developer's job. So | started putting
together alist of concepts and the way in which both of these jobs (which may seem incompatible with each other at first) would
utilize such concepts.

Concept

Softwar e Engineers

Tech Docs Writer

Accessihility

We build our software products by following ac-
cessibility best practices, we test our products us-
ing screen readers and collaborate with our vi-
sion-impaired users to fix accessibility problems.
We also try to make sure there is enough color
contrast in the application components and icons,
that all font sizes are configurable and ship vari-
ous color themes for the application.

Published technical documentation also needs

to be accessible, for example by adding alter-
nate text for images and using relevant text for
links. It's also important to make sure the color
theme of the published output has enough con-
trast. WebHelp and PDF outputs obtained using
Oxygen from DITA XML content are section 508
compliant.

Accurate and Concise
Messages

We are required to present accurate and concise
error messages, dialogs, and prompts to our end
users. Over time, we've learned to pass most of
these error messages by our tech docs writers,
asking their opinion to help improve them.

Thetechnical documentation must also be accu-
rate and concise. The technical writer's advice
can aso greatly benefit the software developers
when they work in developing the messagesin
the application.

Building Complex Sys-
tems from Basic Build-
ing Blocks

We build small components (classes) and then we
use them to build projects. We then use the many
individual projectsto build entire large products.

Publications are built by using small topics of in-
formation or small reusable elements like notes
or tables. Even larger publications can be built by

https://www.oxygenxml.com/events/2023/webinar_ai_as_a_tool_for_technical_content_creation.html
https://www.oxygenxml.com/events/2023/webinar_leveraging_the_power_of_ai_and_schematron_for_content_verification_and_correction.html
https://www.oxygenxml.com/events/2023/webinar_leveraging_the_power_of_ai_and_schematron_for_content_verification_and_correction.html
https://idratherbewriting.com/learnapidoc/docapis_oxygenxml_positron_assistant.html
https://www.oxygenxml.com/events/2023/webinar_ai_as_a_tool_for_technical_content_creation.html
https://www.oxygenxml.com/events/2023/webinar_leveraging_the_power_of_ai_and_schematron_for_content_verification_and_correction.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-accessibility.html

Blog | 3 - DITA | 238

ten by someone is reviewed by a usually more ex-
perienced peer. The code reviewer may propose
various changes, either small message changes or
changes from the point of view of someone who
knows the architecture of the project better. There
is also the possibility for a novice to code review,
as this exposes them to new techniques and they
also can give afresh perspective on things.

Concept Softwar e Engineers Tech Docs Writer
combining the DITA maps used to describe sub-
We keep the small components as simple as pos- | components of the product.
sible to maximize their reuse potential. With
these simple components, we build large complex | Individual topics/tasks are small, smple, and
projects. easy to follow. With these simple topics, you can
build large technical documentation projects.
Code Review We have a stage where the code that was writ- Having experienced technical writers review the

work of novice writersisagreat way to acclimate
the novice writers to a specific way that the con-
tent must be written for a certain company. Expe-
rienced tech writers can also, for example, better
determineif the content should be placed some-
where elsein the project or if the current topic
should be split into multiple ones as they have a
better overall overview of the project.

Content Reuse

We reuse entire small projects in multiple prod-
ucts. We reuse libraries, classes, and functions.
Content reuse gives us the ability to build prod-
ucts faster and to build different products from
the same content.

Similarly, starting from the top down, entire DI-
TA maps can be joined together to create docu-
mentation for larger publications, topics can be
used in multiple placesin aDITA map, and el-
ements like notes, tables, lists can be reused in
multiple places.

Useful links:

* DITA Reuse Strategies (on page 79)
* DITA Style Guide

Custom Validation
Rules

We have various automatic tools (like Sonar)
that report warnings when certain best practices
for writing the code are not followed. This gives
us more consistency as we are many devs work-
ing on the same code base and the code we pro-
duce needs to be easily read, understood, and
maintained by others.

Using Schematron Rules (on page 178), tech-
nical writers also can impose custom validation
rules, specific for their project. These custom val-
idation rules ensure consistency throughout the
tech docs project.

Deleting Unused/Dep-
recated Content

All mature software products contain components
that in time may become unmaintained or unused.
Over time, such components may become secu-
rity problems or may just contain inaccurate in-
formation. So, software developers also spend
time deprecating and then removing these com-
ponents.

Technical documentation also may contain con-
tent that is no longer accurate or topics that refer
to features that no longer exist. So, deleting un-
used content is also a part of atech writer'sjob.

Document my Code/
Documentation

Most programming languages have support to
add comments containing documentation about
what the code does and why various choices were
made. This documentation gives more informa-
tion that could not be derived just by reading the
code. We @ so have internal wikis with diagrams
and descriptions of various architecture choic-

es and steps to set up various projects for people
who just started working on them.

It's a best practice to try Implementing your own
Style Guide (on page 180) where various best
practices and architectural decisions for the doc-
umentation project are described. Such a Style
Guide makes on-boarding easier and over time,
the rulesin the style guide may start to be au-
tomatically applied using Schematron or ater-
minology checker. Publishing customizations
should al'so be documented in astyle guide and a
quick getting started tutorial for people who start
working on the specific technical documentation
project may also be useful.

Enjoy

For the long term, it's good to find particular as-
pects about your job that you particularly enjoy

Whether it's rewriting/correcting problemsin ex-
isting content, writing new content, adding cus-

https://www.oxygenxml.com/dita/styleguide/c_Content_Re-use.html

Blog | 3 - DITA | 239

Concept Softwar e Engineers Tech Docs Writer

doing. For example, in my case I've dways been | tom validation rules, helping others, discussing

interested in investigating why certain bugs occur | with engineers, or improving the architecture

and following through, spending hours to investi- | of the existing technical documentation project,

gate and solve them. I'm also very eager to delete | technical writers may also have preferred activi-

unused code and functionality. ties. In general, we get to know what each person
does best within the team and who to ask for ad-
vicein certain cases.

Evolve We need to constantly deepen our understand- By reading various resources likethe DITA Style
ing of the current techniques we use, learn new Guide, the DITA 1.3 standard, or the Oxygen
techniques, and new frameworks or programming | XML Blog (on page 5), atechnical writers can
languages. Learning new things also helpsusto | deepen their understanding of the used standard,
obtain a different view of the current techniques | what featuresit offers, and what best practicesto
we are using. follow.

There are lots of useful resources about approach-
ing technical documentation online like: Diétaxis.
And various community places (on page 9)
where one can ask for help or follow up on con-
versations.

Sometimes, technical writers also becomein-
volved in styling the published HTML or PDF
outputs, in uploading the deliverables to the prop-
er places on the web site, producing training ma-
terial, or receiving user feedback and integrating
it back in the documentation. So, they move to-
wards scripting and being power-users.

Helping Y ourself When | do not know how to do something, | first | Overcoming obstacles by oneself is possible if

try to figure things out on my one before asking
for help. | use various internal resources (our in-
ternal wiki) or external resources like Google,
ChatGPT, StackOverflow. | alwaystend to re-
member the solution better if | put some effort in-
tofinding it myself.

the company hasinternal wikis or internal style
guides that the technical writers can use. By help-
ing ourselves, experienced writers develop a cer-
tain grit that allows them to overcome daily ob-
stacles.

Inversion of Control

Most of the time, we use libraries devel oped by
us or by othersto build larger projects. So, our
code uses other code. But there are frameworks
like Java Spring that have this concept of inver-
sion of control. With this concept, our code does
not use libraries, but those librariesin turn or-
chestrate and use our code.

The DITA XML standard has the concept of key
scopes (on page 78), which allows key refer-
ences and content key references in topicsto have
different values depending on where the topic is
referenced in the DITA map. So in away, your
topics contain variable place holders that may
expand to different content depending on where
they are used in the DITA Map.

The DITA XML standard also has this concept
of content reference push (on page 84). With
conref push content can be placed in atopic from
the outside.

A DITA topic that contains key referencesis not
truly instantiated until it's referenced in a certain
placeinthe DITA map.

Issues/Tickets List

We work internally mostly with Atlassian JIRA
to create issues/tickets. We have various work-
flows for our issues that allow usto have quality
assurance, and documentation connected to the

An issuedftickets list is also very important for
tech doc writers to keep track of what needs to be
done.

https://www.oxygenxml.com/dita/styleguide/
https://www.oxygenxml.com/dita/styleguide/
https://www.oxygenxml.com/dita/1.3/specs/
https://diataxis.fr/

Blog | 3 - DITA | 240

Concept

Softwar e Engineers

Tech Docs Writer

sameissue ID. The issue connects all the com-
mits and modifications made both in the devel-
opment phase and in the documentation phase.
So, looking at anissue, | can also seelinksto all
changes made to fix and document the issue.

For some projects, we aso work with GitHub is-
sues or GitLab issues/tickets and although more
simple, they also provide us with some basic way
of keeping track of work progress.

Learn by Teaching

Teaching is agreat way to learn more about the
concepts yourself. Y ou do not need to be highly
experienced in a subject matter in order to make
small presentations in the team about it. | some-
times make small presentations to start discus-
sions about the subject matter and gather best
practices from other team members who now
more about the subject matter than | do.

Y ou can read about an aspect of a standard like
DITA XML that you are not using in the compa-
ny (for example, about branch filtering (on page
76) or relationship tables), make asmall pre-
sentation in the team, and then try to start adis-
cussion about how the feature could be used in
the tech docs project and what problems it could
solve.

Managing Dependen-
cies/Linking between
objects

The more dependencies a class, object, or project
has, the more difficult isto useit in another con-
text. In our work, we try to uncouple objects, to
decrease the dependencies between them to be
able to reuse the objects in multiple contexts.

There are various linking strategies (on page

72), the main idea being to avoid direct ref-
erences between topics and instead use indirect
links and relationship tables. This gives you more
flexibility to re-use topics in multiple contexts.

M etadata/Extensibility

From the point of view of a Java developer like
myself, support for annotations was added to the
Java programming language about 20 years ago
and it allowed the creation of various important
libraries that in away extend the language to of -
fer al kinds of useful functionality.

The DITA XML standard has various ways that
users can enhance the publishing or add metadata
that is useful for specific needs:

* Using the <net adat a> element and sub-
elements to define key words, index
terms, categories that can be used to add
various publishing features. The Oxygen
WebHelp output uses keywords to en-
hance the search functionality and index
terms to create and index page.

The @ut put cl ass attribute can be set on
amost al DITA elements and allows you
to easily customize elements using CSS
in the published output. For example,
you can use it to specify the language of
codeblock elements.

The <f or ei gn> element allows adding
non DITA XML content and can be used
for various enhancements like embed-
ding HTML content directly in DITA
topics.

The <dat a> element can be used almost
anywhere to specify key value pairs that
are later used in the published output.
The DITA XML standard itself can be
specialized or restricted using a specific
procedure.

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/metadata.html
https://www.oxygenxml.com/doc/ug-editor/topics/add-syntax-highlights-codeblocks-x.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-embed-html.htm
https://www.oxygenxml.com/doc/ug-editor/topics/dita-embed-html.htm
https://www.oxygenxml.com/doc/ug-editor/topics/dita-integrate-specialization.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-integrate-specialization.html

Blog | 3 - DITA | 241

Concept

Softwar e Engineers

Tech Docs Writer

This possibility to extend the standard makesiit
much more valuable and allows targeting specific
company needs.

No Appreciation for
Fluff

The written code should be as compact and easy
to read as possible. An application's features
should again be intuitive to use with auser'sin-
terface that does not present more than you need
to accomplish a certain task.

Small topics describing key concepts, small tasks
describing how various things can be accom-
plished. Precise messages, simplified English, no
fancy words, no thesaurus.

Obtaining multiple

Using configuration files, we can reuse an entire

Using profiling/filters or multiple main DITA

products from the same | product code base to create multiple products, maps, aDITA XML based project can be used to

code base each with a specific subset of features. create user guides for multiple products (on page
81).

Onetrick pony / Jack of | Even if over time we specialize and become very | Being able to write documentation in multiple

all trades productive with one set of tools and when work- | formats (Markdown, DITA XML, MS Word), be-

ing on a certain aspect of the application, hav-
ing alarger overview and being able to use oth-
er tools/languages/frameworks when necessary
gives uslots of flexibility to help members of
other teams or to make changes to sub-projects
that we are not directly involved in.

ing able to use various version control systems
like Git or content management systems gives
you the ability to apply for and be able to perform
any technical documentation job, besides the ben-
efit of using much of the workflows and tools
other people in the company might use.

Overview of Complex
Systems

Either when making a small improvement or im-
plementing alarge feature, having an overview of
the entire project's architecture helps alot.

Having an overview of the documentation project
helps you know where to make a change, what
pleasant or unpleasant side effects it generates
and how to possibly re-structure the content to fa-
cilitate making that change. Content reuse adds a
lot of efficiency to the process of building a user's
guide and reusing large chunks of content be-
tween user manuals. Content reuse unfortunate-
ly also sometimes makes it easier to propagate er-
rorsin multiple places.

Pair Programming

We have this concept that we apply from time to
time in which two people work on the same is-
sue from the same computer. These people can
be peers with the same knowledge, in which case
one of them thinks about the larger context in
which the issue is resolved and asks questions
while the other implementsit. Or the engineers
can be an expert and a novice, in which case the
novice directly sees how the expert considers and
implements the issue.

I'm not sureif in the domain of tech docs writ-
ing people use such pair docs writing but | think
it could also benefit a novice to see exactly how
people with more experience organize them-
selves, understand the requirements, and work on
issues.

Project Structure and
Naming Resources

Experienced software developers are interested
in properly naming things. Wetry to give good
names to functions, variables, and packages. We
try to be consistent when naming things using
compound names, either using hyphens or up-
per-lower-case sequences.

It makes sense for technical documentation writ-
ersto also have best practices when it comesto
aproject's structure, how files should be named,
where images should be stored, how key names
should be given, and so on. Sample Project.

Publishing Orchestra-
tion

We have various automated flows that generate
nightly build installation kits for our product that
can be further tested by the QA team.

Although the published output can be obtained
from an Oxygen installation by running atrans-
formation scenario, over timeit'sagood ideato
automate the publishing by using an integration
server like Jenkins, for example, to constantly
poll the user guide project for modifications and
update an internal web site with the latest HTML

https://github.com/oxygenxml/dita-project-best-practices

Blog | 3 - DITA | 242

security vulnerabilities by updating old libraries
and by considering various scenariosin which at-
tackers would attempt to gain control over an ap-
plication.

Concept Softwar e Engineers Tech Docs Writer
or PDF outputs to show how the documentation
is evolving and give material to engineers who
want to review the published content. For the
Oxygen XML blog, for example, a Gradle build
file (on page 6) is used to automate the publish-
ing.

Read the Docs Welearn alot by doing, or by copy pasting or By reading the DITA 1.3 standard documen-
reusing content from other similar projectsthat | tation, for example, atechnical documentation
we have. But sometimes taking thetimetoread | writer might find various features that can be
the documentation for the frameworks and li- used in their project. They might also understand
braries that we use is really worth it. certain limitations in the way things work.

There are lots of resources (on page 8) for
learning DITA or for learning how to better use
Oxygen to edit DITA XML content. So, it is
sometimes worth taking the time to explore the
tools you are using and the capabilities of the
standard.

Requesting Help from | Besides an internal wiki of content and proce- Besides asking their peers for help, technical doc-

Peers dures, we rely on a network of colleagues, some | umentation writers also have various engineers
from our teams, some from others or from the and subject matter experts who could help when
system admins team. Over time, we cometo writing content either by giving feedback or by
know each other's strengths and know who to call | providing some initial content (some notes for ex-
when we need advice. Helping someone else usu- | ample) to be used for the official documentation.
aly takes priority over the current task.

Security We do our best to protect our applicationsfrom | Besides keeping the user guide contentsin a se-

cure location to avoid exposing information to the
competition or features that have not yet been re-
leased, the HTML output obtained from the user
guide contents also needs to be updated to con-
tain the latest Javascript libraries and not be sus-
ceptible to vulnerabilities when loaded in aweb
browser.

Content in the user's guide in general also needs
to be considered from the point of view of not
giving an attacker details about how the product
could be configured for use in other scenarios
other than the ones intended by the developers.

Server Side Validation

Validation and automated tests run on the server
side (we use a Jenkins integration server) when-
ever changes are made to source code for a cer-
tain project. If automatic testsfail, emails are
sent to the people who have committed the latest
changes that broke the builds.

Whenever you have multiple topic files, filters, or
content reuse, you may end up with potential val-
idation problems in the edited content, problems
ranging from broken links to invalid ID attribute
values or invalid topics.

Oxygen has avery useful Validate and check
for completeness action that checks lots of po-
tential problemsin the context of aDITA map,
but maybe not all people run such an action be-
fore they commit. Such an action can also be
scripted to run on the server sidein an integration
server like Jenkins, for example.

Terminology

There are lots of ways that a message can be con-
veyed. All messages presented to the end user

Controlled terminology (on page 286) is aso
an important aspect of atechnical writer's job.

https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html
https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html
https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html

Blog | 3 - DITA | 243

Concept Softwar e Engineers Tech Docs Writer
need to have acertain style, tone, and use plain
language.
Translation In generdl, all user interface stringsin an appli- | A DITA XML project that needs to be translated

cation will be translated to multiple languages so
we need to take this into account when designing
the application.

into multiple languages also needs to follow a se-
guence of best practices (on page 176).

User's Point of View

All features need to be discussed and implement-
ed from the point of view of the people who will
actually benefit from using them. For technical
people, this is sometimes difficult to do but we
try to constantly remind ourselves to implement
features that help certain real-world workflows to
be performed by the end user and not for the sake
of closing tickets.

The documentation also needs to target certain
user profiles and be written to help people per-
form tasks and understand concepts. The product
knowledge level of the end user is almost never
the same as that of the tech writer.

User Feedback

It'simportant to get feedback from end users.
This feedback gives usideas about what to imple-
ment in the future and also allows us to modify
existing features to better accommodeate certain
workflows. So, we try to make it as easy as pos-
sible to give feedback, we have a Report prob-
lem action directly in the application, we have a
support email address, aforum, user'slist, and on
each of our user's manual pages, thereisalso a
feedback comments section.

Receiving user feedback for the written documen-
tation is also very important to improve the docu-
mentation to cover the actual user needs. For ex-
ample, the Oxygen Feedback platform can be eas-
ily embedded in the generated web pagesto al-
low users to provide feedback related to the docu-
mentation. We use it for the Oxygen user's manu-
al, blog, and it's a very good mechanism to get in
touch with users and to improve the docs.

User Interface

An application may work very well from the
functionality point of view but if it does not look
very nice (ugly color theme, ugly icons, not intu-
itive user interface layouts) it will not end up get-
ting used very much.

A published user's guide also heeds to have ap-
propriate colors and fonts to improve readabil-
ity and find ability. So, besides the actual con-
tent care, decisions must also be made in terms
of what font styles and sizes to use, or what color
theme to implement.

Version Control

We use amix of Git repositories and Subversion
repositories for our software projects. Version
control allows usto collaborate, to have a history
of changes, and to have release branches for our
products.

Using aversion control system like Git similarly
givesthe possibility to collaborate on documen-
tation projects with various workflows (on page
154).

As an dternative, you can use acommercial con-
tent management system or in the cloud editing
solution.

No matter what storage system you use to col-
laborate, having a history of changes and release
branchesis a must.

Working with Al tools

Developers can work with ChatGPT to ask advice
about how to write various pieces of code, espe-
cialy in programming languages that they are not
familiar with. They can also ask for help re-writ-
ing messages or translating small pieces of con-
tent.

Working directly with Al tools or using an add-
on like the Oxygen Al Positron Assistant view
(on page 230), tech doc writers can also use

the Al tools to improve readability, remove gram-
mar problems, re-write content in various styles,
or translate content. So, Al tools are valuable for
writers as co-pilots.

Writers and software engineers have lots of thingsin common because we are all working with language and we communicate in
a specific language. Computer programming languages contain less words and are more simple than the English vocabulary, but
in the end we are all in the market of describing, expressing, and building large systems using simple terms.

https://www.oxygenxml.com/oxygen_feedback.html

Blog | 3 - DITA | 244

If you have feedback about these concepts and how they influence your writing, it is as usual, wel comed.

Chapter 4. Migrate

Oxygen XML Editor provides various facilities to migrate content from one format to another.

Migrating to a Structured Standards-based Documentation Solution

Potential clients come to thisworld of structured content authoring from two main sources:

1. They are starting fresh and after alittle bit of comparing between structured and unstructured editing, between opened
and closed solutions and some soul searching they come to regard structured authoring with a specific XML standard in
genera (and usually DITA in particular) as the possible solution for them.

2. They are migrating from a previous unstructured or structured solution.

| think people in this second category start thinking about structured writing when they start encountering certain limitations with
their current approach. These limitations they experience with their current system could be:

* The need to reuse more content.

With structured XM L authoring in general and with DITA in particular you have so many ways of reusing content. In a
previous blog post | tried to come up with an overview about all the ways in which you can reuse content using DITA:
DITA Reuse Strategies (on page 79)

Produce multiple outputs from the same content using some complex profiling conditions which are not supported in the
current work flow.

Stop thinking about how the content is styled.

Y ou may want to focus more on the actual content and on semantically tagging it than on the way in which it will be
presented in a certain output format.

Publish to more output formats than the current editing solution allows.

Using awidely adopted open source standard like DITA for documentation also means having access to a variety of
commercia and open source tools to generate various output formats from it. For example for obtaining the PDF you
have about 5-6 distinct possible solutions:Possibilities to obtain PDF from DITA (on page 100).

Enforce certain internal rules on the documents.

It's hard to impose best practices in unstructured documents. But with structured XML content, you can use Schematron
to easily cover this aspect and even to provide quick fixes for your authors: Schematron Checksto help Technical
Writing (on page 178).

Benefit of advice and help from alarger community of writers and developers.

When you are using a closed source solution, you may have only one forum and a couple of people willing to help. When
you have alarger community you will be able to reach out with asingle email to lots of people, and somebody may want
to help you.

Share documentation between different companies.

If alarger company which uses structured writing takes over a smaller one, the smaller company will need to adopt
structured writing as well.

Own your content.

Some editing solutions are closed source, you are forced to use asingle tool because there are no other tools being to
read that format. Then you need to ask yourself the question: “ Is this content actually mine?”

Blog | 4 - Migrate | 246

* Problems with your current tool vendor.

If the format is closed source and the tool vendor is not responsive to your needs, you need to somehow move your
content over to a market with multiple tool vendors available because competition also means smaller prices and better
customer support.

Switching to structured content writing also hasiits problems. And | think the main ones are these:

» The people. The fact that we all are reluctant to change. The learning curve. Writers might need to re-learn how to
structure and write their documentation. Besides the technical aspects they will need to learn to divide content in small
modules and to reuse parts in multiple places. Writers may not be willing to do this. We usually are very reluctant to
change tools if we do not see instant benefits deriving from it.

* Effort to convert the current available content to structured content. Y ou can either choose manual conversion or
automated conversion or in most cases amixture of the two. Conversion will never be perfect, you will still need to go
through the entire content and re-structure it taking into account module-based editing.

» Customize the obtained output format. Y ou may get out of the box various outputs from your content but you will aways
need to customize it to adhere to company standards. If you are using the DITA Open Toolkit for publishing you will
need basic XSLT development skills to customize the PDF and CSS skills to customize the XHTML based output.

* Money. You need to spend more money to get new tools, possibly anew CM S. Although | consider that starters, for
apilot project DITA does not need to be expensive. Here's how we're using DITA internally for our user's manual:
Collaboration for Documenting a Software Product using DITA (on page 290).

» Sometimes you might need to control the styling of your obtained output so much and it would be impossible to separate
the styling information from the content.

So can we draw a conclusion from all this?

Well, maybe not everybody interested in structured authoring will succeed to convert to it. But | think that one thing will hold
true in most cases:

Once you convert to structured content, you will never go back.

Migrating Various Document Formatsto DITA

Most companies do not start new DITA-based projects from scratch. They aready have content written in various other formats
and somehow they need that content converted to DITA. In this blog post, | will offer some conversion advice depending on the
format of your current project.

Migrating DocBook Content to DITA.

Y ou can migrate one or multiple DocBook documentsto DITA using the Oxygen Batch Documents Converter add-on: https./
www.oxygenxml.com/doc/ug-editor/topi cs/batch-converter-addon.html.

The DocBook to DITA conversion contains an option named Create DI TA maps from DocBook documents containing
multiple sections. When this option is selected, all sections from your DocBook document will be separated into individual
DITA topics and referenced in aDITA map.

Migrating Microsoft Word Content to DITA

The Oxygen XML User Manual has a detailed topic enumerating the possibilities to convert Microsoft Word content to DITA:
https://www.oxygenxml.com/doc/ug-editor/topi cs/ooxml-to-dita.html.

Migrating Excel Content to DITA

Y ou can use Oxygen's Smart Paste functionality to copy content from an Excel spreadsheet and paste it inside an opened DITA
topic. Also, as an aternate possibility, the Oxygen Batch Documents Converter add-on was updated to be able to batch convert
Excel to DITA: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/ooxml-to-dita.html
https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

Blog | 4 - Migrate | 247

Migrating LibreOffice Content to DITA

LibreOffice documents can be saved in Word format, and once you do that, you can convert the Word content to DITA as
described above. Alternatively, you can save the LibreOffice documents to DocBook and then apply the DocBook to DITA
conversion technique described above.

Migrating Google Docsto DITA

Y ou have three possibilities to convert Google Docsto DITA using Oxygen:

* Copy/Pasting from Google Docsto a DITA Topic opened in Oxygen in the Author visual editing mode should work and
convert the pasted content to DITA.

» Save the Google document as OpenDocumentFormat (ODF) then save the ODF document as DocBook with Libre
Office, then apply the DocBook to DITA transformation scenario shipped in Oxygen to convert DocBook to DITA.

* Save the Google document as HTML then use the Oxygen batch converter add-on to convert it to DITA: https://
www.oxygenxml.com/doc/ug-editor/topi cs/batch-converter-addon.html.

Migrating Markdown Content to DITA

The DITA Open Toolkit publishing engine bundled with Oxygen alows you to reference Markdown files directly in aDITA map
and either publish them directly or export the Markdown filesto DITA one by one: https://www.oxygenxml.com/doc/ug-editor/
topics/markdown-dita-2.html. If you want to convert multiple Markdown documents at once, you can use the Oxygen Batch
Documents Converter add-on: https://www.oxygenxml.com/doc/ug-editor/topi cs/batch-converter-addon.html.

MigratingHTML Content to DITA

Using Oxygen's Smart Paste functionality, you can open the HTML documents in aweb browser, then copy the contents and
pasteitin aDITA topic opened in Oxygen's Author visua editing mode. If you want to convert multiple HTML files, you can
use the Oxygen Batch Documents Converter add-on: https.//www.oxygenxml.com/doc/ug-editor/topics/batch-converter-
addon.html.

Migrating Unstructured FrameMaker to DITA

Thereis adetailed blog post enumerating the possihilities to convert Unstructured FrameMaker content to DITA: Migrating
Unstructured Adobe FrameMaker Content to DITA (on page 255).

Migrating MadCap Content to DITA

This open source project contains such a stylesheet which attempts to convert a Flare project to DITA XML and instructions
about how to useit. As an alternative some recent MadCap versions seem to have facilities to export content directly to DITA.

Migrating Confluence Content toDITA

To convert Confluence content to DITA, you can use the Oxygen Batch Documents Converter add-on: https://
www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

Y ou first need to export the content to HTML. For this, log in to your Confluence account and navigate to the specific space that
you want to export. Then go to Space Settings—Export space and choose to export it asHTML. Then, back on Oxygen, you
can then use the Confluence to DI TA action (available once the add-on is installed) to convert the exported i ndex. ht M file
into aDITA map with topics.

Migrating AsciiDocto DITA

The Asciidoctor third-party application can be used to convert AsciiDoc content to DocBook. Then, you can convert the
DocBook content to DITA using the method described here (on page 246).

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/markdown-dita-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/markdown-dita-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://github.com/oxygenxml-incubator/FlareToDITA
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://asciidoctor.org/

Blog | 4 - Migrate | 248

Migrating reStructuredText to DITA

The Pandoc third-party application can be used to convert reStructuredText content to DocBook or HTML. Then, you can
convert the DocBook or HTML content to DITA using the Oxygen Batch Documents Converter add-on.

MigratingLaTex to DITA

Y ou may use athird-party application (like Pandoc) to convert LaTex content to Word or HTML. Afterwards use the Oxygen
Batch Documents Converter: https://www.oxygenxml.com/doc/ug-editor/topi cs/batch-converter-addon.html

Migrating Other Formatsto DITA

Y ou may find third-party applications (like Pandoc) that can convert your content to HTML or to some kind of XML format like
DocBook. Once you have HTML or DocBook content, you can convert them to DITA using the advice above.

How to Migrate from Word to DITA

The need for migrating Microsoft Office® Word documentsto XML formats, and particularly to DITA, is quite afrequently
encountered situation. As usual, migration from proprietary formatsto XML is never perfect and manual changes need to be
made to the converted content. However, the methods below should help you find the best approach for your particular case:

Oxygen Batch Documents Converter add-on

The Oxygen Batch Documents Converter add-on can be installed in Oxygen and it allows you to convert one or more documents
to various formats.

More details about the main stages of the Word to DITA migration using the Batch Documents Converter add-on: Migrating MS
Word to DITA using the Batch Documents Converter (on page 249)

,'~ Note: The Batch Documents Converter add-on is the recommended way to convert one or multiple Word documents to
DITA content.

Smart Paste

1. Open the Word document in MS Office, select all the content, and copy it.

2. Open Oxygen and create anew DITA topic in the Author visual editing mode.

3. Paste the selected content. Oxygen's smart paste functionality (on page 271) will attempt to convert the content to
DITA.

WordtoHTML toDITA

1. Save your M S Office Word document asHTML.
2. Once you obtain that HTML, you have two possibilities:

o In Oxygen, Select File->Import->HTML Fileto import the HTML as XHTML. Then open the XHTML in
Oxygen and in the "Transfor mation Scenarios' view there should be four pre-configured transformation
scenarios to convert XHTML to DITA topics, tasks, references, or concepts.

o Openthe HTML filein any Web browser, select all of its content, and copy it. Then open Oxygen, create a new
DITA topic in the Author visual editing mode, and paste the selected content. Oxygen's smart paste functionality
(on page 271) will attempt to convert the HTML to DITA.

Word to DocBook to DITA

1. Open the Word document in the free Libre Office application and save it as DocBook.
2. Open the DocBook document in Oxygen.
3. Run the predefined transformation scenario called DocBook to DITA.

https://pandoc.org/
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://pandoc.org/
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://pandoc.org/
https://github.com/oxygenxml/oxygen-resources-converter

Blog | 4 - Migrate | 249

Word to DITA using DITA For Publishers

1. If the Word document is in the new DOCX format you can open it in Oxygen's Archive Browser view and then open
the document.xml file contained in the archive.

2. Run the predefined transformation scenario called DOCX DITA. ThisANT scenario runs the following build file:
OXYGEN_INSTALL_DIR/frameworks/dita/DI TA-OT/pluging/net.sourceforge.ditadpublishers.word2dita/buil d-
word2dita.xml over the DOCX archive and should produce a DITA project that contains a DITA map and multiple
topics.

3. You may need to do some reconfiguring to map DOCX stylesto DITA content.

Note: This method may also be helpful if you want to run it automatically with scripts, sinceit is based on the DITA OT and
Dita For Publishers plugins.

Migrating MS Word to DITA using the Batch Documents Converter

This blog post presents how you can migrate from MS Word to DITA using the Oxygen Batch Documents Converter add-on.

The migration process has three main stages:

1. Preparing Word Document for Migration (on page 249)
2. Converting the Word Document (on page 250)

3. Post-processing the DITA Content Converted from Word (on page 251)

A webinar presenting this migration is available here: Working with DITA in Oxygen - Migrating to DITA and Refactoring

A list of frequently asked questions about the migration process can be found here: Word to DITA Conversion FAQ (on page
252)

Preparing Word Document for Migration

The Word to DITA conversion uses the styles found in the Word document for creating structure and formatting the text into the
output document. The converter ignores the font, size or color set on text content. To achieve the best results, the Word document
has to be well styled.

This preparation step assumes correcting various cases when formatting of the content was not made using styles. These are the
things that you should take into account when checking the Word document:

1. It'simportant to make sure that titles and headings were formatted using styles because the topics and sections structure
of the output document results from these.

Thisisan example of bad formatting: Instead of using the "Heading 1" style, when formatting atitle paragraph, the
writer changed its font, size and color, keeping the default "Normal" style:

Calibri {Body) 18 - AN Aav B == Al
. My headin N | No Spaci adi Heading 2
B I U~a x, ¥ A« &+ A ====. & im. v e orma oSpacing Heading 1 ading2 -

Font N Paragraph] Styles 1]

Care|and Preparation
When caring for your flower garden you want to feed your plants properly, control pests and

2. For the rest of the content, you can try to use the default Word styles for creating semantics where it's possible.

Thisis an example of bad formatting: Instead of using the "Quote" style, when formatting a paragraph, the writer added
it between quotes characters and changed its font and alignment keeping the default "Normal" style:

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html

Blog | 4 - Migrate | 250

Californian F8 w12« AN Aav A

My heading Normal No Spacing Heading 1 Heading2 ~

== o E. -

B I U~ x ¥ A £ A

Font N Paragraph] Styles

“Thiglis my quote.”

Converting the paragraphs containing the "Normal" style will result in DITA p elements. So if you omit this step, you
also have the option of adding semantics by post-processing the resulting DITA content.

") Note: Thetext content formatted usi ng the bold, italic, underline, strike-through, subscript or superscript actions
are handled by the converter. So you don't need to replace them with correspondent styles like " Strong" and
"Emphasis’.

3. Save the shapes as SV G images because the converter doesn't support them. See the following link for more information:
How can | preserve the Word shapes? (on page 254)
Converting the Word Document

For converting the Word document you have to install the Batch Documents Converter add-on in Oxygen. For this, you can
follow the installation procedure from the documentation.

Configuring Word styles mapping

The Word to DITA conversion has two main steps: Word to HTML to DITA. The converter allows customising the first step by
setting a mapping between Word stylesand HTML elements. It already contains a default mapping configuration and because of
this, it knows to handle the default styles and the custom styles that are based on the default styles.

Here you have more information about the Word Styles M apping option: Conversions from Word

Thisis an example of styles configuration: How can | fix unrecognized style warnings? (on page 252)

Configuring the Maximum Heading L evel for Creating Topics

The converter has an option named "M aximum Heading L evel for Creating Topics' in the Oxygen Prefer ences > Batch
Documents Converter preferences page that allows setting a maximum heading level to process as a DITA topic. The headings
with a higher nesting level will be converted to <sect i on> elements.

This option can correspond with the value of the Show levels option that you configurein MS Word for generating a table of
contents.

For example, consider a document with the following headings hierarchy in the Word document:

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__section_tdq_wvx_qsb
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__wordStylesMapping

Blog | 4 - Migrate | 251

Contents
Introduction (Heading 1)

Pruning (Heading2)
Garden Preparation (Heading 2)

Flowers by Season (Heading 1)
Autumn Flowers (Heading 2)

Saﬁ_via (Heading 3)
Species (Heading4)
Characteristics (Heading4)
Glossary (Heading 1)
Copyright (Heading 1)

if you keep the default 5 value for the Maximum Heading L evel for Creating Topics option, all Word sections will be
converted to DITA topics. If you set the option to 3, the "Species' and "Characteristics' Word sectionswill be converted to
DITA sectionsinside the "Salvia" DITA topic.

Converting the document

You can invoke the Word to DITA action from the following places for converting the Word documents:

* Batch Documents Converter from the Tools menu.

* Batch Documents Converter in the contextual menu from the Project view.

» Additional conversions from the Filel mport menu.

* Import from the Append child, Insert Before, or Insert After sub-menusin the contextual menu from the DITA Maps
Manager view. Note that these actions automatically insert references to the resulting documents into the DITA map.

The Word to DITA conversion dialog contains an option named Create DITA Maps from Word documents containing
multiple headings that allows us to choose if the output will be asingle DITA Topic or aDITA Map. When the optionis
checked, the resulting DITA topics will be extracted into separate files and referenced into an output DITA Map, otherwise, the
topics will be grouped into a DITA Composite file. The resulting topics can be controlled using the Maximum Heading Level for
Creating Topics (on page 250) option.

Post-processing the DITA Content Converted from Word

Oxygen provides refactoring actions that can be used for organizing and customizing the resulting DITA documents, to take into
account various DITA best practices.

These are some of the most used refactoring operations that can be applied after the conversion process:

* In the Project view, the M ove Resour ce and Rename Resour ce actions can be applied to DITA or non-
DITA resources:. https://www.oxygenxml.com/doc/ug-editor/topi cs/dita-main-files.html#dita-main-
files__moving_or_renaming_nondita_resources

* Inthe DITA MapsManager view you can arrange the topics and nodes using the drag and drop
support: https://www.oxygenxml.com/doc/ug-editor/topi cs/dita-maps-manager.html#dita-maps-
manager__drag_and_drop_in_the dita_maps manager

https://www.oxygenxml.com/doc/ug-editor/topics/refactoring-xml-documents-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html#dita-main-files__moving_or_renaming_nondita_resources
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html#dita-main-files__moving_or_renaming_nondita_resources
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html#dita-maps-manager__drag_and_drop_in_the_dita_maps_manager
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html#dita-maps-manager__drag_and_drop_in_the_dita_maps_manager

Blog | 4 - Migrate | 252

* There are refactoring actions for converting between DITA topic types. So, if the resulting topics look more like DITA
Tasksor DITA Concepts, you can simply convert them using refactoring actions like Convert to Task, Convert to
Concept and others.

* There are actions for generating unique IDs for elements (Generate | Ds) or changing the ids of the topics using the file
names (Changetopic ID to file name).

* When resulting documents contain nested topics or sections, you can use Convert Nested Topicsto New Topics or
Convert Sectionsto New Topicsto extract new files.

* Topics can be extracted from the map hierarchy into anew DITA map, using the Extract to new DITA Map action.

* TheConvert DITA Map to Bookmap and Convert Bookmap to DITA Map actions allow converting between map
and bookmap types.

* For converting links inside your documents from direct addressing to indirect key-based addressing, you can use the
Definekeysfor all topic references action.

* There are also operations for modifying elements inside documents: https://www.oxygenxml.com/doc/ug-editor/topics/
predefined-refactoring-operati ons-x-tool s.html#predefined-refactoring-operations __refactoring_operations_for_elements

In the main menu Tools> XML Refactoring dialog you can find the list of all built-in refactoring operations: https://
www.oxygenxml.com/doc/ug-editor/topi cs/predefined-refactoring-operati ons-x-tool s.html

If you want to make custom batch changes to the converted documents you can create a custom refactoring operation: https://
www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tool s.html.

Example of a custom refactoring operation (on page 253).

Word to DITA Conversion FAQ

How can | fix unrecognized style war nings?

When converting a Word document, the styles that don't have a mapping in the Word styles mapping table from the preferences
page are converted to simple paragraph elements and awarning is reported for each of them in the Results view.

As an example, suppose | have converted the Word document and | see the following warnings in the Results view:

Results

Info Desaription - 3 items Resource System ID
W Unrecognized "Document Title" style for “p" Word eement. You can configure the mapping betwezn styles and dlements in the Batch Documents Converter preferences page. sample.docx Ci\Users\cosmin_duna\Deskiop\sample. docx
W Unrecognized *Keyboard Key” style far 't Word element. You can configure the mapping between styles and elements in the Batch Documents Canverter preferences page. sample.docx Ci\Users\cosmin_duna\Desktop\sample. docx

[cXc) o)

W Unrecognized "Keyboard Key” style for "t Wiord element. You can configure the mapping between styles and elements in the Batch Documents Converter preferences page. sample.docx Ci\Users\cosmin_duna\Desktop\sample.docx

Here are the steps that you should follow for this configuration:

1. Open the Plugins/ Batch Documents Converter preferences page in Oxygen.
2. Tofix the unrecogni zed "Document Title" style for "p" Wrd el ement Warning, add anew row inthe Word styles
mapping table with the following cells:
a Type"p" inthe Word element cell (because the unrecognized style was found on a Word paragraph).
b. Type "Document Title" in the Word style cell.
¢. Inthe"HTML elements" cell, you need to add a corresponding HTML element. For this example, a
corresponding element is "<h1>" for the default mapping of the "Title" style. So, type "h1:fresh" into this cell.
The":fresh" suffix instructs the converter to create a new element every time it finds thiskind of paragraph.
When it's not set, the converter will try to reuse the elements and combine sequences of the same style of
paragraphsinto a single element.
3. Tofix the unrecogni zed "Keyboard Key" style for "r" Wrd el ement warning, add anew row in the Word styles
mapping table with the following cells:
a Type"r" inthe Word element cell (because the unrecognized style was found on a Word character).
b. Type"Keyboard Key" inthe Word style cell.
¢. IntheHTML elementscell, you need to add a corresponding HTML element. For this example, a
corresponding element is "<kbd>" for the default mapping of the "HTML Keyboard" style. So, type "kbd" in this
cell.

https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html#predefined-refactoring-operations__refactoring_operations_for_elements
https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html#predefined-refactoring-operations__refactoring_operations_for_elements
https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html

Blog | 4 - Migrate | 253

After completing these steps, you should have these two rows in the configuration table:

p

Document Title hl:fresh

r

Keyboard Key kbd

For more information about the Wor d styles mapping configuration, see the following section from the documentation:
Conversions from Word.

How can | configure the styles mapping when the wanted element doesn't exist in HTML?

A frequent case when setting the mapping configuration for a custom styleis to not find a correspondent element in HTML,
although one existsin DITA.

As an example, suppose | have a Word document that contains a character custom style named "filepath”. We know that a
correspondent element existsin DITA, but we cannot find onein HTML.

These are the steps that can be applied to handle this case:

1. Goto the Plugins/ Batch Documents Converter preferences page and add the following mapping in the Word styles

mapping table:

r Filepath i.filepath

2. Convert the Word document to DITA. The characters styled with the Filepath style in Word are converted to the <i >

element with the "filepath™ @ut put cl ass attribute.

3. Movethe output files to your project, select them, and apply the "Rename element” refactoring operation using the "/

i[@outputclass = 'filepath’]" XPath for matching the target <i > element and changing them to the <f i | epat h> DITA
element.

4. Apply the "Remove attribute” refactoring operation using the "//filepath[@outputclass = 'filepath’]" XPath for matching

the target elements and deleting the @ut put cl ass attributes.

Instead of steps 3 and 4, you can also create a custom refactoring operation that makes these two changes, like this:

1. Create an XSLT file (for example, named bat ch- convert er - post - pr ocessi ng. xsl) that iterates over al
elements from the document, finds the <i > elements with the "filepath” @ut put cl ass attribute, and replaces them with
the<fi| epat h> elements without copying the @ut put cl ass attribute:

<?xm version="1.0" encodi ng="UTF- 8" ?>

<xsl : styl esheet ="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or ni
="http://ww:.w3. or g/ 2001/ XM-Schema" ="xs" ="2.0">
<xsl:tenpl ate ="@ | node()">
<xsl : copy>
<xsl : appl y-t enpl at es ="@ | node()"/>

</ xsl : copy>
</ xsl :tenpl at e>

<xsl:tenpl ate ="i[@utputclass = 'filepath']">
<xsl : el enent ="filepath">
<xsl : appl y-tenpl at es ="node()"/>

</ xsl : el enent >
</ xsl : tenpl at e>
</ xsl : styl esheet >

2. Create an XML Refactoring operation descriptor (for example, named bat ch- convert er - post -
processi ng. xnl) that references the stylesheet and provides descriptions:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<r ef act ori ngOper ati onDescri pt or ="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
="ht t p: // ww. oxygenxm . conl ns/ xm Ref act ori ng" ="o0p_qzq_y2x_nshbh"
=" Post - processi ng Batch Docunents Converter">
<descri pti on>Post - process the resulting DI TA docunents fromthe Wrd conversion using the Batch
Docunents Converter add-on.</description>

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__wordStylesMapping

Blog | 4 - Migrate | 254

<scri pt =" XSLT" ="bat ch-convert er-post - processi ng. xsl "/ >
</refactoringQperationDescri ptor>

3. Copy these two files to afolder scanned by Oxygen XML Editor when it loads the custom operation.
4. Apply the new custom operation named " Post-processing Batch Documents Converter” that can now be found in the list
of refactoring operations from the "XML Refactoring" dialog box.

How can | configurethe styles mapping for paragraphs styled as code blocks?
In Word, a code block is represented as a sequence of paragraphs styled with a custom style that adds a custom font and border,
like this:

Jo o ==Ll == jo,
B . - _{— -+ @

x, ¥ B ==== 1=~ Code Snippet Normal NoSPacing ~ hiting pictate
Aav A A O L B[] . ’
] Paragraph] Styles] Voice

JEE
*.Get-access-to-API-used-to-control-the-Oxygen-editors.Y
*.This-static-access- -be-used-when-running-the-standalone-or-the-Eclipse-version-of-0xygen-
from-any-p -code. 9
-9

-Returns-the-pluginWorkspace.¥
k

public-static-PluginlWorkspace-getPluginkorkspace()-{9
--return- (PluginWorkspace)StaticComponentsRegistry.get(StaticComponentKey .PLUGIN WORKSPACE) ;"
19

To add amapping for this custom style, follow these steps:

[EY

. Open the Options — Preferences = Plugins = Batch Documents Converter preferences page in Oxygen.

. Add anew row to the Word styles mapping table.

3. Enter "p" in the Word element cell, and enter "Code Snippet” in the Word style cell to match the paragraphs styled with
"Code Snippet".

4. Enter "pre:separator('\n')" inthe HTML elements cell. The <pr e> element is the corresponding HTML element for

these types of paragraphs. Since we want to merge these sequences of "Code Snippet" style paragraphs, the ":fresh"

marker was not used. The ":separator("')" syntax configures a separator when the same type of consecutive paragraphs

are merged. If it isn't specified, we would obtain a <pr e> element with asingle line of text.

N

Using this configuration, a<pr e> element is the result in the converted DI TA output for every code block sequence.
For obtaining <codebl ock> elementsin DITA, see How can | configure the styles mapping when the wanted element
doesn't exist in HTML? (on page 253) for setting a class attribute on the resulting <pr e> HTML element (by setting
"pre.codeblock: separator ('\n')" inthe HTML elements cell) and creating a custom refactoring operation.

How can | preservethe Word shapes?

The converter doesn't support the Word shapes and these will be ignored when the document is converted to HTML or DITA. A
workaround is to save them manually as SV G imagesin MS Word before the conversion. For this, you should follow these steps
for every shape inside the document:

1. Select the shape.

2. Invoke the Cut action from the contextual menu.

3. Invoke the Paste Special... action from the Home > Paste menu.
4. In theresulting dialog box, select Picture (SVG) and OK.

After completing these steps, the document will contain "SVG" images that will be preserved in the HTML or DITA results.

https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-operations.html

Blog | 4 - Migrate | 255

Batch converting HTML to XHTML

Suppose you have a bunch of possibly "not-wellformed" HTML documents already created and you want to process them

using XSL T. For example, you may want to migrate the HTML documentsto DI TA using the predefined XHTML to DITA
Topic transformation scenario available in Oxygen. So you need to create valid XML wellformed XHTML documents from the
existing HTM L documents and you need to do thisin a batch processing automated fashion.

There are lots of open source projects that deliver processors that can convert HTML to itswellformed XHTML equivalent. For
this blog post, we'll use HTML Tidy. Here are some steps to automate this process:

1. Create anew folder on your hard drive (for example, | created one on my Desktop: C:\ User s\ r adu_cor avu\ Deskt op
\tidy).

2. Download the HTML Tidy executable specific for your platform (http://binaries.html-tidy.org/) and placeit in the folder
you created in step 1.

3. Inthat same folder, create an ANT build file called bui I d. xmi with the following content:

<pr oj ect =" ="Ti dyUpHTM.t oXHTM." ="main">
<basenane ="fil ename" ="${filePath}"/>
<t ar get ="main">
<exec ="tidy.exe -o ${output.dir}/${filename} ${filePath}"/>
</target>

</ proj ect >

4. In the Oxygen Project view, link the entire folder where the original HTM L documents are located.
5. Right-click the folder, choose Transform->Configure Transformation Scenarios... and create a new transformation
scenario of the type: ANT Scenario. Modify the following properties in the transformation scenario:

a. Change the scenario name to something relevant, like HTML to XHTML.

b. Change the Working Directory to point to the folder where the ANT build fileislocated (in my case: C:\ User s
\radu_cor avu\ Deskt op\ ti dy).

c¢. Change the Build file to point to your custom build.xml (in my case: C:\ User s\ r adu_cor avu\ Deskt op\ ti dy
\bui I d. xm).

d. Inthe Par ameter s tab, add a parameter called filePath with the value ${cf} and a parameter called output.dir
with the value of the path to the output folder where the equivalent XHTML fileswill be stored (in my case, | set
it to: €\ User s\ radu_cor avu\ Deskt op\ t est Qut put XHTM.).

6. Apply the new transformation scenario on the entire folder that contains the HTML documents. When it finishes, in the
output folder you will find the XHTML equivalents of the original HTML files (XHTML documents that can later be
processed using XML technologies such as XSLT or XQuery).

Migrating Unstructured Adobe FrameMaker Content to DITA

This article explores ways to convert unstructured FrameMaker documentsto a DITA XML project.

Using a FrameMaker Plugin

Thereis aFrameMaker plugin that can be used for this type of conversion: http://Ieximation.com/tool s/info/fm2dita.php.

Using FrameM aker Conversion Table

FrameMaker has a"Conversion Table" feature that can be used for this type of conversion: https://hel p.adobe.com/en_US/
framemaker/using/usi ng-framemaker/user-guide/WSB3FD6CD 7-6930-474f-BB1E-64762D105DB6_ver12.0.html.

Unstructured FrameMaker toHTML toDITA
To perform this migration, your documents must be in the ".mif" format.

If your documents are in the ".fm' format, you can use the M1 F Wash Utility to convert your book into a.mif document: https://
hel px.adobe.com/framemaker/kb/how-to-use-mifwash-utility-in-framemaker.html.

The 'mif* document must go through the following conversion and correction steps to obtain DITA content:
Publish Your Unstructured FrameMaker toHTML

http://www.html-tidy.org/
http://binaries.html-tidy.org/
http://leximation.com/tools/info/fm2dita.php
https://help.adobe.com/en_US/framemaker/using/using-framemaker/user-guide/WSB3FD6CD7-6930-474f-BB1E-64762D105DB6_ver12.0.html
https://help.adobe.com/en_US/framemaker/using/using-framemaker/user-guide/WSB3FD6CD7-6930-474f-BB1E-64762D105DB6_ver12.0.html
https://helpx.adobe.com/framemaker/kb/how-to-use-mifwash-utility-in-framemaker.html
https://helpx.adobe.com/framemaker/kb/how-to-use-mifwash-utility-in-framemaker.html

Blog | 4 - Migrate | 256

In this step, the mif document is converted to HTML using the Basic HTML scenario from FrameMaker. Here are
the substeps:

1. Create a settings file for publishing that contains mappings to HTML elements for al paragraph and
character styles:

Style Mapping Qutputs

Style Preview:

= Paragraph Styles Source Output

. Body

1 - Bullet

- CellBody T t T t

i - CellHeading eX eX

1 - Chapter

1 Code
Footnote
Heading

- Note Output Style: [fuse Source Style] v|

- Section

- Step

- Stepl

- Subsection

- Subtitle

- TableFootnote [Exclude from output

- TableTitle

|| - Title [split into topics based on this style

i - Character Styles

i Table Styles

- Cross-Reference Autonumber:

- Image Settings) Ignare
General Settings

Remove Overrides Edit Style

@ Map to HTML Tag [t v

() Convert to List (using €SS autonumbering)

o Convert to Text

Use Template: Select

Manage CSS: R~ @

* Not applicable for PDF output.

] Save Save As Save and Close Cancel

It's very important to have mappings to HTML heading elements for paragraph styles that mark headings
in your document. In the example above, the "Chapter", "Heading", and "Title" styles are mapped to the

"h1" element, the "Subtitle" and "Section" stylesto the 'h2' element, and the " Subsection™ style to the 'h3'
element.

The styles set on the list should be mapped to the 'li* elements. In the example, it'sthe "Bullet", " Step",
and "Stepl" styles.

The paragraph styles without mapping are converted to HTML paragraphs, so you can skip the ones
where the mapping is not necessary. The "Body", "CellBody", and "CellHeading" styles don't have a
mapping in the example above.

Blog | 4 - Migrate | 257

2. Publish the 'mif' document to HTML using Basic HTML:

Publish | Hypertext

=B

Source Document flowers.mif ~ | | O & 2 £

E Responsive HTMLS
[] Mobile App

Microsoft HTML Help
<[> Basic HTML

Settings File: SetftingsHtml.sts BL

Qutput Folder: C\Users\Cosmin\Desktoploutput

This should result in an *.htm' document located in the output directory:

flowers » Basic HTML » flowers

Mame

assets
D flowers.css
@ flowers.htrn

Correct the Resulting HTML Using a Custom Refactoring Operation

The HTML document that results from publishing requires some extra processing before applying the DITA
conversion.

For this, do the following:

1. Download the content from the following GitHub repository: https://github.com/oxygenxml/dita-
refactoring-examples.

2. Copythecorrect Ht ml FromM f. xm andcorrect Ht m FromM f . xsl filesfrom the "43.
FM conversion fixes' directory in one of the locations that Oxygen scans when loading the custom
refactoring operations: https://www.oxygenxml.com/doc/ug-editor/topi cs/sharing-custom-refactoring-
operations.html.

3. Restart Oxygen.

4. Add the output directory that containsthe HTML file to your project.

https://github.com/oxygenxml/dita-refactoring-examples
https://github.com/oxygenxml/dita-refactoring-examples
https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-operations.html
https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-operations.html

Blog | 4 - Migrate | 258

5. In the Project view, right-click the HTML file, and invoke the Refactoring> XML Refactoring action.

6. In the resulting dialog box, search for the operation named Correct HTML resulting from 'mif' and apply it
to the HTML document.

The applied refactoring operation corrects two problemsin the HTML document:

¢ Thelist items without a parent element (‘ol’ or 'ul’).

» Targets of the cross references that have the "name" attributes from anchor elements instead of the "id"
attributes.

Convert HTML to DITA Using the Oxygen Batch Documents Converter Add-on

The Batch Documents Converter add-on has to beinstalled in Oxygen for this step. Follow the installation
procedure here.

Before converting the document, you should configure which headings are handled as topics or sections. For this,
use the Maximum Heading L evel for Creating Topics options from the add-on's preferences page.

For converting the document, do the following:

1. Right-click the HTML document in the Project view and invoke the "HTML to DITA" option from the
Batch Documents Converter submenu.

2. Inthe resulting dialog box, make sure that the Ignore HTML 'div' elements option is selected (because
this element is not useful in the output) and that the Create DITA mapsfrom HTML documents
containing multiple headings option is a so selected:

HTML to DITA X

Input files:

D:\lowers\Basic HTML flowers\flowers.him

Add folder. .. Add files... Remove

Output folder:
D:\lowers'Basic HTML \flowersoutput B

Open the converted files

Create DITA maps from HTML documents containing multiple headings

Ignore HTML 'div' elements

3. Click the Convert button.

The resulting DITA map preserves the structure of the document, images, tables, and internal and external links:

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__maximumHeadingLevelForCreatingTopics

Blog | 4 - Migrate | 259

DITA Maps Manager g 8 % eidsdita X
OE-BEk-B®4 BHEw by
Context: <Current map ~ -
® flowers.ditamap X 4 B
2= - Flowers H
f @ - Introduction Irls
4 [- care and Preparation
- Pruning From Wikipedia, the free encyclopedia.
B - Garden Preparation
4 [- Flowers by Season Iris is a b ¢ genus < of between 200-300 species of flowering plants with showy flowers. It takes its name from the Greek word for a
4 - Spring Flowers rainbow. referring to the wide variety of flower colors found among the many species. As well as being the scientific name. iris is also
: ::’wdmp very widely used as a common name; for one thing, it refers to all Iris species. but some plants called thus belong to closely related
a4 [- Glossary genera. In North America, a common name for irises is P flags 4, while the subgenus > Scorpiris 4 is widely known as Pjunos 9,
- genus 3
) EE,E"NE| particularly in horticulture.

B - Copyright

b[Iis_sanguimeal44

Note that migration from proprietary formats to XML is never perfect and manual changes need to be made. The names of the
original styles are preserved on the @uput cl ass attributes and these can be used for adding extra processing using refactoring
operations.

Adobe and FrameMaker are either registered trademarks or trademarks of Adobe in the United States and/or other countries.

Automation - Using DITA XML Topic Titlesto Generate File Names

When you create anew DITA topic in Oxygen XML Editor, you can usually specify the title of the topic and that titleis
used by the application to propose afile name. For example, for atopic title like WebHelp Output, the file name could be
webhel p_out put. di ta.

In general, | think having file names that match the topic titles seems like a best practice technique to identify each topic based
solely on the file name. However, there are cases where the file names do not match the topic or map titles and for such cases, |
created a free-to-use Python script to update the file names of all topics and maps based on the titles specified inside them. The
script should aso update any link or conref references to reflect the file name changes it makes.

I think this script that updates file names based on titles for an entire DITA XML project could be useful in these cases:

* There are content management systems (CM Ss) that use unique 1Ds as file names (for example, abc434243243. xni).
When such projects are exported from the CMS, the file names look quite ugly on disk and also when publishing the
projects to HTML -based outputs, you might get linksto HTML fileslike abc434243243. ht ni , which are ugly and hard to
remember.

* Intime, from one version of the user's guide to another, the titles of certain topics may change and having away to
update the file names based on titlesin the entire project may be useful.

* Sometimes after migrating another file format like Microsoft Word to aDITA Map using the Oxygen Batch Documents
Converter add-on, you may want to make sure the topic file names reflect their titles.

Below, you can leave feedback or comments about such a practice or about using the script for your project.

https://github.com/oxygenxml/dita-refactoring-examples/tree/master/46%20Topic%20titles%20to%20File%20Names

Chapter 5. SDK Development (Plugins, Frameworks)

Oxygen XML Editor provides various ways to customize the application either by adding frameworks to customize editing for a
certain XML vocabulary or by creating plugins.

Customizing Oxygen XML Editor (Overview)

Let's assume you just bought Oxygen and want to customize it in order to better suit your team's workflow or to add support for
your custom XML vocabulary. | will attempt to provide a set of use cases along with indications and useful links about what
customization should be done in order to cover each use case:

Add support for editing a specific XML vocabulary

This kind of support usually should include:

* New filetemplates.

* Validate opened XML documents according to a custom schema.

* Provide custom CSSto be used in the Author visua editing mode.

* Provide custom toolbar, menu, and contextual menu actions to be used in the Author visual editing mode.

Such support is done using a document type/framework configuration: The Oxygen SDK (Part 2: Frameworks) (on page 272).

Customize the existing support for a specific XML vocabulary

Oxygen comes with pre-configured framework configurations for the most commonly used XML standards such asDITA,
Docbook, TEI, or XHTML. You may want to customize the existing configuration for one of these vocabularies and share the
customi zation with others. Such customizations may include:

* Provide custom file templates: Sharing New Custom File Templates for a Specific Vocabulary (on page 264).
* Provide acustom CSS layer: Customizing the DITA Visual Editing Experience (on page 137).

* Provide custom Schematron validation rules: Sharing Schematron Validation Rules (on page 262).

* Provide custom actions or modify the existing actions.

All of these customizations can be done by extending the existing framework configuration and then sharing the extension:
Document Type Extension Sharing (on page 261).

Provide custom settings

Y ou may want to provide all members of the team with afixed set of options: Sharing Application Settings (on page 289).

M odify the application appearance or behavior using plugins

Oxygen plugins can be used to:

* Contribute custom views and toolbars for the entire application.

* Filter out existing views or toolbar actions.

* Contribute afixed set of optiong/settings to the application.

* Register various listeners and be notified when a document is opened, closed, saved, and so on.
» Usethe existing API to make changes to the opened documents.

A more detailed overview of Oxygen plugins can be found here: The Oxygen SDK (Part 1: Plugins) (on page 272).

The most popular plugin extension is the Workspace Access plugin extension: https://www.oxygenxml.com/doc/ug-editor/topics/
workspace-access-plugin.html. This extension is notified when the application starts and can contribute custom views, custom
main menu items, custom main toolbar actions, or add listeners for various document-rel ated changes.

https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 261

Thereis also a JavaScript-based workspace access plugin extension that can use JavaScript to call our Java API: https://
www.oxygenxml.com/doc/ug-editor/topi cs’workspace-access-plugin-js.html.

A set of sample plugins built with the JavaScript-based extension can be found here: https://github.com/oxygenxml/wsaccess-
javascript-sample-plugins.

Our Maven-based SDK can be used to devel op both plugins and framework Java customizations: https://www.oxygenxml.com/
oxygen_sdk_maven.html.

Document Type Extension Sharing

Instead of copying an entire framework configuration folder (like DITA or Docbook), then modifying and distributing it, you
can choose to extend that framework and distribute the extension. This way, you benefit from new functionality added to the base
framework by newer Oxygen versions and you can still use your customizations.

The steps below describe how to construct and share an extension of the DITA framework that removes certain elements from
the content completion list:

1. Somewhere on your local disk (in aplace where you have full write access), create afolder structure like:
cust om framewor ks/ di t a- ext ensi on.

2. Inthe Document Type Association / L ocations preferences page, add the path to your cust om _f r anewor ks folder
in the Additional frameworksdirectorieslist. Click OK or Apply to save your changes.

3. Inthe Document Type Association preferences page, select the DI TA document type configuration and use the Extend
button to create an extension for it.

4. Givethe extension a custom name (for example, DITA - Custom), then change its Stor age to external, and saveit to a
path like: pat h/ t o/ . . ./ cust om franmewor ks/ di t a- ext ensi on/ di t a- ext ensi on. f r anewor k.

5. Make changes to the extension (for example, go to the Author->Content completion tab and add elements that should
not be presented to the end usersin the Filter - Remove content completion items list).

6. Click OK to close the dialog box and then either OK or Apply to save the preferences changes.

After you perform the steps above, in the di t a- ext ensi on folder you will have afully functioning framework that can be
shared with others.

The framework can be shared with othersin several ways:

* Copy ittotheir [OXYGEN_DI R] / f r amewor ks directory.

* Somewhere on the local disk, createacust om f r anewor ks folder, copy the framework there, and then in the
Document Type Association / L ocations preferences page, add the path to your cust om f r amewor ks folder in the
Additional frameworksdirectorieslist.

* Distribute the framework aong with a project by following these steps:

1. Onyour local drive, create adirectory with full write access that contains the project filesand a
cust om f ramewor ks folder that containsyour di t a- ext ensi on.

2. Start the application, go to the Project view, and create a project. Save it in the newly created directory.

3. Inthe Document Type Association / L ocations preferences page, select Project Options at the bottom of the
page.

4. Inthe Additional frameworksdirectorieslist, add an entry like: ${ pd} / cust om f r amewor ks.

5. Add other resources to your project (for example, you can have all of your DITA content located inside the
project folder).

6. Y ou can then share the new project directory with other users. For example, you can commit it to your version
control system and have them update their working copy. When they open the customized project filein the
Project view, the new document type becomes available in the list of Document Types.

* Deploy the framework/document type configuration as an add-on.

After your team members install the framework, they can check in the Document Type Association preferences page (in the list
of Document Types) to seeif the framework is present and if it appears before the bundled DITA framework (meaning that it has
higher priority).

https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin-js.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin-js.html
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://www.oxygenxml.com/oxygen_sdk_maven.html
https://www.oxygenxml.com/oxygen_sdk_maven.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/packing-and-deploying-addons.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 262

Sharing Schematron Validation Rules

Custom Schematron rules are a great way to ensure consistency for the edited XML structure, especially when thereisalarge
team working on the same set of documents. Y ou can use Schematron for numerous use cases. For example, to make sure that
certain elements are not used at all, to impose restrictions on the amount of text for an element, or to impose restrictions on
certain elements based on various attribute values or text content set in other elements. Furthermore, you can define quick fixes
for each Schematron rule to give the technical writer proposed solutions for the reported problem. In a previous blog post, |
described how we use Schematron rules for our Oxygen User's Manual to impose restrictions when editing DITA content:
Schematron Checks to help Technical Writing (on page 178).

Once you define the Schematr on rules, they can be shared with the other members of your team via a document type
framework configuration: The Oxygen SDK (Part 2: Frameworks) (on page 272).

In this post, I'm going to provide some precise steps to share a set of Schematron ruleswith aDITA framework extension.

Instead of making changes directly to the DITA framework configuration folder (located in OXYGEN_INSTALL_DIR
\framewor ks\dita) and distributing it, you can choose to extend the DI TA framework and distribute the extension. Thisway,
you will benefit from new functionality added to the base framework in newer versions of Oxygen and you can still use your
customizations.

The following steps describe how you can extend a DI TA framework that contains an additional Schematron rulesfile:

1. Create afolder structure (for example, custom_frameworks/dita-extension) somewhere on your local disk, in aplace
where you have full write access.

2. Inthat new folder structure, create another folder (custom_framewor ks/dita-extension/rules) that will contain all of
your custom Schematron files.

3. Create anew 1SO Schematron file (for example, additionalRules.sch) that contains the additional rules you want to
impose. For example, the following Schematron rule reports an error if the @scale attribute is used on an image:

<schema "http://purl.oclc.org/dsdl/schenmatron” ="xslt2"

"http://ww. schemat ron- qui ckfi x. cont val i dat or/ process" >

<pattern>
<rul e ="*[contai ns(@l ass, ' topic/inmge ')]">
<assert ="not (@cale)">
Dynamical |y scal ed i mages are not properly displayed, you
shoul d scale the image with an inage tool and keep it within
the reconmended wi dth and height limts.
</ assert>
</rul e>
</ pattern>
</ schema>

4. In the Document Type Association / Locations preferences page, add the path to your custom_frameworksfolder in the
Additional frameworksdirectorieslist. Click OK or Apply in the Preferences dialog to save your changes.

5. In the Document Type Association preferences page, select the DITA document type configuration and use the Extend
button to create an extension for it.

6. Give the extension a custom name (for example, DITA - Custom), then change its Stor age option to External, and then
saveit to apath such as: path/to/.../custom_framewor ks/dita-extension/dita-extension.framework.

7. Make whatever changes you desire to the extension, go to the Validation tab, edit the default DITA validation scenario,
and add an extra validation stage to it (a stage that uses your custom Schematron schema). More details about validation
scenarios can be found here: https://www.oxygenxml.com/doc/ug-editor/topics/dg-validation-scenarios.html.

8. Click OK to close the dialog box and then either OK or Apply to save the preferences changes.

After you perform the steps above, in the dita-extension folder you will have afully functioning framework extension that can
be shared with others.

There are several methods for sharing the framework and you can read about them here: https://www.oxygenxml.com/doc/ug-
editor/topics/author-document-type-extension-sharing.html.

After your team members install the framework, they can check the Document Type Association preferences page to make sure
the framework is present in the list of Document Types and that it appears before the bundled DITA framework (meaning that it
has higher priority).

https://www.oxygenxml.com/doc/ug-editor/topics/dg-validation-scenarios.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-document-type-extension-sharing.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-document-type-extension-sharing.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 263

Y ou can use the framework extension mechanism to customize numerous aspects of the DITA functionality in Oxygen. For
example, you can remove various elements from the content completion list: Document Type Extension Sharing (on page
261). Or you can distribute custom new file templates: Sharing New Custom File Templates for a Specific Vocabulary (on
page 264).

Public hosted Oxygen Plugin and Framework Projects

All resources, Frameworks and Plugins which we make publicly available to contributors can be found on the oxygenxml
GitHub group:https://github.com/oxygenxml/:

* Plugins: https://github.com/search?g=topic:oxygen-standal one-plugin+org:oxygenxml & type=Repositories

Examples:
o Workspace containing sample Oxygen plugins implemented in Javascript: https://github.com/oxygenxml/
wsaccess-javascript-sample-plugins.
* Frameworks: https://github.com/search?g=topic:oxygen-framework+org:oxygenxml & type=Repositories.

Examples:
o Framework which adds Daisy support in Oxygen: https://github.com/oxygenxml/Daisy
o Framework which adds STRATML support to Oxygen: https.//github.com/oxygenxml/stratml
o S1000D Framework which adds some limited support to edit S1000D documentsin the Author visual editing
mode: https://github.com/oxygenxml/S1000D

Besides, there are interesting Oxygen plugins and frameworks which are devel oped as separate public projects and maintained by
third parties (either users or companies). | will try to compile alist below:

* Project Argon by German company Axxepta provides a plugin which can connect Oxygen to a BaseX server: https://
github.com/axxepta/project-argon. The integration a so provides CM S-like capabilities for searching and version control.
The pluginis available as an add-on: http://argon-author.com/.

LanguageT ool plugin for Oxygen: https://github.com/daniel naber/oxygen-languagetool -plugin

The latest version of X Spec framework is available as an external framework or an add-on. See X Spec Wiki for more
details.

Y ou can define terminology terms and then create Schematron rules for them using the Doctales terminology checker
Oxygen framework: https://github.com/doctal es/org.doctal es.terminology.

Framework which adds JATS/NLM support for Oxygen developed by Wendell Piez: https://github.com/wendel Ipiez/
oXygenJAT Sframework.

Framework for validating XSL-FO with Antenna House extensions developed by Antenna House: https://github.com/
AntennaHouse/focheck.

Fork of the JATS framework which adds Schematron checks and Literatum package building: https://github.com/le-tex/
oXygenJAT Sframework_Literatum

Three open-source frameworks for editing ATA-2300, S1000D and RIF XML documents in Oxygen developed by
Amplexor: https://github.com/Amplexor.

Besides being bundled with Oxygen the TEI framework is also available as a project partly maintained by the TEI
community: https://code.google.com/p/oxygen-tei/

HisTEI: An Oxygen framework for historical documents encoded in TEI.

More details: https://github.com/odaata/HiSTEI, https.//www.oxygenxml.com/pipermail/oxygen-sdk/2014-
November/000182.html

oXbytei is an oXygen framework for editing TEl, that is configured by TEI's header. It offers high-level functions that
facilitate everyday work on TEIl documents. More details: https://github.com/SCDH/oxbytei#an-oxygen-framework-
configured-by-tel

Ediarium is an extension package for TEI editing within Oxygen.

More details:https://www.bbaw.de/en/bbaw-digital/tel ota/research-and-software/ediarum, https://github.com/tel ota/
ediarum

https://github.com/oxygenxml/
https://github.com/search?q=topic:oxygen-standalone-plugin+org:oxygenxml&type=Repositories
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/search?q=topic:oxygen-framework+org:oxygenxml&type=Repositories
https://github.com/oxygenxml/Daisy
https://github.com/oxygenxml/stratml
https://github.com/oxygenxml/S1000D
https://github.com/axxepta
https://github.com/axxepta/project-argon
https://github.com/axxepta/project-argon
http://argon-author.com/
https://github.com/danielnaber/oxygen-languagetool-plugin
https://github.com/xspec/xspec/wiki/Running-with-Oxygen#running-the-latest-version-of-xspec-with-oxygen
https://github.com/doctales/org.doctales.terminology
https://github.com/wendellpiez/oXygenJATSframework
https://github.com/wendellpiez/oXygenJATSframework
https://github.com/AntennaHouse/focheck
https://github.com/AntennaHouse/focheck
https://github.com/le-tex/oXygenJATSframework_Literatum
https://github.com/le-tex/oXygenJATSframework_Literatum
https://github.com/Amplexor
https://code.google.com/p/oxygen-tei/
https://github.com/odaata/HisTEI
https://www.oxygenxml.com/pipermail/oxygen-sdk/2014-November/000182.html
https://www.oxygenxml.com/pipermail/oxygen-sdk/2014-November/000182.html
https://www.oxygenxml.com/
https://tei-c.org/
https://github.com/SCDH/oxbytei#an-oxygen-framework-configured-by-tei
https://github.com/SCDH/oxbytei#an-oxygen-framework-configured-by-tei
https://www.bbaw.de/en/bbaw-digital/telota/research-and-software/ediarum
https://github.com/telota/ediarum
https://github.com/telota/ediarum

Blog | 5 - SDK Development (Plugins, Frameworks) | 264

* TEI Facsimile Plugin offers a side view in which users can load an image and see the marked areas (al the zone
elements from a TEl document), draw new areas over the image and copy them into the editor:https://github.com/
oxygenxml/TEl-Facsimile-Plugin.

* A Workspace Access Plugin for Oxygen XML Editor that creates TEI-conform UUIDs starting with a letter: https://

github.com/digicademy/CustomUUID

TEI Authorizer isaplugin for Oxygen which lets you query remote authority filesviaHTTP and use retrieved data to

autocompl ete attribute values in your TEI documents and define and implement formsto fill out new data and post it to

your server via HTTP:https://github.com/BCDH/TEI-Authorizer

Framework for editing UBL documents (UBL 2.1, 2.2 csd01 and 2.2 Pre-award csd02wd01pa0l) developed by G. Ken

Holman: https://cranesoftwrights.github.io/resources/ubl /#oxygenubl

Framework for validating OA SIS genericode 1.0 documents developed by G. Ken Holman: https://

cranesoftwrights.github.io/resources/ubl/#oxygengc.

Automatic builder for Oxygen frameworks which allows user to describe framework's behaviour by using only XQuery,

HTML, and CSS, and automatically generate the framework archive ready to be deployed (developed by Claudius

Teodorescu): https://github.com/claudius108/oxygen-addon-builder-plugin

Plugin developed by Clausius Teodorescu which allows opening a JavaFX -based web browser in Oxygen: https://

github.com/claudius108/oxygen-webview-plugin.

OpenDaocs Plugin allows you to focus on specific file types opened in the editor in order to perform various actions on

them. GitHub repository: https://github.com/nkutsche/opendocs/.

XdltGui Project by Patrik Stellmann is an example of how you can show dialogs to the end users from an XSLT script:

https.//github.com/dita-semia/ X sltGui.

Plugin developed by pagina GMBH which expands a custom editor variable called ${clipboard} to the clipboard

contents: https:.//github.com/paginagmbh/oxygen-plugin_clipboard-editor-variable.

The NameDr opper Oxygen plugin can be used to simplify the process of tagging namesin XML and associating those

names with authoritative identifiers: https://github.com/emory-libraries-ecds/namedropper-oxygen.

» Sample Oxygen plugin demo by Tobias Fisher: https://github.com/tofi86/oxygen_PluginDemo.

If anyone else wants to add something elseto thelist, just drop us an email.

Sharing New Custom File Templates for a Specific VVocabulary

The support Oxygen provides for editing DI TA topics comes with quite an extensive set of new file templates used to create new
DITA topic types. If you have ateam of writers, you may want to filter out certain new file templates or add your custom new
file templates, then share these custom templates with your team members.

This blog post will attempt to give you some clear steps for sharing a custom set of new file templates with your team.

All the original DITA new topic templates are located in the folder: OXYGEN_I NSTALL_DI R\ f ranewor ks\ di t a
\'t enpl at es.

Instead of making changes directly to that folder, copying the entire DI TA framework configuration folder (like

OXYGEN_|I NSTALL_DI R\ f r amewor ks\ di t a), modifying and distributing it you can choose to extend the DI TA framework
and distribute the extension. In thisway, you will benefit of new functionality added to the base framework by newer Oxygen
versions and still use your customizations.

The steps bel ow describe how an extension of the DI TA framework which adds a custom set of new file templates can be
constructed and shared:

1. Create somewhere on your disk, in a place where you have full write access afolder structure like:
cust om framewor ks/ di t a- ext ensi on.

2. Inthat new folder structure create another folder cust om f r amewor ks/ di t a- ext ensi on/ t enpl at es which
will contain all your custom new topic templates.

3. Inthe Document Type Association / L ocations preferences page add in your Additional frameworksdirectorieslist
the path to your cust om_f r anewor ks folder. Click OK or Apply in the Preferences dialog to save your changes.

4. Inthe Document Type Association preferences page select the DI TA document type configuration and use the Extend
button to create an extension for it.

5. Give a custom name to the extension, for example DITA - Custom and then change its Stor age to external, then save it
toapathlike: path/to/ .../ custom frameworks/ dita-extension/dita-extension.franework.

https://github.com/oxygenxml/TEI-Facsimile-Plugin
https://github.com/oxygenxml/TEI-Facsimile-Plugin
https://www.oxygenxml.com/doc/ug-oxygen/index.html#concepts/workspace-access-plugin.html
https://github.com/digicademy/CustomUUID
https://github.com/digicademy/CustomUUID
https://github.com/BCDH/TEI-Authorizer
https://cranesoftwrights.github.io/resources/ubl/#oxygenubl
https://cranesoftwrights.github.io/resources/ubl/#oxygengc
https://cranesoftwrights.github.io/resources/ubl/#oxygengc
https://github.com/claudius108/oxygen-addon-builder-plugin
https://github.com/claudius108/oxygen-webview-plugin
https://github.com/claudius108/oxygen-webview-plugin
https://github.com/nkutsche/opendocs/
https://github.com/dita-semia/XsltGui
https://github.com/paginagmbh/oxygen-plugin_clipboard-editor-variable
https://github.com/emory-libraries-ecds/namedropper-oxygen
https://github.com/tofi86/oxygen_PluginDemo

Blog | 5 - SDK Development (Plugins, Frameworks) | 265

6. Make changes to the extension, go to the Templates tab, remove all previous entries from it and add a new entry
pointing to your custom templates folder: ${ f r amewor kDi r} / t enpl at es.
7. Click OK to close the dialog and then either OK or Apply to save the preferences changes.

After you perform the steps above you will have inthe di t a- ext ensi on folder afully functioning framework extension
which can be shared with others.

The framework can then be shared with othersin severa ways:

* Copy ittotheir [OXYGEN_DI R] / f r amewor ks directory.

* Create somewhereon disk acust om f r amewor ks folder, copy the framework there and then from the Document
Type Association / L ocations preferences page add in your Additional framewor ks directorieslist the path to the
cust om f ramewor ks folder.

* Distribute the framework along with a project.

Follow these steps:

1

2.
3.

On your local drive, create adirectory with full write access, containing the project filesand a

cust om f r anewor ks folder containing your di t a- ext ensi on framework.

Start the application, go to the Project view and create a project. Save it in the newly created directory.

In the Document Type Association / L ocations preferences page, select Project Options at the bottom of the

page.

. Add in the additional framework directorieslist an entry like ${ pd}/ cust om f r anewor ks.
. Add other resources to your project, for example you can have all your DITA content located inside the project

folder.

. You can then share the new project directory with other users. For example you can commit it to your version

control system and have they update their working copy. When they open the customized project filein the
Project view, the new document type becomes available in the list of Document Types.

* Deploy the framework/document type configuration as an add-on.

After your team members install the framework they can check in Document Type Association preferences pagein the list of
Document Types to seeif the framework is present and if it appears before the bundled DITA framework (meaning that it has

higher priority).

Y ou can use the framework extension mechanism to customize lots of aspects of the DITA functionality in Oxygen. For example
you can remove various elements from the content completion list: Document Type Extension Sharing (on page 261).

Composing Author Actions

Suppose that each time you insert aDITA tablein the Author visual editing mode, you want to always have the attributes

col sep="1" rowsep="1" frame="al|" set on it. The purpose of thispost isto create anew DI TA-specific action for inserting a
table that invokes the current table insertion action and then forces those three attributes to be set on the table element. Here are
some steps to accomplish this:

1. Follow the steps listed in this older blog post to create an extension of the DITA framework: Customizing the DITA
Visual Editing Experience (on page 137).

2. Inthe Document Type Association preferences page, edit the DI TA framework extension you just created.
Go to the Author->Actions tab and create a new action with the ID change.table.colsep. Use the predefined
ChangeAttributeOperation to set the (colsep="1" attribute) on the closest table element. The custom action would look
likethis:

https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/packing-and-deploying-addons.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 266

Action
D: change.table.colsep|
Name: Set colsep to "1"

Menu access key:

Large icon (24x24):

Small icon (16x16):

Operation priority: Increase Decrease

[] Evaluate activation XPath expressions even in read-only contexts

)

Description:

How to translate frameworks

I:‘ Browse
I:‘ Browse

Shorteut key: Clear
Enable platform-independent shortcut keys (1)
Operations
1
Activation XPath: ancestor-or-self::table | ancestor-or-self-simpletable
This XFath expression applies only to elements and attributes. More details
Operation: ro.sync.ecss.extensions.commons.operations.ChangeAttributeOperation Choose
Arguments:
Name Description Type Value
elementLocation An XPath expression indicating the element whose attrib... XPathExpression (ancestor-or-self::table | ancestor-or-self-simpletable)[1]
name The attribute local name. String colsep
namespace The attribute namespace. Leave it empty for no namesp... String
value The attribute value. Set it empty to remove the attribute. String 1
removeEmpty True means that the attribute should be removed if an e... ConstantList true
editAttribute It an in-place editor exists for this attribute, it will autom... ConstantList true

Cancel

3. Based on the same idea, create two more new actions called "change.table.rowsep" and "change.table.frame" that will
set therowsep="1" and frame="all" attributes on the closest table, respectively.

4. Create anew action with the ID insert.table.fixed.attributes and use the predefined
ExecuteM ultipleActionsOperation to call 4 actionsin arow, the original insert.table action ID that inserts the table,
followed by the three action IDs that set various attribute values to the inserted table.

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 267

Action *
D: insert.table.fixed.attributes Description: ${i18n(insert.table_description)}
Name: ${i18n(insert.table)}
Menu access key:
How to translate frameworks
Large icon (24x24): /images/Table24.png @ Browse
Small icon (16x16): /images/Tablel6.png @ Browse
Shortcut key: Clear
Enable platform-independent shortcut keys "E_'
Operations
1
Activation XPath: oxy:allows-global-element("*", "class", " topic/table ") or
oxy:allows-global-element("*", "class", " topic/simpletable ")
This XPath expression applies only to elements and attributes. More details
Operation: ro.sync.ecss.extensions.commons.operations.ExecuteMultipleActionsOperation Choose
Arguments:
MName Description Type Value
actionlDs The IDs of the actions that will be executed in sequence, separated either by... String insert.table change.table.colsep change.table.rowsep change.table.frame
Q
Operation priority: Increase Decrease + %
D Evaluate activation XPath expressions even in read-only contexts

5. Go to the Author->Toolbar tab and in the "Current actions' panel, remove the current "insert.table" action and
replace it with the insert.table.fixed.attributes action ID.

6. When editing a DITA topic, pressing the toolbar action for inserting a table should now call your custom action that sets
those three attributes on the inserted table.

Implementing a Custom Author Action to Split aTable

Let's say you are editing XML documents belonging to a certain vocabulary (like DITA) for which thereis aframework
configuration available. The purpose of this post isto create a new custom Author action for splitting the current edited table
in two based on the table row in which the cursor is located. The custom action will use Javascript to call Oxygen's APl and
accomplish this. Here are some steps to follow:

1. Follow the steps 1,3, 4 and 5 listed in this older blog post to create an extension of the DITA framework: Customizing
the DITA Visual Editing Experience (on page 137).

2. Inthe Document Type Association preferences page, edit the DI TA framework extension you just created. Go to the
Author->Actions tab and create a new action with the ID split.table. Use the predefined JSOper ation to invoke a
custom Javascript code. The custom action definition would look like this:

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html#dg-default-author-operations__jsoperation

Blog | 5 - SDK Development (Plugins, Frameworks) | 268

Action 54
ID: split.table Description: Split Table
Name: Split Table

Menu access key:

How to translate frameworks
Large icon (24x24): I:‘ Browse

Small icon (16x16): I:‘ Browse

Shorteut key:

Clear
Enable platform-independent shortcut keys (1)
Operations
1
Activation XPath: ancestor-or-self::table or ancestor-or-self: :simpletable
This XPath expression applies only to elements and attributes. More details
Operation: ro.sync.ecss.extensions.commons.operations.JSOperation Choose
Arguments:
MName Description Type Value
script The Javascript content to execute. It must have a functi... Script doOperation(){ ¥
4
Operation priority: Increase Decrease + %

[] Evaluate activation XPath expressions even in read-only contexts

)

Cancel

3. Set asvalue to the script parameter of the operation the following Javascript code:

function doOperation(){
current =
aut hor Access. get Docunent Control | er (). get NodeAt O f set (aut hor Access. get Edi t or Access() . get Caret O f set (
D)
t abl eNode = nul | ;
rowNode = nul | ;
while(current !'= null) {
if(tabl eNode == null && ("table".equal s(current.getNane())
|| "infornmaltable".equal s(current.getName()))) {
t abl eNode = current;

if(rowNode == null && ("row'.equal s(current.getName()) || "strow'.equal s(current.getName()))) {
rowNode = current;
}

current = current.getParent();

}
if(tableNode !'= null && rowNode != null) {
I/l Create a fragnent starting fromthe rowto the end of the table
secondTabl e =
aut hor Access. get Docunent Cont rol | er (). cr eat eDocunent Fr agnent (r owNode. get Start Of f set (),
t abl eNode. get EndCf f set ()) ;
//Delete the content fromthe first table.
aut hor Access. get Docunent Control | er (). del et e(rowNode. get Start Of f set (), tabl eNode. get EndCf f set ()
= M)
/llnsert the second table.
aut hor Access. get Docunent Control | er (). insertFragnment (tabl eNode. get EndOf fset() + 1, secondTable);

Blog | 5 - SDK Development (Plugins, Frameworks) | 269

}

4. Go to the Author->Toolbar tab and use the Current actions panel to add the action with ID split.table to the toolbar.

5. When editing a DITA topic, pressing the toolbar action for splitting the table should now call your custom action and
split the current table.

6. You can add keyboard shortcuts for all custom actions either when defining them or from the Oxygen main menu
Preferences->Menu Shortcut Keys page.

Adding a Custom Author Action to the Content Completion Window

Let's say you are editing XML documents belonging to a certain vocabulary (like DITA) for which thereis aframework
configuration available. The content completion window appears in the Author visua editing mode when you pressthe ENTER
key and usually presents the set of XML elements allowed at the caret position. The same list of elementsis present in the
Elements view. These elements are usually proposed based on the DTD, XML or Relax NG vocabulary used to validate the
XML document.

But there may be cases in which you want to customize the content completion items. Thereis a content completion
configuration file which can be changed to allow for various use cases:

* Disallow acertain set of elementsto appear in the content completion window.
* Declare aset of required child elements which should be inserted automatically when the parent element is inserted.
 Declare a set of required attributes which should be inserted when a certain element is inserted.

There are also anumber of use cases not covered by the content completion filter file:

* You want to add a new item in the content completion filter which triggers a complex action. For example when the item
is selected you show adialog and ask the end user from some data, then insert a custom XML fragment based on that
data the end user filled out.

* You want to replace an existing item in the content completion window with an item with the same name but which
again triggers a more complex action.

Further in the blog post we'll go through the steps necessary to replace an item from the content completion window with a
complex action. As an example for the DI TA vocabulary when the created item is selected in the content completion window we
want the inserted XML content to contain the current date like:

<created ="2020- 03- 26"/ >
Here are some steps to follow:

1. Follow the steps 1,3, 4 and 5 listed in this older blog post to create an extension of the DITA framework: Customizing
the DITA Visual Editing Experience (on page 137).

2. Inthe Document Type Association preferences page, edit the DI TA framework extension you just created.
Go to the Author->Actions tab and create a new action with the ID cr eat ed. current . dat e. Use the predefined
InsertFragmentOper ation to insert asmall XML fragment. The XML fragment uses an editor variable which will be
expanded to the current date. There are plenty of other editor variables (on page 292) to choose from.

The custom action definition would look like this:

https://www.oxygenxml.com/doc/ug-editor/topics/configure-elements-attr-cc-individually.html
https://www.oxygenxml.com/doc/ug-editor/topics/configure-elements-attr-cc-individually.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html#dg-default-author-operations__insertfragmentoperation

Blog | 5 - SDK Development (Plugins, Frameworks) | 270

B Action X

1D: created.current.date Description: Insert the DITA <created> element with the current
date,
Name: created

Menu access key:

How to translate frameworks

Large icon (24x24): D Browse
Small icon (16x16): D Browse
Shortcut key: Clear

Enable platform-independent shortcut keys @

Operations
1

Activation XPath: oxy:allows-child-element"created™)

This XPath expression applies only to elements and attributes. More details

Operation: ro.sync.ecss.extensions.commons.operations.[nsertFragmentOperation Choose
Arguments:

Name Description Type Value

fragment The fragment to be inserted Fragment <created date="§{date(yyyy-MM-dd)}"/>
insertLocation An XPath expression indicating the insert locat... XPathExpress...

insertPosition The insert position relative to the node deter... Constantlist [nside as first child

schemaAware Controlling if the insertion is schema aware or... Constantlist true

goToNextEditablePo... After inserting the fragment, the first editable... Constantlist true

Operation priority: Increase Decrease + %

|:| Evaluate activation XPath expressions even in read-only contexts

@ Cancel

There are plenty of other pre-defined operations which can be used from an Author action. For example a Javascript-
based operation (on page 267), there are some other examples of what such operations can do in a separate GitHub
project.

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html
https://github.com/oxygenxml/javascript-sample-operations
https://github.com/oxygenxml/javascript-sample-operations

Blog | 5 - SDK Development (Plugins, Frameworks) | 271

3. Go to the Author->Content Completion tab, find the new action in the Available Actionslist and add it to the Current
actionslist. You will be able to add it both in the content completion list and the Elements view. In the Filter - Remove
content completion itemslist add an entry for cr eat ed because we want to remove the original item and replace it with
the action.

4. Save al your changes by using the Ok button both in the document type configuration dialog and in the Pr eferences
dialog.

5. When editing a DITA topic in the Author visual editing mode you can press ENTER to show the content completion
window, choose cr eat ed and your custom Author action will be called instead of the original item.

How Special Paste worksin Oxygen

If you've worked with one of the XM L vocabularies for which Oxygen has out of the box support like DITA, Docbook, TEI,
XHTML you've probably already used the support Oxygen has for converting content pasted in the application from external
applications like Microsoft Word, Excel or from any web browser. Thisisavery useful feature for converting various types of
content to XML because it preserves and converts styling, links, lists, tables and image references.

The feature relies on the fact that when copying content in the applications mentioned above, they set in the clipboard the HTML
equivalent of the copied content. So all Oxygen hasto do is clean up that HTML, make it wellformed XHTML and apply
conversion XSLT stylesheets over it.

This support is not hardcoded and anybody who is developing an Oxygen framework customization (on page 272) for acertain
XML vocabulary can provide conversion stylesheets for external pasted HTML content.

I will describe how thisworks for the DITA framework and you can do the same for yours. Y ou can aso use this information to
modify the way in which smart paste works for the bundled framework configurations.

1. Inthe Preferences->Document Type Association page you can choose to edit (or extend) the DITA document type
association.

2. In the Extensions tab the Extensions bundle implementation is set to DI TAExtensionsBundle which residesin the
DITA Javaextensions archive ditajar.

3. The DITAExtensionsBundleis an extension of the ExtensionsBundle API and it provides its own external object
extension handler:

/**
* @ee ro.sync. ecss. extensions. api . Ext ensi onsBundl e#cr eat eExt er nal Qbj ect | nserti onHandl er ()
*/
@verride
publ i c Aut hor Ext er nal Obj ect | nserti onHandl er creat eExt ernal Qbj ect | nsertionHandl er () {
return new DI TAExt er nal Obj ect | nsertionHandl er();
}

4. The DITAEXxternalObjectl nsertionHandler extends the base class Author Exter nalObjectl nsertionHandler and
provides areference to its specific conversion stylesheet:

| **

* Bee
ro. sync. ecss. ext ensi ons. api . Aut hor Ext er nal Obj ect | nserti onHandl er #get | npor t er St yl esheet Fi | eNane(ro. syn
C. ecss. ext ensi ons. api . Aut hor Access)
*/
@verride
protected String getlnporterStyl esheet Fi | eNane(Aut hor Access aut hor Access) {
return "xhtnl 2di tabDriver.xsl";

}

,'~ Note: The Extensionstab also allows you to specify the external object insertion handler as a separate
extension.

5. In the same Document Type edit dialog in the Classpath tab you will see that there is areference to aframework-
specific resources folder like:${ f r amewor k} / r esour ces/

6. If you look on disk in the DITA framework resour cesfolder: " OXYGEN_| NSTALL_DI R\ franmewor ks\dita
\ resour ces" you will find the xhtml2ditaDriver.xdl stylesheet there. The stylesheet imports various other

https://www.oxygenxml.com/doc/ug-editor/index.html#tasks/dg-extensions-bundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExternalObjectInsertionHandler.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 272

stylesheets which you could probably fully reuse and which apply various cleanups on HTML produced with MS Word.
It also handles the conversion between the pasted HTML content and DITA so it isagood starting point, you can copy
the entire set of XSLT stylesheets to your framework and use those as a starting point.

The Oxygen SDK (Part 1: Plugins)

During the last years we added alot of API and extension points to Oxygen in order to allow for different customizationsto the
application. But our documentation is sometimes lacking. We mostly rely on Javadoc documentation and on Java samples.
Here's some feedback we got at the last Oxygen Users Meetup in Munich thisyear:

“Too less information about frameworks, plugins, everything is spread over certain documents, webinars, etc .
Please centralize these information in one form.”

I will try to centralize these resources and add some useful links for people who want to start customizing Oxygen. First the
difference between aframework and a plugin:

* A plugin can be used to customize the behavior of the entire application no matter what XML document is currently
being edited.

* A framework configuration provides validation, content completion and editing support for a specific XML vocabulary.

Plugins:

A plugin isafolder containing a descriptor plugin.xml file and various other JAR libraries and resources.http://
www.oxygenxml.com/doc/ug-oxygen/index.html#topics/preferences-plugins.html

Only the standalone version of Oxygen supports plugins. The Eclipse Plugin version of Oxygen isitself a plugin and can be
customized by adding a plugin in the Eclipse workbench which depends on the Oxygen Eclipse plugin. Despite of this, most of
the APl iscommon.

The plugin can be deployed either by copying it to the plugins folder of an Oxygen installation:https://www.oxygenxml.com/
doc/ug-editor/topics/howto-install-plugins.html or by deploying it as an add-on:http://www.oxygenxml.com/doc/ug-oxygen/
index.html#tasks/depl oying-addons.html

The Oxygen Plugins SDK :https://www.oxygenxml.com/oxygen_sdk.html#Devel oper_Plugins contains Java sources and
Javadoc for all the API accessible from aplugin. The Plugins SDK also contains sample plugins and their Java code. This Java
code should be very helpful to get you started and to show how various API can be used.

Although there are many types of plugins:http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/pluginTypes.html
the most useful plugin extension typeisthe "Workspace Access' extension type:http://www.oxygenxml.com/doc/ug-oxygen/
index.html#concepts/workspace-access-plugin.html Thiskind of plugin alows you to use the APl and add or remove toolbar
and main menu buttons, add custom views and toolbars. It also allows you to access and control/make changes to the XML
documents opened in the workbench.

Asan example, all full-featured integrations which have been created to connect Oxygen with a specific CM S or remote
repository use a combination of "Workspace Access' and "Custom Protocol” plugin: http://www.oxygenxml.com/doc/ug-oxygen/
index.html#topi cs/howto-cms-plugin.html

Y ou can create automated tests for your plugins:http://www.oxygenxml.com/doc/ug-oxygen/index.html#topi cs/automated-
tests.html and even debug their functionality:http://www.oxygenxml.com/doc/ug-oxygen/index.html 2g=/doc/ug-oxygen/topics/
debug-plugin.html

The Oxygen SDK (Part 2: Frameworks)

Thisisthe second part of ablog post | started some time ago:

The Oxygen SDK (Part 1: Plugins) (on page 272).

https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/preferences-plugins.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/preferences-plugins.html
https://www.oxygenxml.com/doc/ug-editor/topics/howto-install-plugins.html
https://www.oxygenxml.com/doc/ug-editor/topics/howto-install-plugins.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#tasks/deploying-addons.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#tasks/deploying-addons.html
https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/pluginTypes.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#concepts/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#concepts/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/howto-cms-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/howto-cms-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-tests.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-tests.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/debug-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/debug-plugin.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 273

There are two ways of customizing the application, by implementing a plugin or by implementing a framework:
https://www.oxygenxml.com/doc/ug-editor/topics/api_fag_plugin_framework_difference.html
A framework configuration provides validation, content completion and editing support for a certain XML vocabulary.

If you are already using Oxygen for editing DITA, Docbook, XHTML or TEI documents you may notice that Oxygen knows
how to validate these vocabularies and that it can propose content completion entries while you are editing. Also when you are
editing in the Author visual editing mode you have lots of custom vocabulary-specific toolbar buttons which can be used to insert
links, images, to manipulate tables and so on. This happens because each Oxygen installation comes with pre-bundled framework
configurations for certain XML vocabularies that we consider to be more important for our users.

Knowing how to create and modify a framework/document type association configuration will benefit you in two ways:

1. Create your own framework which adds editing support to Oxygen for certain specific XML vocabularies and then
distribute it to your team.
2. Customize an existing framework bundled with the installation (DITA, Docbook, etc) and change certain behaviorsin it.

Our user manual contains a specia step by step tutorial which explains how a new framework configuration (document type
association) can be created and configured:

https://www.oxygenxml.com/doc/ug-editor/topics/authoring_customization.html

The Oxygen Prefer ences->Document Type Association page lists all detected frameworks (document type associations).
Usually looking inside one of the pre-configured document type associations (eg: DITA) isagood place to start exploring what
such a customization contains:

1. Association rules - when one of these rules matches the opened XML document, Oxygen will associate it with the
current document type association. The rules are pretty simple to compose, they refer to a certain root name, namespace,
certain attributes set on the root and so on.

2. Schema - specifies agrammar to be used to providing validation and content completion if the opened XML document
does not refer directly to any particular gramar.

3. Classpath - alist of JAR libraries which contain Java extensions for this specific framework.

4. Author - contains all necessary support for editing the XML in the Author visua editing mode:

o CSS- one or more CSSfiles to be used when rendering the XML. If you define alternate CSSs, you will be able
to switch between them when editing. The user manual contains alist of supported CSS features and additional
available extensions.

o Actions - alist of actions specific for modifying the edited content. An action has a name, description, icons
and shortcut key. It also has one or more activation contexts which depending on an XPath expression enable a
certain operation be executed. A fair amount of basic operations are aready available but you can create your
custom operations.

o Menu, Contextual menu and Toolbar - you can easily mount defined actions to the main document type menu,
to the contextual menu or to the special Author toolbar(s).

o Content Completion - add defined actions to the content completion window (shown when ENTER is pressed
in the Author editor mode) or remove existing entries from the content completion window. Y ou can for
example replace some of the insert suggestions given by the association grammar with your own custom actions.

5. Templates - points to folders which contain new file templates for this particular framework. These new file templates
will be shown in the New wizard dialog.

6. Catalogs contains alist of XML catalogs which will be used to indirectly solve various references (like references to
schemas or other XML documents).

7. Transformation may contains a predefined list of transformation scenarios which are available when you want to
publish your opened XML document to various output formats.

8. Validation may contain a predefined list of validation scenarios which are used to add complex multi-stage validation
(with multiple engines) for the XML documents matching the document type association.

9. Extensions - contains implementations of the available Java extensions which are used to provide further functionality
for editing in the Author visual editing mode. Here's what some of the extensions do:

https://www.oxygenxml.com/doc/ug-editor/topics/api_faq_plugin_framework_difference.html
https://www.oxygenxml.com/doc/ug-editor/topics/authoring_customization.html
https://www.oxygenxml.com/doc/ug-editor/topics/document-type-association-rules-tab.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 274

o Author ExtensionStatel istener - provides away to be notified when the XML was opened in the Author
editing mode. Y ou can then add all kinds of listeners and react to edit events done by the user. For example add
amodification listener, send the edited content to an external spell checker engine and then add highlightsin the
content on invalid constructs.

o Author Exter nalObjectlnsertionHandler - reactsto drag and drop and copy/paste events containing with
HTML content or resources. In the case of DITA for example this handler is responsible of the automatic
conversion of HTML pasted from the browser to DITA content.

o SchemaM anager Filter - filter and modify the insertion items detected from the associated grammar when
editing XML content. For example even if the schema proposes certain elements as valid insertions at the caret
offset, you can filter out and restrict the suggestions given by the associated schema (grammar).

o StylesFilter - take control over the rendering styles for each node by adding this layer of Java customization
over the styles provided by the associated CSSs.

o Author SchemaAwar eEditingHandler - handle special editing cases and provide fallbacks which keep the
document in avalid state. For example if the user starts typing text between two paragraphs, the handler can
automatically create a new paragraph.

Y ou can create automated tests for your frameworks:
http://ww.oxygenxml.com/doc/ug-oxygen/index.html#topi cs/automated-tests.html
and even debug their functionality:

https://www.oxygenxml.com/doc/ug-editor/topi cs/debug-sdk.html

Y our First Oxygen Add-on

A framework configuration (on page 261) provides validation, content completion, and visual editing support for a certain
XML vocabulary.

Existing framework configurations that come bundled with Oxygen can be extended and modified. For example, the DITA
framework configuration that adds support for editing DI TA documents can be modified to remove existing actions, add custom
actions, or modify many other behaviors: Document Type Extension Sharing (on page 261).

One way of distributing framework configurations is by using Oxygen's add-on support: https://www.oxygenxml.com/
addons.html. An add-on configuration is usually composed of only two files:

1. A ZIPfile containing the zipped framework folder.
2. An add-on XML configuration file that references the zipped framework folder and defines various properties of the add-
on. A small example can be seen below:

<xt:extensions ="ht t p: / / ww. oxygenxni . coni ns/ ext ensi on"
="http://ww. w3. or g/ 2001/ XM_Schen®- i nst ance"
="htt p://ww. oxygenxni . cont ns/ ext ensi on
htt p: //ww. oxygenxm . conl ns/ ext ensi on/ ext ensi ons. xsd" >
<xt:extension ="di t a- ext ensi on" >
<xt:location ="di ta_extension.zip"/>
<xt:version>1l.0.0</xt:version>
<xt:oxy_version>18. 0+</ xt: oxy_ver si on>
<xt:type>franmework</xt:type>
<xt:aut hor >Radu Cor avu</ xt : aut hor >
<xt: nane>Dl TA Extensi on which renpves the bold action</xt: name>
<xt:description ="http://ww. w3. or g/ 1999/ xht ml ">
Thi s extension renpves the bold action
</ xt:description>
<xt:license>
<! [CDATA[
Everybody's wel coned to use this
11></xt:license>
</ xt : ext ensi on>
</ xt : ext ensi ons>

In the add-on descriptor file you usually need to specify the following :

https://www.oxygenxml.com/doc/ug-editor/topics/automated-tests-x-sdk2.html
https://www.oxygenxml.com/doc/ug-editor/topics/debug-sdk.html
https://www.oxygenxml.com/addons.html
https://www.oxygenxml.com/addons.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 275

o The ID of the extension.

o The version of the add-on.

o The minimum supported Oxygen version.
o Author name.

o Name and description of add-on.

o Licensing details.

Changing the add-on version in the XML file will trigger notifications to the end user to install the new add-on. Therefore,
you can modify the framework customization in acommon location and change the add-on version to signal all end-users
who have installed the add-on that anew version is available. More details about packing an add-on can be found here:https://
www.oxygenxml.com/doc/ug-editor/topi cs/packing-and-depl oying-addons.html#packing-and-depl oying-addons.

If you want to test the small add-on | exemplified, you can find the sample add-on resources here:https://www.oxygenxml.com/
forum/files/sample-add-on.zip.

Installing an add-on is straight-forward using the I nstall new add-ons dialog box from the Oxygen Help menu. You can add a
reference to the add-on XML descriptor file that can reside either on the local hard drive or on aweb server, and Oxygen will
present all available add-ons: https://www.oxygenxml.com/doc/ug-editor/topics/installing-and-updating-add-ons.html

The add-ons support can also be used to install Oxygen plugins (on page 272). Some of the public hosted Oxygen plugins and
frameworks are also available as add-ons: Public hosted Oxygen Plugin and Framework Projects (on page 263).

In conclusion, if you want to share Oxygen customizations with others, you should try the add-on approach, it is a better
approach to manually distributing frameworks and plugins.

Oxygen Add-ons Overview

Oxygen XML Editor can be extended to support new functionalities and vocabularies. These extensions can be either plugins or
frameworks: https.//www.oxygenxml.com/doc/ug-editor/dev_guide/introduction-dev-guide.html.

Thisblog post isintended as a small overview of Oxygen XML Editor add-ons, what they are, sample add-ons implemented by
third parties, sample add-ons implemented by us and where we want to go from here.

Short History of Frameworks Support in Oxygen XML Editor

* The concept of framework appeared around Oxygen XML Editor version 9.

A framework (or document type) is a means to group together resources for editing, rendering and validating a specific
XML vocabulary: https.//www.oxygenxml.com/doc/ug-editor/glossary/framework.html.

* Originally frameworks could be manually installed by being copied to the OXYGEN _| NSTALL_DI R\ f r amewor ks
folder or by setting them up in the Preferences page.

Around version 14 we added support to pack plugins and frameworks as add-ons (on page 274) and thus automate the
installation process.

* Inversion 16 we added support to extend a base framework. Such an extension can be afterwards be bundled as an add-
on.

* A sample framework extension add-on which adds custom visual display support can be found here: DITA Topicsas
Slides.

Short History of Plugin Support in Oxygen XML Editor

* Theinitial support for plugins was primitive, it allowed adding a contextual menu action in the Text editing mode for
manipulating the selected content: https://www.oxygenxml.com/doc/ug-editor/topics/text-editing-mode-plugins.html.

* Inversion 11.2 the Workspace Access plugin type was added: https://www.oxygenxml.com/doc/ug-editor/topics/
workspace-access-plugin.html.

Workspace Access plugins allow you to:

https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html#packing-and-deploying-addons
https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html#packing-and-deploying-addons
https://www.oxygenxml.com/forum/files/sample-add-on.zip
https://www.oxygenxml.com/forum/files/sample-add-on.zip
https://www.oxygenxml.com/doc/ug-editor/topics/installing-and-updating-add-ons.html
https://www.oxygenxml.com/doc/ug-editor/dev_guide/introduction-dev-guide.html
https://www.oxygenxml.com/doc/ug-editor/glossary/framework.html
https://github.com/oxygenxml/dita-author-slides
https://github.com/oxygenxml/dita-author-slides
https://www.oxygenxml.com/doc/ug-editor/topics/text-editing-mode-plugins.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 276

o Add custom toolbar and menu actions.
o Add custom side views.
o Add various behaviors depending on various events which occur in the application:
m Open, Save, Close documents.
m Switch between document.
m Open or close the application.
Such plugins can be implemented either in Java or Javascript (since version 17.1).
* Originally plugins could be manually installed by being copied to the OXYGEN_| NSTALL_DI R\ pl ugi ns. Around
version 14 we added support to pack plugins and frameworks as add-ons (on page 274) and thus automate the
installation process.

Public Hosted Plugins and Frameworks

Thereis an older blog post with an up to date list of Public hosted Oxygen Plugin and Framework Projects (on page 263).

Private Hosted Plugins and Frameworks

Content Management Systems like Astoria, Bluestream, Ixiasoft, SDL have implemented plugins which allow Oxygen XML
Editor to connect to their remote storage servers.

There are dso lots of privately used frameworks used for editing various varieties of XML documents inside companies.

Why arewe (the Oxygen XML Editor team) working on add-ons?

* Open source add-ons are useful as samplesfor third parties.

* We can work with external collaborators on add-ons.

* Add-ons can be released at a much faster pace.

* Interns who work for us for a couple of months can implement useful functionality without making changes to the
application main code base.

* We can work on add-ons before Oxygen XML Editor rel eases when we enter a code freeze stage.

* We can use our own API and abandon the mindset of regarding the main application as a monalith.

* Sincerely, working on add-onsis more FUN.

Plugins and Framewor ks Developed by Oxygen XML Editor
Samples:

» Sample Javascript-based plugins: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins.

o Apply XSLT filter on open/save.

o Add custom editor variable resolver.

o Impose options.

o Add custom image renderer for Author visual editing mode.

o Add custom validation problems filter.
» Sample Workspace-access plugin Maven based: https://github.com/oxygenxml/sample-plugin-workspace-access
» User interfacefilter plugin: https://github.com/oxygenxml/oxygen-components-filter-plugin

Useful add-ons with public sources:

* Git support add-on: https://github.com/oxygenxml/oxygen-git-plugin

» Batch Resources Convertor add-on: https://github.com/oxygenxml/oxygen-resources-converter

* DocBook Validation add-on: https://github.com/oxygenxml/oxygen-docbook-validate-check-completeness

* Add-on for connecting to any CMIS-enabled storage server (like Alfresco): https://github.com/oxygenxml/oxygen-cmis-
plugin.

* DITA-specific add-ons:

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/oxygen-components-filter-plugin
https://github.com/oxygenxml/oxygen-git-plugin
https://github.com/oxygenxml/oxygen-resources-converter
https://github.com/oxygenxml/oxygen-docbook-validate-check-completeness
https://github.com/oxygenxml/oxygen-cmis-plugin
https://github.com/oxygenxml/oxygen-cmis-plugin

Blog | 5 - SDK Development (Plugins, Frameworks) | 277

o Trandation helper: https://github.com/oxygenxml/oxygen-dita-transl ation-package-builder
o Prolog updater: https://github.com/oxygenxml/oxygen-dita-prol og-updater
o QOutgoing References View: https://github.com/oxygenxml/oxygen-dita-outgoing-references-view
* Support for rendering various image formats in the Author visual editing mode:
o EMF: https://github.com/oxygenxml/oxygenxml.emf.support
o CGM: https://github.com/oxygenxml/oxygenxml.cgm.support
o PDF: https://github.com/oxygenxml/oxygen-pdf-image
o LaTex: https://github.com/oxygenxml/wsaccess-javascript-sampl e-plugins/tree/master/l atex-images-support
o PlantUML: https://github.com/oxygenxml/wsaccess-javascript-sampl e-plugins/tree/master/plantuml-images-
support

Useful add-ons with private repositories (can be installed from application default add-on update site):

* Content Fusion Oxygen add-on - bundled with Oxygen.
* WebHelp Feedback Oxygen add-on.
* Emmet plugin for Oxygen.

Using Frameworks and Pluginsin the WebAuthor in-browser editor

The WebAuthor in-browser editing tool reuses on the server most of the internal architecture of an Oxygen XML Editor
standal one version:

* The WebAuthor can use for editing XML vocabul aries the same framework configurations used in Oxygen XML Editor:
https://www.oxygenxml.com/doc/ug-waCustom/topics/customizing_frameworks.html
* Plugins can be implemented to connect the WebA uthor to various servers.

Where can we go from here?

Possible future plugins we can work on:

» Support for Google Drive (already available in WebAuthor)

* Support for Perforce (already available in WebAuthor)

* Use Grammarly for spell check (no API available on Grammarly side)

* Presentation mode plugin (increase fonts, disable certain settings).

* Context side view plugin using X Path with support for favorite expressions.
* Plugin which highlights various characters or text fragments in the content.

Possible new APl enhancements:
* Add support for a plugin to contribute a custom editing perspective (toolbars/views arrangement).

Besides the possible enhancements listed bel ow, we want your feedback. So are you using Oxygen add-ons? Are you developing
such add-ons? What do you need from us to better support your use cases?

Adding CAL S-table related functionality to your custom Oxygen
framework

Oxygen comes with full support for CAL Stablesin DITA and Docbook documents, meaning that you can easily make
selections, resize columns, and invoke special actions like insert or delete rows and columns, join, or split cells. You can also
easily customize tables properties such as alignments, separators, and table borders. But what if you are editing documents from
other vocabularies, containing tables with CAL S structure? What you can do to obtain the same table editing features?

One option isto use a plugin that adds CAL S table editing support along with specific table related actions: https://github.com/
oxygenxml/web-author-sampl e-plugins/tree/master/web-author-CAL S-table-plugin.

https://github.com/oxygenxml/oxygen-dita-translation-package-builder
https://github.com/oxygenxml/oxygen-dita-prolog-updater
https://github.com/oxygenxml/oxygen-dita-outgoing-references-view
https://github.com/oxygenxml/oxygenxml.emf.support
https://github.com/oxygenxml/oxygenxml.cgm.support
https://github.com/oxygenxml/oxygen-pdf-image
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/plantuml-images-support
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/plantuml-images-support
https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html
https://www.oxygenxml.com/doc/ug-waCustom/topics/customizing_frameworks.html
https://www.oxygenxml.com/doc/ug-waCustom/topics/customizing_plugins.html
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/web-author-CALS-table-plugin
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/web-author-CALS-table-plugin

Blog | 5 - SDK Development (Plugins, Frameworks) | 278

Another option isto customize your framework configuration:

Let's suppose that you already created an Oxygen framework for your documents vocabulary (if you need further information
about frameworks, see The Oxygen SDK (Part 2: Frameworks) (on page 272)). What we want to obtain next isto extract all

the CALS tables related support from Docbook framework and add it to your custom framework. Why Docbook and not DITA
as reference? Because the DI TA customization is based on the "class" attribute checking while the Docbook one is more general
(element-name oriented).

1. Tablerendering
a. Copy [oXygen_instal | _dir]\frameworks\docbook\css\cal s_table.css and
[oXygen_i nstal | _dir]\framewor ks\ docbook\ css\ ht m _cal s_t abl e. css in your framework css directory
b. inthe bocurent Type edit dialog, Aut hor tab, css sub-tab, add the ${f r amewor k}/ css/ cal s_t abl e. css entry to
thelist of the CSSs

In this way the table will be rendered properly in Author mode and the following features will be available:

o select cells (cTRL+cl i ck), rows (click before the row), columns (click on top of the row), tables (click in the left-
up corner of the table)
o resize table column
2. Createtable actions

Here are the table-related actions implemented in Docbook that you can implement also in you framework:

o Expand colspecs

o Insert/Delete Rows

o Insert/Delete Columns

o Table Properties

° Join cells

o Split cell

o Colspecs (both table.collapse.col spec and table.expand.col spec)

a. Copy [oxygen_instal |l ation_dir]\franmeworks\ dochook\ dochook. j ar inyour framework directory (thisjar
contains all the table operations classes needed to create table actions). In Document t ype edit dialog go to
d asspat h tab and add the dochook.jar from your framework directory to the list of paths. In this way you have
access to all table operations from your framework.

b. For every table action you have to define a corresponding action in the bocunent t ype configuration dialog.
Here are the details: https.//www.oxygenxml.com/doc/ug-editor/#topi cs/the-action-dial og.html. Y ou can look
at the corresponding Docbook action to see the properties (id, name, icons, the conditions that enablesiit, the
specific operation for CALS tables).

Once you created these actions you can add them to the UI.

3. Add table actionsto menu, toolbar and contextual menu
a To add an action to the menu go to Docunent Type configuration dialog, Aut hor tab, Menu sub-tab, select the
action from Avai | abl e acti ons section and add it to the current acti on Section.
b. To add an action to the contextual menu go to Docurent Type configuration dialog, Aut hor tab, Cont extual nenu
sub-tab, select the action from Avai | abl e acti ons section and add it to the current acti on Section.
c. To add an action to the toolbar go to Docurent Type configuration dialog, Aut hor tab, Tool bar sub-tab, select the
action from Avai | abl e acti ons section and add it to the current acti on Section.

If al goeswell, your custom framework which uses the standard CAL S table naming mechanism will properly handle tables,
both for display and for table-related operations.

Convert Code Templates to External Author Actions

Describes how to bring code templates into a framework as author actions.

Code templates are code fragments that can be inserted quickly at the current editing position. Author actionsthat are available in
the Author mode offer alot more flexibility. For example, you can decide what fragment to insert based on the current context.
If you want to create a new framework or customize an existing framework (on page 138), then it makes sense to convert code

https://www.oxygenxml.com/doc/ug-editor/#topics/the-action-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-action-dialog.html#the-action-dialog

Blog | 5 - SDK Development (Plugins, Frameworks) | 279

templates to author actions. Y ou can then contribute them to the content completion window. Y ou can also define the framework
using a Framework extension script.

1. Create aframework or extend an existing framework using a Framework extension script.

2. Go to Options > Preferences > Code Templates and Export the code templates to afile named code-
tenpl ates. xm .

3. Create an XSLT file with the following content:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsl:styl esheet xnlns:xsl="http://ww. w3. or g/ 1999/ XSL/ Tr ansf or n{
xm ns: xs="http://ww. w3. or g/ 2001/ XM_Schema"
excl ude-resul t-prefixes="xs"
ersion="3.0">
<xsl : out put nethod="xm"/>
<xsl:tenpl ate nmatch="//codeTenpl atel tenifiel d[@ane=' content Type']/ String/text() = "text/xm"']">
<xsl :vari abl e nane="acti onNane" sel ect="fiel d[@ane="renderString']/String/text()"/>
<xsl :resul t-docunent href="external Aut hor Acti ons/{$acti onNane}.xm ">
<a: aut hor Action xmins: a="http://ww. oxygenxmnl . coml ns/ aut hor/ ext er nal - acti on"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi:schenalocation="http://ww. oxygenxmni . conl ns/ aut hor/ ext er nal - acti on
http://ww. oxygenxm . coni ns/ aut hor/ ext er nal - act i on/ aut hor Acti on. xsd"
i d="{%acti onNare}" >
<a: name><xsl : val ue- of select="$acti onNane"/></a: name>

<a: descri ption><xsl| :val ue-of select="fiel d[@anme="descriptionString']/String/text()"/></a:descripti
on>
<a: oper ati ons>
<a:operation id="InsertFragnent Operation">
<a: xpat hCondi ti on>t rue() </ a: xpat hCondi ti on>
<a: ar gument s>
<a:argunent nane="fragnment">
<l-- Try parsing the fragnent. if it succeeds, we basically unwap it
fromthe CDATA -->

<xsl:try

sel ect =" parse-xnl -fragnent (fi el df @ane="unparsedlnsertString']/String/text())">
<xsl : catch>
<l-- Parsing failed. It mght have unresolved entities. Keep
it in a CDATA -->

<xsl:text disabl e-output-escapi ng="yes">&l t;![CDATA[</ xsl : t ext >

<xsl : val ue- of disabl e-out put -escapi ng="true" select="fiel d[@anme="unparsedlnsertString']/String/text
()" ></xsl:val ue-of >
<xsl:text disable-output-escaping="yes">]]> </xsl:text>
</ xsl : cat ch>
</ xsl:try>
</ a: argunent >
</ a: ar gunent s>
</ a: operation>
</ a: operations>
<a: accessKey/ >
</ a: aut hor Acti on>
</ xsl : resul t - docunent >
</ xsl : tenpl at e>

<xsl:tenplate match="text()"/>
</ xsl : styl esheet >

4. Create an XSLT Transformation scenario and apply the XSLT over thecode-t enpl at es. xmi file.

5. Goto the directory of code-t enpl at es. xrm and copy the generated ext er nal Aut hor Act i ons to the
framework directory (the directory with the framework extension script).

6. Create another XSL T with the following content, then create an XSLT Transformation scenario and apply it over the
code-tenpl ates. xm file.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<xsl:styl esheet xnl ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or n¥
xm ns: xs="http: // wwv. w3. or g/ 2001/ XM_Scherma"
excl ude-resul t-prefixes="xs"
versi on="3. 0" >
<xsl : out put nethod="xm " omt-xni-declaration="yes" indent="true"></xsl: out put>
<xsl : out put net hod="xm "/>
<xsl:tenpl ate match="/">
<cont ent Conpl eti on>

https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-code-templates.html#preferences-editor-code-templates__dlentry_omp_bgk_54b
https://www.oxygenxml.com/doc/ug-editor/topics/xslt-transformation.html
https://www.oxygenxml.com/doc/ug-editor/topics/xslt-transformation.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 280

<aut hor Acti ons>
<xsl : appl y-t enpl at es/ >
</ aut hor Acti ons>
</ cont ent Conpl eti on>
</ xsl : tenpl at e>
<xsl:tenplate nmatch="//codeTenpl atelten{fi el d[@anme="content Type']/String/text() = "text/xm"']">
<xsl :vari abl e nane="acti onNane" sel ect="fiel d[@ane="renderString']/String/text()"/>

<addAction i d="{$actionNane}" | nCCW ndow="true"/>
</ xsl : tenpl at e>

<xsl:tenplate match="text()"/>
</ xsl : styl esheet >

7. Copy the resulting <cont ent Conpl et i on> into the Framework extension script root element.

Thereis anew external author action for each initial code template. All actions are contributed to the content completion
window.

https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-create-custom-actions.html#dg-create-custom-actions__section_2
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html#framework-customization-script-usecases__section_cgh_yzm_knb
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html#framework-customization-script-usecases__section_cgh_yzm_knb

Chapter 6. Miscellaneous

Oxygen XML Ecosystem

The set of Oxygen XML related products has expanded over the years. It is helpful to have a general understanding of the
functionality we offer and what each of these products can do. | enjoyed the presentation by Geor ge Bina titled Use-cases using
the Oxygen XML tools at Convex Baltimore 2023. It provided an overview of all our products. | am embedding it below for our
clients and integrators to also have a general understanding of our products' ecosystem.

Add-ons For Technical Documentation

Oxygen XML Author has various free and useful add-ons for technical documentation writers, including alanguage model for
editing, batch document converter, Git client, content fusion connector, feedback comments manager, terminology checker,
DITA trandlation, and live tutorials.

Oxygen XML Author can be enhanced by installing add-ons. There are alarge number of free and useful add-ons for technical
documentation writers and we will explore some of them. Documentation and installation instructions for all Oxygen add-ons can
be found here.

Oxygen Al Positron Assistant Add-on (on page 230)

Use the Oxygen Al Positron service based on ChatGPT to enhance your editing experience.
Fluenta DITA Translation Add-on

Create and manage XLiff filesfrom your DITA XML content using the Fluenta libraries.

* Create trandation projects
* Convert DITA XML to XLiff
e Convert XLiff to DITA

Batch Documents Converter

Convert various formats like Word, HTML, Markdown, DocBook, Open API, or Confluence into other formats
like DITA XML.

Git Client add-on

Collaborate with your colleagues on a Git project. Comes with support for:

* Git Staging

o Settings to validate before commit or before push.
* Git History
* Git Branch Manager

Content Fusion Connector Add-on
Create review tasks for collaborators and subject matter experts who can later review the tasks in aweb browser.
Feedback Comments Manager Add-on
View and manage comments made in the Oxygen WebHelp Feedback forms directly in the Oxygen application.
Terminology Checker Add-on
* Define terminology rules specific for your application to suggest replacements for certain combinations of
words.

* Userules dready implemented in Vae syntax.

Live Tutorials Add-on

https://www.oxygenxml.com/doc/ug-editor/topics/add-ons.html
https://www.oxygenxml.com/doc/ug-editor/topics/fluenta-dita-translation-add-on.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/ofb-feedback-comments-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/terminology-checker-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/live-tutorials-addon.html

Blog | 6 - Miscellaneous | 282

Create or explore already available tutorials to learn various Oxygen features.
DITA Prolog Updater Add-on

Automatically update the author name and revision dates in the prolog section when saving DITA topics or maps
in Oxygen.

DITA References View Add-on

See the set of outgoing and incoming references for each opened DITA topic, including references defined in a
relationship table.

Tips And Tricks

Oxygen XML Editor has about 18 years of development under its wings. During these years, we added lots of functionality and
many of our users usually do not know more than 20-30% of Oxygen's features. So this presentation is intended for people using
Oxygen and who may want to find out more about their tool.

General Layout - Viewsand Toolbars:

* Side views and toolbars can be arranged by drag and drop. Views can be switched to the auto-hide mode to gain screen
size.

* To hideal side views you can use the main menu Window->M aximize Editing Area action. Or you can maximize the
editing area by double clicking on the tab of an opened XML document.

* To hide all toolbars you can use the main menu Window->Hide all toolbars action.

* You can aso right-click in the toolbar area and use the Configure Toolbar s action to see what toolbars are available or
what toolbars can be removed.

* The Symbolstoolbar is quite interesting if you often want to insert symbols that are not on the current keyboard.

* Theentire layout of the views and toolbars can be saved (Window->Export L ayout) and then shared with others
(Window->L oad L ayout).

Side Views You Probably Never Used

¢ The Information view.
* The Propertiesview.
¢ The Scratch Buffer view.

Project-related Functionality:

The Oxygen Project view is the place where you can organize and apply batch changes to all your resources:

* Master files support. Enable master files support in the project, add your top level XML documents as master files
and any structure changes, renaming or moving files will automatically update all linksin the Project. Also works for
renaming/moving image resources.

 Store options at project level. AlImost al of Oxygen's preferences pages can be saved at project level. Once you do that,
you can share the project.xpr file with somebody else and when they open it, they will also get the settings set inside the
project. Transformation and validation scenarios can also be saved at project level.

» Compare files/folders by selecting them in the Project view, right click and using the Compar e... popup menu action.

* Add references to multiple folders from various parts of your current file system and organize your work in one place.

» Batch operations: Select afolder in the project, right click and use the Transform, Validate, Format and Indent, Find/
Replacein Files, or Spell Check in Files. Or usethe XML Refactoring action to apply arefactoring stylesheet over all
the selected files.

* Filter files. You can instruct the Project view to hide variousfile types.

* TheImage Preview view will show the image current selected in the Project view.

* Open command prompt in a certain folder (right click on afolder, Show in->Terminal.

* Open the current selected file or folder in the system file browser (right click and choose Show in->Finder).

https://www.oxygenxml.com/doc/ug-editor/topics/dita-prolog-updater.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-outgoing-references-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-storing.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html

Blog | 6 - Miscellaneous | 283

Navigation:

Actionsto find opened files, find files containing a certain content or navigate between files.

* In the main Window menu, you can find the Next/Previous Editor actions and their shortcuts. Together with the Switch
editor tab action, these help you navigate between opened XML documents.

* The Open/Find Resour ce view (main menu Window->Show View) alows you to search for file names, searchin file
contents, or search for files containing comments or change tracking.

* Right-click the tab of an opened XML document and use the Copy location action. Or use the Show in Explorer/Finder
action to locate thefile.

* Use the main menu File->Reopen last closed editor action to re-open the last closed file.

* Usethe Navigation toolbar to Go back/forward/last modification.

* Themain Window menu has actions to tile all opened XML documents and also to enable synchronous scrolling in them
(useful if you want to look at similar XML documents and maybe to copy/paste between them).

Find/Replace Functionality

The Find/Replace functionality is the bread and butter of any editing application and Oxygen has lots of functionality in this
regard:

* Find/Replacein Files.
o Regtrict to XPath - If you want to make replacements only in certain parts of the XML document, the XPath
restriction can be used to focus only on certain attributes or element content.
o Ignore Whitespaces - Y ou should usually check this checkbox as thereis always there is a possibility what the
words you are searching for may be split on multiple linesin the XML content.
* The Find menu = Find Next/Previous actions allow you to find the next/previous occurrence of the current selected
word(s). Or you can use the Find All action to find and highlight all occurrences of aword or a sequence of words.
* The Find menu = Find all Elements action shows a dialog box alowing you to find elements or attributes containing a
sequence of words.
* The Find menu — Quick find toolbar isacompact toolbar giving you access to search functionality.
* The XPath toolbar allows you to use XPath expressions (i.e. // comment () [cont ai ns(., ' Tobo)]) to search the current
topic or a set of topics for elements, attributes, or comments matching a set of conditions.

Text Editing:

* You can use the mouse wheel or the Ctrl + and Ctrl - shortcuts to increase or decrease the font in the current opened
XML document.
* The Preferences->Editor / Edit Modes/ Text page allows you to wrap the visual line and show a print margin.

* Code templates can be used in order to define small code snippets which are often inserted. Editor variables can be used
inside those code templates and they will get expanded on insertion. Various useful editor variables:

° ${aut hor. nane}

° ${sel ection}

© ${ask(' Author Nane', generic, 'John Doe')}

° ${xpat h_eval (upper-case(substring('${cfn}', 1, 4)))}

Code templates can also be saved at project level or exported in order to share them with others. Y ou can read more
about the contexts in which editor variables can appear in this blog post: All About Editor Variables (on page 292).

* Tripleclick an element tag to select the entire element.

 Various navigation shortcuts: Go after next tag. Select parent. Use the top level breadcrump.

* Move lines up and down (Alt-Up/Down).

* Click line number to select the entire line.

* Go to line/column (main menu Find->Go to...).

* Open fileat cursor on references to navigate to referenced file or create new file (CtrlI-ENTER).

https://www.oxygenxml.com/doc/ug-editor/topics/open-find-resource-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/find-and-replace-text-in-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html
https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html
https://www.oxygenxml.com/doc/ug-editor/topics/text-navigate-document-content.html

Blog | 6 - Miscellaneous | 284

* Bookmarks (main menu Edit->Bookmarks).
* Quick find filter for side views (Outline, Entities, Transformation Scenarios).
* Drag/drop resources from afile browser or copy/paste to create links to the resources.
* Remove results of XPath execution.
* Use contextual menu to:
o Apply base 64/32 encoding or decoding to various parts of the XML document. (for example insert base 64
encoded images using the data:image/png;base64, protocol.
o Escape/unescape selection.
o Toggle comment.
o Indent selection.
* Split editor (main menu Window->Split actions) to copy paste between different parts of the XML document.
* Open an XML document in the Text editing mode, right click, choose Go to definition to open the DTD, XML Schema
or RelaxNG Schema at the precise location where that XML element is defined.

Huge File Editing
Huge XML and Text documents (Gigabytes) can be opened and edited in the application.

Grid editing mode:

* The Grid editing mode is useful for looking at XML documents exported from data bases.
* You can use this mode to sort tables or to copy table datato Excel spreadsheets.
* The JSON editor also has a Grid editing mode.

Editing in the Author Visual Editing Mode

* Increase/decrease editor font - Use Ctrl/CM D +/- to increase or decrease the font in the current edited document.

* Inserting elements - Pressing ENTER in the Author visual editing mode will show you alist with all possible elements
that can be inserted. If you choose an invalid element, Oxygen will find a place for it. Y ou can also add custom actions or
code templ ates to the content completion list.

Select content then press ENTER to surround the content in a new element.

Select start tag of element, press ENTER to rename the element.

Select multiple intervals - Press the Ctrl/CM D button when selecting text to select multiple text intervals. Once you do
that, you can use toolbar actions like Bold, Italic, or Underline or you can use the Edit Profiling Attributes action to
set profiling attributes on all the selected items.

In-place attributes editor - Instead of using the Attributes view, you can press Alt-Enter to edit attributes for the current
element in asmall pop-up dialog box.

Select an entire element - Triple-click inside an element's contents to select the entire element. After this, you can move
the element to a new place.

Double-click to select by word, then drag the mouse to select the content word by word.

Move elements (especially paragraphs, list items) up or down (AL T-UP/DOWN), indent or unindent list items (T ab,
Shift-Tab).

Easily insert lists using framework specific auto correct support. Insert for example 1. at the beginning of a paragraph,
press the Space key and the inserted content becomes an ordered list. Or in aDITA topic at the beginning of a paragraph
type ““java and press space to insert a<codebl ock>.

Select content and then use the Toggle comment action (contextual menu Refactoring submenu) to quickly add an
XML comment around it.

In the contextual menu the Text submenu contains useful actions to count the number of words in the entire document
(or in the selected text), convert the selection to upper, lowercase, or sentence case).

Bookmarks - Click the vertical left side bar in the editing areato add a bookmark. Navigate to that bookmark even after
the file has been closed using the Ctrl/CMD + number shortcut.

Collapse other folds - Click afold triangle in the Author visual editing mode and you can choose to close all other folds,
useful when working with multiple sections in the samefile.

* Code templates - Define small fragments of XML content that can be inserted either by defining a shortcut key or by
pressing ENTER in the editing area.

https://www.oxygenxml.com/doc/ug-editor/topics/text-mode-actions.html
https://www.oxygenxml.com/doc/ug-editor/topics/huge-file-editor.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-content-completion-tab.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-contextual-menu.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-navigate-document-content.html
https://www.oxygenxml.com/doc/ug-editor/topics/folding-author-mode.html
https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html

Blog | 6 - Miscellaneous | 285

* Editor variables - Certain Oxygen-specific macros can be automatically expanded. For example, a code template that
inserts the current author name can use this editor variable:

<aut hor >${ aut hor . nane} </ aut hor >
or a code template that surrounds the selection inside a <keywor d> element:
<keywor d>${ sel ect i on} </ keywor d>
or acode template that first asks the end user for their name and then inserts it in the document:

<aut hor >${ ask(' Aut hor Nane', generic, 'John Doe')}</author>

Editor variables can also be used when creating new file templates (on page 264). Y ou can read more about the contexts
in which editor variables can appear in this blog post: All About Editor Variables (on page 292).

* Outline Quick find filter - The Outline view contains afilter that can be used to reduce the number of elements displayed
init (for example, display only the contained topics).

* The Author editing modeis best for editing bidirectional text with Arabic or Hebrew content.

* Editing MS Word and LibreOffice documents in the Author mode.

Preferences:

Oxygen has alot of global settings that can be configured, | will just list what | consider to be the most important ones:

* Global - Change application language or show memory status.

» Appearance - Change the default color theme in Oxygen (the Graphite themeis quite popular).

* Application Layout - impose custom layout or change editor tabs placement.

* Menu shortcut keys - Y ou can use this preferences page to assign or to see the shortcut for any action availablein
Oxygen.

* Fonts- This page alows you to change the default fonts used in the application. Y ou can also see what font can be used
for acertain set of characters.

* Spell check - Customize the spell checker settings, use custom spell check dictionaries.

* External tools - Define various command line tools that you can launch from Oxygen.

* Editor / Content Completion / Annotations - Disable the tooltips which appear when hovering over various elements
(useful if you have a small screen).

* Editor / Save - Settings to automatically save, recover content data on computer crash or to check for errors before saving
thefile.

CSS-based PDF Publishing

The embedded Chemistry engine can be used to publish any XML document to PDF using CSS to style the published output.
Thereis anew transformation type XML to PDF transfor mation using CSS which can be used for this. The CSS I nspector
view can be used to see what CSS styles get applied.

Tools

The Tools main menu isworth exploring. Y ou can:

* Invoke XML refactoring actions.
* Openthe SVG Viewer.
* Find various JSON-related tools.

Import - Convert
* The File menu offers the possibility to import HTML, CSV, Excel files, or database content as XML.

* For some XML frameworks like DITA, TEI, DocBook and XHTML you can use the smart paste functionality.
* The Batch convertor add-on allows you to convert multiple HTML, Markdown, Excel filesto DITA.

https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-global.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-appearance.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-application-layout.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-menu-shortcut-keys.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-fonts.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-spell-check.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-external-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-content-completion-annotations.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-save.html
https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

Blog | 6 - Miscellaneous | 286

Connectivity
Oxygen comes bundled with an SVN client.
Y ou can also work with resources directly from WebDav repositories, Exist and various other databases.

There are aso a couple of add-ons which add extra connectivity:

* Git add-on for Oxygen.
* CMIS add-on for Oxygen.
* BaseX add-on for Oxygen.

Add-ons

In the application main menu you can go to the main menu Help->Install new Add-ons and our official add-ons update site
contains a couple of available add-ons. There are also other free add-ons provided by the Oxygen team that can be installed in an
Oxygen standalone version.

I will enumerate some of the most popular interesting add-ons bel ow:

* Git add-on. This plugin adds a side view allowing you to do some common Git operations like pull, commit, push
(mostly 90% of what aregular Git user would do).

» Content Fusion Connector add-on. Collaborate with your peers by sending them links that allow them to give you
feedback on your work using aweb browser without the need to pre-install anything on their side.

* Batch convertor add-on. Converts multiple HTML, Markdown, Excel filesto DITA.

Keepingin Touch

* Oxygen's Help menu allows you to use the Report problem action to contact us directly.

* The Support Tools->Randomize XML Content action allows you to randomize the content of an XML project before
sending it to us for tests.

* And there are alot of other waysto get in touch with us or to find various videos or tutorials to read: https:/
www.oxygenxml.com/technical_support.html.

Checking Terminology with Oxygen XML Editor

Inthisblog post, | will offer ageneral overview about the current possibilities you have available to impose your own language
checking rules when working with Oxygen XML Editor.

Built-in spell checker

Oxygen comes bundled with the popular Hunspell spell checker and, along with the regular bundled dictionaries for English,
German, Spanish, and French, it allows you to install new dictionaries, either for other languages or custom dictionaries (for
example, dictionaries for medical terms) that you can build separately: https://www.oxygenxml.com/doc/ug-editor/topics/spell-
dictionary-Hunspell.html.

Aside from the spell checker, Oxygen also has support for Auto-correct and you can add your own Auto-correct pairs to Oxygen,
but the spell checker islimited to checking individual words.

Oxygen Terminology Checker

In the main application, you can select Install new add-ons from the Help menu, browse the Default update site, and install the
add-on named Terminology Checker. The terminology checker add-on is available for Oxygen version 20.0 or newer.

Oncethe add-onisinstalled, it will allow you to highlight matched terms (words or sequences of words) in the Author visual
editing mode.

https://www.oxygenxml.com/doc/ug-editor/topics/webdav-connection.html
https://www.oxygenxml.com/doc/ug-editor/topics/configure-exist.html
https://github.com/oxygenxml/oxygen-git-plugin
https://github.com/oxygenxml/oxygen-cmis-plugin
https://github.com/axxepta/project-argon
https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories
https://github.com/oxygenxml/oxygen-git-plugin
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/technical_support.html
https://www.oxygenxml.com/technical_support.html
http://hunspell.github.io/
https://www.oxygenxml.com/doc/ug-editor/topics/spell-dictionary-Hunspell.html
https://www.oxygenxml.com/doc/ug-editor/topics/spell-dictionary-Hunspell.html
https://www.oxygenxml.com/doc/ug-editor/topics/autocorrect.html

Blog | 6 - Miscellaneous | 287

First, you need to use the File->New dialog wizard to create anew Terminology File, edit that file, and add mappings between
matched terms and their suggested replacements, as in the following example:

<incorrect-terns>

<incorrect-term ="true">
<mat ch>vi rtual assi stant </ match>
<suggesti on>personal digital assistant</suggestion>
<nmessage>Prefer 'pda’ over 'va'</nessage>
</incorrect-ternp

</incorrect-terns>

Then go to the Prefer ences->Plugins/ Oxygen Terminology Checker page and in the Terminology Folder text field,
reference that folder where your terminology files are located. The incorrect terms that have been previously configured should
now be highlighted in current editor in Author mode.

Y ou can right-click the highlights to access various actions that allow you to replace each individual
highlight with suggestions or to apply the same suggestion in multiple placesin the currently open

Please start the virtual assistantl [F) Add File to Review Task

Replace with "personal digital assistant”

Built-in Spe" checke Replace all with "personal digital assistant”

C t all matching highlight
Oxygen comes bundled with tk orrect all matening nigniignts ¢ regular I

document.

Commercial alternatives

Acrolinx isavery popular commercial tool for checking content for consistency and terminology. The plugins that Acrolinx
developed for Oxygen standalone, Oxygen Eclipse plugin, and Oxygen Web Author alow you to run the Acrolinx checker
directly from inside the application.

Etteplan HyperSTE is another popular commercial tool for checking content and terminology. They also have a plugin for
Oxygen standalone.

The Congree Language Checker also has an integration for Oxygen standalone.

Open-sour ce alter natives

LanguageTool is an open-source proofreading program for English, French, German, Polish, and more than 20 other languages .
Thereis an open-source plugin for Oxygen available on GitHub.

The DITA Open Toolkit terminology checker plugin from Doctal es contains Schematron rules to check that various words
adhere to the terminology dictionaries that are custom built using DITA.

Building your own ter minology checker

The fastest and simplest way to build a simple terminology checker is by using Schematron rules. The Doctales plugin is agood
examplefor this.

At some point, as the terminology dictionary keeps growing, you may encounter delays and slow-downs when editing the
document and validating it using the custom Schematron rules. So, an aternative to thisis by using our Author SDK to build
your own Oxygen plugin, which can use our API to check the content and then add highlights. The LanguageTool open-source
plugin may be a good starting example for this.

https://support.acrolinx.com/hc/en-us
https://www.simplifiedenglish.net/hyperste/
https://documentation.congree.com/display/EDV/Supported+Editors+1
https://www.languagetool.org/
https://github.com/danielnaber/oxygen-languagetool-plugin
https://github.com/doctales/org.doctales.terminology
https://github.com/doctales/org.doctales.terminology
https://www.oxygenxml.com/oxygen_sdk.html
https://www.languagetool.org/

Blog | 6 - Miscellaneous | 288

Opinions about using Oxygen

1. https://jaymanal otoibm.wordpress.com/2013/11/27/breathing-oxygen-xml-in-windows-7/
2. Aaron Thayer https://aaronthayer.wordpress.com/2014/11/02/review-oxygen-xml-editor-powerful-xml -authoring-ditto-
for-dita/
3. Ray Gallon: http://humanistnerd.culturecom.net/2013/04/11/the-humanist-nerd-reviews-oxygen-14-2/http://
humani stnerd.culturecom.net/2015/05/15/the-evol ution-of -oxygen-17/
4. Kurt Cagle: https://www.linkedin.com/pul se/prai se-oxygen-kurt-cagle?rk=hb_ntf MEGAPHONE_ARTICLE_POST
5. Doug Morrison: http://www.jks.co.uk/recommendati ons/choosingxmleditor.html

A set of rulesfor providing great tech support

I've been doing technical support for more than 10 years and | fedl that I've gathered a few ideas about what great tech support
would be. And doing tech support the right way can be great both for product users and for the product developer asit provides
lots of opportunities to further enhance and steer the application.

1. Never say never. Never assume for certain that a feature request will not get implemented. Just register it and wait for
feedback from others. I've had so many cases in which requests which initially seemed not worthy of implementation
became important featuresin later versions.

2. When asked for a solution to a specific problem, give the solution but also provide a sequence of deductive steps you
took in order to find the solution. So give them the fish but a so discuss about how they can fish for themselves. Help
people evolve and you will have less tech support to do.

3. Try to steer conversations as much as possible from private emails to forums and public user lists. These become
repositories of knowledge and you'll avoid explaining the same thing multiple times if there is already a place on the web
explaining it.

4. In order to avoid answering the same question multiple times you have the following constructive options:

o Add atopic in the product's User's Manual explaining the problem
o Improve the product so that it becomes easier to perform those particular tasks.

5. Some of our users know more and work more with certain aspects of the application than we do. So when certain work-
flows are not appropriate for them, it'simportant that you listen and possibly change the application accordingly.

6. Whenever an older behavior is changed in the application, even if you consider that the change is for the better, you
will get complaints. And you will need to decide if users just need atime to adjust to the changes or if you've taken the
application in the wrong direction.

7. You may get asked questions which are not particularly related to what the application does. But you might still be able
to give your personal opinion and afew useful linksto get your client moving in the right direction.

8. You will gain access to various user samples and work with the application to reproduce certain problems. Various times
while working with the application to reproduce a problem you will also notice other behaviors which can be improved
aswell. Contribute all those side-effect suggestions to your issues list as well.

9. Make it as easy as possible for people to report problems or to ask questions about the product. For example in Oxygen
in the Help menu we have a"Report Problem” action which can be used to quickly report to us any issue which may
arise while using the application.

10. Alwaystry to provide afeasible workaround for abug or for alack of functionality.

If you have more ideas about this, please share them with me.

A Short Story of Reuse

Give the smartest human in the world a piece of wood and ask him/her to make paper. Give them no prior toolsand it will take
year s to come up with a decent process which would result in some brown almost usable thick piece of paper.

This blog post is about reuse, not necessarily reuse of tools and materials, but reuse of knowledge. Humanity has evolved not
because each generation is smarter than the last one but because we learned to reuse and pass knowledge to larger and larger
audiences and from one generation to another.

Almost all tools that we use today are made up of quite acomplex set of components which interact with each other. Thereis no
one person in a car assembly factory who still knows all the pieces and how they come together.

https://jaymanalotoibm.wordpress.com/2013/11/27/breathing-oxygen-xml-in-windows-7/
https://aaronthayer.wordpress.com/2014/11/02/review-oxygen-xml-editor-powerful-xml-authoring-ditto-for-dita/
https://aaronthayer.wordpress.com/2014/11/02/review-oxygen-xml-editor-powerful-xml-authoring-ditto-for-dita/
http://humanistnerd.culturecom.net/2013/04/11/the-humanist-nerd-reviews-oxygen-14-2/
http://humanistnerd.culturecom.net/2015/05/15/the-evolution-of-oxygen-17/
http://humanistnerd.culturecom.net/2015/05/15/the-evolution-of-oxygen-17/
https://www.linkedin.com/pulse/praise-oxygen-kurt-cagle?trk=hb_ntf_MEGAPHONE_ARTICLE_POST
http://www.jks.co.uk/recommendations/choosingxmleditor.html

Blog | 6 - Miscellaneous | 289

Although using the tool is easier than interacting with all components which make it up, you still need knowledge to operate it
and in this day and age having enough people to teach how a certain tool can be used is no longer an option. Y ou need to pass
knowledgein other forms, on paper or in some kind of digital form. So | would define technical communication as a means
of passing knowledge about using toolsto alarger audience.

Reuse in technical communication can be structured on many levels:

* Reuse written content by publishing it to morethan one format (PDF, HTML, EPUB, MS Word).

It turns out that XML is perfect for publishing content in more than one format. XML is not designed to be consumed
directly by end users and its benefit lies directly in this. Your XML content should contain all the data necessary for
obtaining all the output formats. So if you are using XML in your technical content, no matter what standard or
custom vocabulary, you can safely check the first and most important level of reuse.

Create larger publications from existing ones.

Either using an XML standard like X1 nclude or using standards with their own diverse and powerful methods of reuse
like DITA, or by performing custom techniques you can merge XML content in larger publications.

Reuse content written for a certain tool to document the functionality and behavior of avery similar tool.

In most mature XML standards like DITA and Docbook there is thisimplemented concept of profiling which allows
you to dynamically filter at publishing time content marked with certain attributes from your original XML project. In
this way from the same XML content you can publish documentation for multiple similar tools.

Reuse smaller pieces of common content in mor e than one publication.

Again, using XML standards like XInclude or DITA specific standards like content references you can create and
maintain small libraries of reusable XML content, then reuse these components across various publications.

Reuse images and other binary resour ces in multiple publications.

Because XML content does not embed binary resour ces, these resources are stored separately and thus they can be
reused in multiple places.

So these are what | consider to be the main selling points for using XML in technical documentation. As usual any feedback is
welcomed.

Sharing Application Settings

There are various ways in the Oxygen standalone version through which ateam of writers can share and use a set of common
settings. Below | will try to list each of these possibilities along with useful links:

» Savethe settings at project level and have all users use the same project " projectName.xpr" filein the Project view
when editing. Most of the Oxygen Preference pages have a switch radio button which allows you to pass the settings
to Project level and save them in the current project configuration file opened in the Project view. If you commit that
Project configuration file to aversion control system like GIT or SVN, al writers can open and use that project when
working with the repository content.

For example, when we work on the Oxygen User's Manual using our common GitHub repository, we al openin
the Project view the" userguide.xpr" project which comes with various fixed options (eg: enabling automatic spell
checking):https.//github.com/oxygenxml/userguide

Y ou can find out more details about sharing projects here: https://www.oxygenxml.com/doc/ug-editor/#topics/sharing-
projects.html.

Create and then provide adefault options XML document to others. When placed in a specific place in the Oxygen
installation or referenced via a specific property in the application startup script, this default options XML document will

https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/doc/ug-editor/#topics/sharing-projects.html
https://www.oxygenxml.com/doc/ug-editor/#topics/sharing-projects.html

Blog | 6 - Miscellaneous | 290

be used by the application to provide default values for certain settings. Y ou can find out more about how default options
work here:https://www.oxygenxml.com/doc/ug-editor/#topics/default-options.html.

» Have others manually import an options XML document which you exported from Oxygen:https://
www.oxygenxml.com/doc/ug-editor/#topics/import-export-preferences.html.

* An Oxygen plugin could use our Java API to impose fixed options when the application starts using the APl method:
PluginWor kspacePr ovider .getPluginWor kspace().setGlobal Obj ect Pr oper ty(key, value). In our Maven-based SDK
we have a sample plugin called | mposeOptions which imposes a fixed set of options when the application starts.

If you want to share document type configurations (for editing certain XML vocabulary) you can find more detailsin this older
blog post: Document Type Extension Sharing (on page 261).

Collaboration for Documenting a Software Product using DITA

Besides working on an XML Editor with lots of DITA editing functionality we also use DITA internally for editing the Oxygen
User's Guide.

Inthisarticle | will try to give you an overview of our entire workflow as evidence that DI TA doeswork and that it can be used
and implemented without expensive solutions.

First here's an overview of our needs:

» Offline Help which is available inside the installed application. Oxygen is a multi-platform application so we need to
generate both HTML Help (CHM) for Windows and JavaHelp for the Mac OSX and Linux installations. Also for the
Oxygen Eclipse Plugin we need to generate Eclipse Help.

* Online Help which is available asWebHelp with Feedback on our web site and allows users to add comments to each
topic. Those comments can then be used by us to rephrase and improve our documentation.

* PDF containing the entire contents of the user's manual. Nowadays most our users use the online WebHelp because it
can be used much easier for finding certain topics so in our case at least the PDF output is not popular anymore along
users.

We have two main distributions (Standalone and Eclipse plugin) and three main products (Editor, Developer and Author). So
we need to produce about six (6) different publications from the same DITA content depending on the shipped product.

And here's an overview of the tools we use:

Oxygen XML Editor

This may not come as a surprise but we use our own product to edit DITA content, partly because it's ours and partly because it
isavery good tool. During the last couple of years this has been a good opportunity to improve our product based on our own
feedback (feedback coming from our technical writers).

Oxygen isused in two ways:

1. By the technical writersto write DITA content.
2. By thereviewers to review documented issues by adding comments, making changes with change tracking enabled.

DITA Open Toolkit + WebHelp plugin
We usethe DITA Open Toolkit to publish DITA content to the outputs we are interested in. The WebHelp and WebHelp with

Feedback outputs are our own additionsto the DITA Open Toolkit. But we do not use any special customizations for the other
outputs.

Jenkinsintegration server
We have an automated script which builds all the user manual outputs every night.

Automated DITA Content Validation Thereis a script which runs on atest server and does three types of checkson the DITA
content:

https://www.oxygenxml.com/doc/ug-editor/#topics/default-options.html
https://www.oxygenxml.com/doc/ug-editor/#topics/import-export-preferences.html
https://www.oxygenxml.com/doc/ug-editor/#topics/import-export-preferences.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/doc/ug-oxygen/

Blog | 6 - Miscellaneous | 291

1. Validate and check for completeness, check for broken links, images, broken web links and so on.
2. Check and report topics, resources and images which are no longer referenced anywhere.
3. Spell check the entire DITA content.

Git asaversion control system

For along time we used Subver sion for version control. Recently we moved our DITA content to a private GitHub repository
and we also made a public GitHub repository containing a copy of our user manual's DITA content:https://github.com/
oxygenxml/userguide. We use the Sour ceTr ee application to work with Git and we are quite happy with it.

Atlassian Jirafor workflow

We use Atlassian Jirato provide aworkflow both for the issues which are related directly to our software product and for the
issues which are related exclusively with our user's manual. The JRA isintegrated with both our SVN and GIT repositories so it
shows for a certain issue al resources which have been modified to fix it.

More details about how with work with DITA can be found in these dlides | presented at DITA Eur ope 2014:https://
www.oxygenxml.com/forum/files/usingDitaForOxygenUsersM anual .odp.

Video demonstration showing how collaboration on atechnical publication with Subversion can be achieved: https.//
www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html.

Collaboration (Teams working on acommon XML project)

Sometimes | get the feeling that there are still many users who collaborate on XML projects using shared network drives. We
got this question yesterday from one of our users:

“ | am just curiousif housing and working off a network drive is possible, and if so, what are the risks
involved?’

In my opinion having multiple writers edit documents from a common shared network location is dangerous because
you may end up overwriting the content that someone else has been writing on. Y ou also have no history of who made
what modification and no redundancy of content. If somehow the network drive fails because of a hardware problem or
files get corrupted you have no copy of your repository to start over. My advice isto start using a free and open sour ce
version system like Subversion (SVN), CVSor GIT. For example Oxygen comes with an embedded SVN Client and
for writing our user manual which is DITA-based we collaborate using a subversion server installed on a Linux machine.
We made a small video demonstration showing how this collaboration is done:https://www.oxygenxml.com/demo/
Collaborative_Authoring_Using_Subversion.html The advantage to using version systemsis immense:

1. We know the history of each resource.

2. We know who made what change.

3. We can create tags and branches for marking certain versions of the documentation.

4. Each user has hisown local copy of the repository and if the server fails we have the same content duplicated in many
other places.

Other approaches. Use aWebDav repository. When Oxygen opens an XML document from a WebDav repository, it locks
the XML document and thus prevents other users from saving changes to it while still allowing them to open the document.
Use aCommercial CM Swhich in addition to an open source version system will bring more workflow related tools and
lots of ways to keep your content valid. And there are quite afew CMSs which have an integration with Oxygen:https://
www.oxygenxml.com/partners.html#sol utionpartners%28cms%29

Here's avery nice post by Eliot Kimber about implementing DITA without a CSM:http://drmacros-xml-rants.blogspot.com/
#4627052924135934849

https://github.com/oxygenxml/userguide
https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/forum/files/usingDitaForOxygenUsersManual.odp
https://www.oxygenxml.com/forum/files/usingDitaForOxygenUsersManual.odp
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/partners.html#solutionpartners%28cms%29
https://www.oxygenxml.com/partners.html#solutionpartners%28cms%29
http://drmacros-xml-rants.blogspot.com/#4627052924135934849
http://drmacros-xml-rants.blogspot.com/#4627052924135934849

Blog | 6 - Miscellaneous | 292

Enable massive contributions with oXygen XML Web Author and GitHub

Early in 2016 a new product was added to the 0Xygen XML set of tools - the oXygen XML Web Author. This leverages the
power of oXygen XML Author - which basically runs on the server side - and provides accessto XML authoring from any
modern device that supports a browser capable of rendering HTML5+JavaScript, including desktops and mobile devices, like
your smart phone or tablet!

The real power of web-based XML authoring can be seen when it isintegrated as part of aworkflow, ssimplifying it by reducing a
large number of stepsto afew - and thisiswhat the GitHub connector provides!

If you have XML content on GitHub then you can provide alink that will open afile for editing in the 0oXygen XML Web Author
and anyone will be able to review or update that just by accessing the link and saving - a GitHub account is of course required.

When you save afile, assuming you do not have commit access on that repository, the GitHub connector will automatically

* fork the project into your account, if you do not have afork aready

* create a new branch from the edited branch

* commit your changes on this newly created branch

* create a pull request from your newly created branch to the originally edited branch

* switch the editor to your branch, so further save operations will just add new commits to your branch, thus updating the
pull request with new changes

Thisisagreat simplification of the contribution process, a contributor just follows alink and saves thefile, and al the magic
happens automatically to create the pull request.

If the XML sourceis published then it is possible to include an “ Edit this page” link on the published format that will

allow immediate access to the editor. An example of such accessis provided for the DITA-OT documentation project. The
development branch is published at http://www.dita-ot.org/dev/ and every page contains at the bottom an “ Edit this page” link
that givesimmediate access to the DITA topic that page is generated from. For example, the https://www.dita-ot.org/dev/ home
page has an Edit this page button will get you to edit the topic in the WebAuthor.

Edit, then save, and a pull request with your changes will be automatically generated - contribution cannot be easier than this!

Next we plan to have the Edit this page option for the 0Xygen documentation, which is also hosted on GitHub at https:/
github.com/oxygenxml/userguide.

Hope you find this useful!

George

All About Editor Variables

In various places in the Oxygen XML Editor application thereis support for expanding variables. These variables/macros usually
take the form ${variableName} and are expanded by the application dynamically when necessary. A list with all supported
editor variables can be found in the user's manual: https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html. | will
enumerate below all major contexts in which using such editor variables may prove useful:

Transformation Scenarios

Most transformation scenario types have lists of parameters and fields where you can configure the place where the output should
be saved. Y ou can use editor variables in these places to make the transformation scenario portable and thus to be able to share it
with your colleagues. Here are some examples:

XML with XSLT based transformation scenario types

If you edit such a scenario and go to the Output tab you can specify the Save asfield to use editor variables like
thiss{cfd}/${cfn}. ht M which will get expanded to use the current XML document folder and file name but with
adifferent extension when the output of the transformation gets saved on disk. Y ou can also use editor variables
like ${date()} to save the output file name using the current date: ${ cf d} / ${ cf n} - ${ dat e(yyyy- M dd) } . ht ni .

https://www.oxygenxml.com/webauthor/
https://github.com/dita-ot/docs
http://www.dita-ot.org/dev/
https://www.dita-ot.org/dev/
https://github.com/oxygenxml/userguide
https://github.com/oxygenxml/userguide
https://twitter.com/georgebina
https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html

Blog | 6 - Miscellaneous | 293

The XSLT tab already uses the ${currentFileURL} editor variable in order to be applied on any XML document
opened in the editor area. The Parameterslist allows you to specify XSLT parameters with values which may
contain editor variables which will be expanded by the application before the transformation is run. For example
as value for a parameter you can use an ${ask()} editor variable which will end up requesting the value from the
end user when the transformation is started: ${ask(' New Paraneter Value', generic, 'default')}.

ANT based transfor mation scenario types

In the Parameter s tab you can add new parameters which will be passed to the ANT build file. Vaues for such
parameters can also contain editor variables. Y ou can add for example a parameter called currentXM L Document
with value ${pd}/specificFileName.xml if you want a path to a specific XML file in the current XML project

to be passed to the ANT build file as avariable. Again you can use ${ask()} editor variable which will end up
requesting the value from the end user when the transformation is started.

DITA Open Toolkit transformation scenario types

DITA Open Toolkit transformation scenarios are based on ANT so the previous tips apply. In addition you can
use the ${rootM apFile} related editor variables which gets expanded to the current root map. For examplein the
Filterstab | can specify the reference to the DITAVAL filelike this: ${r oot MapDir}/filter. ditaval toreferto
the filter relative to the folder where the current root map is published.

Y ou can also extract the root DITA Map file name using the ${xpath_eval ()} editor variable:
${ xpat h_eval (t okeni ze(' ${root MapURL}', '/')[last()])}.

New File Templates

Y ou can create your own new file templates and have them use when the Oxygen XML Editor File->New dialog wizard is used
to create new documents: Sharing New Custom File Templates for a Specific Vocabulary (on page 264).

The content of these new file templates can have inside editor variables which are automatically expanded when anew XML
document is created. For example anew file template like this:
<topic ="topic_${id}">
<title>${caret}</title>
<pr ol og>
<aut hor >${ ask(' Aut hor Nanme?', generic, 'default')}</author>
</ pr ol og>
<body>
<p></ p>
</ body>
</topic>

makes use of multiple editor variables:

* The ${id} editor variable expands to an unique short ID value containing alphanumerical characters. Y ou can also use the
${uuid} editor variable to generate a truly unique but longer ID value.

* The ${caret} editor variable marks the position where the caret will be placed after the XML document created from the
new file template isinitially opened.

* The ${ask} editor variable will ask the end user to provide the name of the author and will get expanded in the XML
content. You can also use ${answer} editor variables to use the same answer to the ${ask} editor variable in multiple
places.

Code Templates

Oxygen XML Editor's code templates support alows you to define small pieces of XML content which can later be inserted
by pressing the Ctrl-Space keyboard shortcut (or ENTER in the Author visual editing mode). Code templates can also contain
editor variables which get expanded when the code template is used. Examples:

* You can use the ${selection} editor variable to surround the current selected content in the main editing areainside the
code templ ate:

<enp${sel ection} </ em>

* The ${caret} editor variable allows you to precisely choose a place for the caret after the code template isinserted:

https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html

Blog | 6 - Miscellaneous | 294

<ph ="oxygen"/>${caret}

In the exampl e above the caret will be placed after the inserted element when the code template is chosen.
* The ${ask} editor variable will trigger the application to ask for avalue to insert in a particular place of the code
template:

<probl em ="${ask(' Reason?', radio, ('lost':"lost';"illegible :"illegible ;' onmtted :'omtted ;),
"lost')}"/>

In the example above when the code template is chosen, the end user will need to choose the reason in a dialog showing
acombo box of possible choices and the chosen reason will be expanded in the code template before being inserted in
the XML content.

Custom Author Actions

Oxygen XML Editor framework configurations allow defining custom actions for the Author visual editing mode and then
contributing these actions to framework-specific toolbars and menus. An example of implementing such a custom action can be
found here: Implementing a Custom Author Action to Split a Table (on page 267).

In some of the default operations that you can use in a custom Author action (for example in the I nsertFragmentOper ation) you
can use editor variables.

External Tools

Y ou can run external command line scripts from Oxygen XML Editor by configuring external tools in the Prefer ences page. The
defined external tools allow using editor variables like ${pd} to access the current project folder and the editor variables will be
automatically expanded before the external tool isinvoked.

Custom Editor Variables

Y ou can define your custom editor variables in the application Custom Editor Variables preferences page. A custom editor
variable can contain as values other editor variables and can be used in al places where a predefined editor variableis.

Y ou can use Oxygen XML Editor's API to provide custom editor variables and their expanded values using custom Java or
Javascript code. For example this plugin adds support for anew ${clipboard} editor variable.

XSLT Training

Putting together alist of resources (courses, books, training) valuable for learning XSLT:

* Michael Kay's"XSLT 2.0 and XPath 2.0", especialy Part I: Foundations.
* XSLT Frequently Asked Questions maintained by Dave Pauson.

e XSLT training courses by Liam Quinn.

* XSLT training by Tomos Hillman.

* An Udemy course by Ken Holman containing also some free lectures.

* XSLT Training courses by Dimitre Novatchev on Plura Sight.

* XSLT consulting by Mulberry Technologies.

* Our Oxygen XML training partners.

Log4Shell - Oxygen XML Vulnerability Analysis FAQ

NIST has announced a vulnerability (CVE-2021-44228 code-named Log4Shell) in the Apache Log4j library. Syncro Soft has
released a new critical security advisory CVE-2021-44228 and prepared this page containing frequently asked questions and
answers related to this vulnerability and itsimpact on our software products.

In the following days, more vulnerabilities (with far lower impact on Oxygen products) were discovered on the Log4j library:
CVE-2021-45046, CVE-2021-45105, CVE-2021-44832.

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-external-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-custom-editor-variables.html
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/customEditorVariables
https://www.amazon.com/XSLT-2-0-XPath-Programmers-Reference/dp/0470192747
https://www.delightfulcomputing.com/xslfaq/xsl/
https://www.delightfulcomputing.com/
http://expertml.com/tom.html
https://www.udemy.com/course/practical-transformation-using-xslt-and-xpath
https://www.pluralsight.com/authors/dimitre-novatchev
http://www.mulberrytech.com/xsl/
https://www.oxygenxml.com/partners.html#trainingpartners
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://logging.apache.org/log4j/2.x/index.html
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://www.oxygenxml.com/security/advisory/CVE-2021-45046.html
https://www.oxygenxml.com/security/advisory/CVE-2021-45105.html
https://www.oxygenxml.com/security/advisory/CVE-2021-44832.html

Blog | 6 - Miscellaneous | 295

Please subscribe to our Security Advisories mailing list (found on the top of the Security Advisories page), and revisit this page
periodicaly to get the latest information.

1. How to protect against this vulnerability?
o Upgrade to the latest version of our products. We have already released new minor bug fix versions for our
products. For example, for Oxygen XML Editor/Author/Developer versions 24.0, 23.1, and 22.1.
o If you cannot upgrade to the latest version, patch or update the Log4j library.
2. How can | patch or update the Log4j library?
o If you are using one of these products:
m Oxygen XML Editor/Author/Developer standalone installation
m Oxygen XML Editor/Author/Developer plugin for Eclipseinstallation
m Oxygen XML Web Author
you can use our free tool (https://github.com/oxygenxml/oxygen-log4j-patcher) to upgrade the Log4j 2.x
libraries or to remove the problematic Jndi Lookup class from inside them.

The recommended Oxygen versions to apply thistool on range from 16.1 to 22.1 inclusively.

o If you are using Oxygen Content Fusion, you can use the Content Fusion Log4j Patcher: https://github.com/
oxygenxml/content-fusion-log4j-patcher.
o [For other scenarios:
m Scan your system for occurrences of thel og4j - cor e JAR file.
m Stop your running Java application (e.g. Oxygen XML Editor).
m Delete the andi Lookup class from those JAR files. For example, use the following command on a Linux
system:

zip -q -d |l og4j-core-*.jar org/apache/l oggi ng/| og4j/ core/l ookup/Jndi Lookup. cl ass

3. Am | still vulnerableif | set the - Dl og4j 2. f or mat MsgNoLookups=t r ue System property?
o Although our products do not meet the preconditions for CV E-2021-45046, setting this system property is no
longer considered to offer bullet-proof protection.
4. Am| still vulnerableif | set the environment variable: LOz4J_FORVAT_MSG NO_LOCKUPS="t r ue" ?
o Although our products do not meet the preconditions for CV E-2021-45046, setting this environment variableis
no longer considered to offer bullet-proof protection.

5. Are there components that may have this problem used by the application outside of the Oxygen installation folder?

o Oxygen add-ons may come bundled with Log4j 2.x libraries. Update all your add-ons to their latest version by
using the Help > Check for add-ons updates menu action.

> The Oxygen application may have external tools configured in the Prefer ences > External Tools page. Check
that your external tools do not use Java processes that may have this problem.

o You may have configured extra JAR libraries used for validation or transformation scenarios. Check that all of
these separate libraries do not contain the Log4j 2.x libraries.

o There may be data sources (for example, for connections to eXist-db servers) created in the Preferences > Data
Sour ces page that have referencesto Logdj 2.x libraries. If thisisthe case, update your connection libraries to
the latest ones provided for the latest server installation.

o You may run DITA publishing using an external DITA Open Toolkit publishing engine that has older versions
for the bundled Log4j 2.x libraries provided by the Oxygen-specific publishing plugins. Update the Oxygen
plugins used by the custom DITA Open Toolkit to the latest versions available on our website.

6. | am using the Oxygen SDK and cannot upgrade. How can | upgrade just the Log4j library?

o Make sure that you do not have the version of Log4j hard-coded in your pom xm file.

> You can control the version of Log4j to be included by adding the following configuration in the
dependencyManagenent section of thepom xml file of your project:

<dependency>
<groupl d>or g. apache. | oggi ng. | og4j </ gr oupl d>
<artifactld>l og4j-bonk/artifactld>
<version>2. 17. 1</ ver si on>
<t ype>ponx/type>
<scope>i nport </ scope>

</ dependency>

https://www.oxygenxml.com/security/advisories.html
https://github.com/oxygenxml/oxygen-log4j-patcher
https://github.com/oxygenxml/content-fusion-log4j-patcher
https://github.com/oxygenxml/content-fusion-log4j-patcher
https://www.oxygenxml.com/security/advisory/CVE-2021-45046.html
https://www.oxygenxml.com/security/advisory/CVE-2021-45046.html

Blog | 6 - Miscellaneous | 296

10.

11.

12.

13.

14.

15.

o To test which version of Log4j your Maven project uses, run: mvn dependency: | i st
- Di ncl udeG oupl ds=or g. apache. | oggi ng. | og4j -U.

o If you are using the web- aut hor - conponent artifact, you can use aMaven WAR Overlay to replace the packaged
Log4j library distributed with a newer version.

. Am | still vulnerableif | block all outbound traffic?

o If you block ALL the outbound traffic, you may be safe, but:
m Be sureto block also DNS traffic, asit can exfiltrate data such as environment variables.
m Be sure to re-assess which servers are trusted - maybe some trusted servers had the same vulnerability
and were exploited.
o Regardless, it isavery good ideato restrict outbound traffic from Oxygen tools. Thiswill protect you against
various types of vulnerahilities.

. Am | still vulnerableif | use anew version of Java?

o The vulnerability is known to exist with the latest versions of Java (e.g. > 1.8u191) if you are also using Apache
Tomcat or Websphere. If you are not using those servers, you may still be vulnerable, but we are not aware of
any exploits.

. Should | remove the Jndi Lookup class?

o Yes. Removing it will remove the vulnerable code. We have high confidence that other problemswill not be
generated.

Should | set firewall rules based on HTTP headers or URLsto block attacks?

o These kind of rules do not offer full protection. The URLSs that exploit the vulnerability can be written in various
ways and are not recognized by common WAF rules that you might find.

How to test if | am vulnerable?

o If you did not apply any mitigation, you can assume you are.

Should I do anything if the affected server is deployed inside the intranet?

o Yes. The attack can be triggered from another server that was exploited or by one of the employees when they
follow alink in aphishing email.

Should | upgrade to the latest version of your products?

o Yes. New maintenance builds that avoid this vulnerability are available for versions that are in the maintenance
period.

Isthis vulnerability related to Java being insecure?

o No. Itis caused by an open-source component called Log4j that had a vulnerability. This component iswidely
used in the Java ecosystem.

How is Syncro Soft addressing the problem?

o We patched all our public servers against this vulnerability.

o We provided a security advisory with current solutions (https://www.oxygenxml.com/security/advisory/
CVE-2021-44228.html) and we produced maintenance builds that remove the vulnerable version of Logdj for all
product versions that are under maintenance. We are working on solutions for older versions.

o We analyzed and updated our internal serversto make sure they are not vulnerable.

o We scanned the logs of the services we use or provide to look for the pattern that triggers the vulnerability.

Related information

https://www.lunasec.io/docs/blog/l ogdj-zero-day/
https://msrc-blog.microsoft.com/2021/12/11/microsofts-response-to-cve-2021-44228-apache-log4j 2/
https://www.oxygenxml.com/security/advisory/CV E-2021-44228.html

Using Oxygen XML Editor in aWeb Browser (Experimental)

The JetBrains Projector is atechnology for rendering Swing applications over the network and is an interesting way to run
and access these apps remotely. Some of its use cases are listed here: https./jetbrains.github.io/projector-client/mkdocs/l atest/
ij_user_guide/jetbraing/#use-cases.

Since Oxygen XML Editor is a Java Swing-based application, this blog post explains how Oxygen XML Editor could be
accessed remotely and used from aweb browser.

https://maven.apache.org/plugins/maven-war-plugin/overlays.html
https://github.com/veracode-research/rogue-jndi
https://github.com/veracode-research/rogue-jndi
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://msrc-blog.microsoft.com/2021/12/11/microsofts-response-to-cve-2021-44228-apache-log4j2/
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://jetbrains.github.io/projector-client/mkdocs/latest/ij_user_guide/jetbrains/
https://jetbrains.github.io/projector-client/mkdocs/latest/ij_user_guide/jetbrains/#use-cases
https://jetbrains.github.io/projector-client/mkdocs/latest/ij_user_guide/jetbrains/#use-cases

Blog | 6 - Miscellaneous | 297

Figure 2. Oxygen XML Editor Running in the Safari Web Browser Using JetBrains Projector

4 @ e M+ < localhost ¢ ﬁ + 88

+ File Edit Find Project Options Tools Author Document Window Help

) L) " f
INEGEB e @ Q@[€«
o XPach‘OV‘ ~Execute XPath on 'Current File' ME IV b »)" P = ’.2* i To

¢ Smart Autocomplete O &8 E ® introduction.dita X ©® groomingTODO.txt X

[i .
Engine: @ OpenAl O Builtin O None topic body

4 1 <?xml version='1.0" encoding="UTF-8'7>«

[] Auto-Insert best proposal <IDOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">«
i N

3 ¥ <topic id="introduction">«
] 4 <title>Introduction</title>« i
5+ <shortdesc>With just a little bit of care and preparation, any flower garden cé
v 6 colored environment.</shortdesc>«
7 <body>«
g 8 <p>With just a little bit of care and preparation, any flower garden can be &
] 9 colored environment. Flowers can be selected for specific blooming seas
10 shapes. Both annual and <xref "perennial” "dita">perenr}|
€ 1" flower gardens can be planted depending on climate and specific needs.)|
M 12 </b9dx> o |
13 </t0pIC>(-J il
| 14 *

ul

il

Reindex |
i
I8 Project H DITA Map.. Q} Git Staging [| Smart Aut..

Outline o8 E

To prepare an Oxygen XML Editor installation on the server side for running in aweb browser:

1. Download an All Platforms version of the Oxygen XML Editor installation kit (oxygen. t ar . gz): https://
www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html20s=Other.

2. Unpack it to the oxygen folder.

3. Download the Jetbrains projector server and unzip it in the Oxygen installation folder (the folder path should be
something like: oxygen/ pr oj ect or - server-1. 5. 0).

4. Download the Jetbrains Java 11 runtime enviroment and unpack it to the oxygen/ j br folder.

5. Createast art - proj ect or - oxygen. bat scriptintheoxygen installation folder so that it adds the JetBrains
libraries to the classpath and runs the JetBrains server giving it the name of the main class as a parameter to run it with
the contents:

@cho of f
SET

=" %-dp0; %-dp0/ cl asses; %-dp0/ | i b/ oxygen-basi c-utilities.jar;%dp0/lib/oxygen.jar; %dp0/ projector-ser
ver-1.5.0/1ib/*"

%-dp0\ j br\ bi n\j ava. exe %OXYGEN_JAVA OPTI ONS%
- Dcom oxygenxnl . app. descri pt or =ro. sync. exnl . Edi t or FraneDescri ptor -cp
%CP% - Dor g. j et brai ns. proj ector. server. cl assToLaunch=ro. sync. exm . Oxygen
org.jetbrains. projector.server. ProjectorLauncher %

6. Runthest art - proj ect or - oxygen. bat script, which will start an HTTP server on port 8887 by default.
7. Connect to the | ocal host : 8887 port from the same computer or from another computer using aweb browser.

Result: You should be able to use Oxygen XML Editor in aweb browser and have full access to the server-side resources.

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://github.com/JetBrains/projector-server/releases
https://github.com/JetBrains/JetBrainsRuntime/releases

Blog | 6 - Miscellaneous | 298

Oxygen XML Blog 2022 Retrospective

So here we are at the end of 2022 and | figured it's a good time to go through some of the improvements we made and posts we
added in the Oxygen XML Blog. A short summary of our activity on the Oxygen XML Blog can be found below:

Statistics
Asan overview of the most read articles on the blog, we found out that articles about conversions from various
formats (especially MS Word) to DITA XML, articles about learning DITA XML, and general tipsand tricks

articles were the most read. Also, | think we provided some good quality content covering these aspects in 2022.
In total, we provided about 30 new articles to the blog in 2022.

Collaborators

Thisyear, we had alot moreinternal collaborators with contributors to the Oxygen XML Blog. Our web
designers Mihai and L uci created a new color theme for the blog. My colleagues Cosmin Duna, Geor ge Bina,
and Alex Smarandache contributed various interesting and useful articles to the blog. Our external collaborator
Chris Papademetrious also submitted an article about enhancing DITA Open Toolkit project files.

Moving the product forward

The blog also served as a place to experiment with ideas that were later incorporated into Oxygen. For example,
based on articles written in the blog, we added to Oxygen the capability to convert OpenAPI documents to
DITA XML or to generate Google Structured Data content when publishing DITA XML content to WebHelp
Responsive Output.

We hope you found the articles we added to the Oxygen XML Blog this year useful. If you have ideas about possible future
articles that we could add to the blog, we are always open to suggestions, or you can also contribute articles yourselves: How
Y ou can Contribute to the Oxygen XML Editor Blog. (on page 5)

A more detailed list of contributions to the blog can be found below:

Colorsand Layout Redesign

My colleagues Mihai and L uci (who maintain and design our web site) have had time this year to do afull redesign of the
Oxygen WebHelp publishing template we are using to publish our blog's DITA XML content to WebHelp.

So thanks to their work the entire layout of the blog |ooks better now!

We also changed the WebHelp feedback authentication available on each page of the blog to the Oxygen XML organization so
that with the same authentication, you can leave us feedback either on the Oxygen User s Guide Web pages or on the Oxygen
XML Blog.

Migrating Word and Unstructured FrameM aker to DITA XML

Our colleague Cosmin Duna submitted two interesting migration related articles:

* Migrating MS Word to DITA using the Batch Documents Converter (on page 249)
* Migrating Unstructured Adobe FrameMaker Content to DITA (on page 255)

DITA Publishing

In 2022, | wrote quite afew small articles based on my experiences with various DITA publishing customizations and they are all
linked in this overview post: Publishing Customizations (on page 97).

| also wrote an article about the various ways that we support the DI TA Open Toolkit open source engine: Supporting the DITA
OT Project asa Commercial Company (on page 168).

My colleague Alexandru Smarandache submitted hisfirst article about creating learning content for the Google Chatbot from
DITA XML content (on page 216).

Our client and friend Chris Papademetrious also submitted an article about enhancing DITA Open Toolkit project files:
Preprocessing DITA-OT Project Files (on page 182).

Blog | 6 - Miscellaneous | 299

These articles were a so presented at the DITA Open Toolkit Day 2022 along other interesting talks: https://
www.oxygenxml.com/events/2022/dita-ot_day.html.

DITA Per spectives

Our boss and colleague Geor ge Bina contributed an article and a GitHub project with his experiments creating automatic graphs
showing the hierarchy of DITA elementsin the DITA specification: DITA Perspectives (on page 18).

Short Clips- DITA Editing

We started a series of small articles presenting various features of DITA XML editing with Oxygen using small videos:

* Short Clips - Insert Image References (on page 9)
* Short Clips - Insert Links (on page 11)
* Short Clips - Reuse Content (on page 16)

https://www.oxygenxml.com/events/2022/dita-ot_day.html
https://www.oxygenxml.com/events/2022/dita-ot_day.html

Chapter 7. Contributors

Everybody can contribute interesting XML and publishing-related articles to the Oxygen XML Blog: How Y ou can Contribute to
the Oxygen XML Editor Blog. (on page 5) All contributors to the Oxygen XML Blog are listed below.

Table 3. List of contributorsto the Oxygen XML Blog

Author Name Details
Alex Jitianu Project Manager, DITA/Authoring team. Oxygen XML Editor
Chris Papademetrious Senior Technical Writer, Synopsys Inc.
Cosmin Duna Senior Software Developer. Oxygen XML Editor
Cristi Talau Project Manager, Web Authoring team. Oxygen XML Editor
George Bina Owner, DITA XML Expert. Oxygen XML Editor
Mihaela Calotescu Senior software devel oper, Web Authoring team. Oxygen XML Editor
Radu Coravu Helping people with XML -related technol ogies since the start of this century. Oxygen XML
Editor
Steven Higgs Senior Technical Writer. Oxygen XML Editor
Alex Smarandache Software Devel oper. Oxygen XML Editor

https://github.com/raducoravu

| ndex

A
Add-ons
artificial intelligence
230
Al Positron Assistant
230

	Blog
	Contents
	Chapter 1. Welcome!
	Follow us!
	History of the Oxygen XML Editor Blog
	How the Oxygen XML Editor Blog Works
	How You can Contribute to the Oxygen XML Editor Blog.
	Technologies Used to Store, Build and Publish the Oxygen XML Blog

	Chapter 2. Frequently Asked Questions
	How do I register to receive notifications for new blog posts?
	Can I contribute articles to the Oxygen XML Blog?
	How do I learn DITA XML with Oxygen?
	How do I convert various output formats to DITA XML?
	Are there any productivity tips and tricks?

	Chapter 3. DITA
	Learning
	Resources for learning DITA with Oxygen
	Resources for editing DITA with Oxygen:
	Resources for learning DITA:
	Resources for customizing the DITA output formats
	Courses for learning DITA with Oxygen XML Editor
	DITA Trivia
	Community
	Learn DITA Editing with Oxygen with Small Clips
	Short Clips - Insert Image References
	Use Toolbar Action to Insert a Figure with an Image Reference
	Drag and Drop to Insert an Image Reference
	Copy/Paste to Insert an Image Reference
	Configure DITA Reusable Components/Media Tab Working Sets and Insert an Image Reference

	Short Clips - Insert Links
	Use Toolbar Action to Insert a Cross Reference to Another Topic
	Use Toolbar Action to Insert a Cross Reference to a Table
	Drag and Drop to Insert a Cross Reference
	Copy/Paste to Insert a Cross Reference
	Copy Paste to Insert a Cross Reference To a Table
	Use Toolbar Action to Insert a Related Link to Another Topic
	Use Toolbar Action to Insert a Link to a Web Site
	Use Toolbar Action to Insert a Link to a PDF

	Short Clips - Reuse Content
	Define a Key for a Product Name and Use It
	Use an Already Defined Key for a Product Name Using The Toolbar Action
	Add a Content Reference to a Reusable Note Using the Toolbar Actions
	Add a Content Reference Using Copy/Special Paste Operations
	Add a Content Reference Using the DITA Reusable Components View

	DITA Perspectives
	Overview of DITA
	DITA Shells
	DITA Modules
	DITA Elements
	Elements Split by Map and Topic Base
	Topic Elements
	Map Elements

	bookmap
	learningSummary
	learningPlan
	learningOverview
	learningContent
	learningObjectMap
	learningBase
	learningGroupMap
	learningAssessment
	troubleshooting
	reference
	task
	glossentry
	glossgroup
	concept
	subjectScheme
	DITA Domains
	DITA Learning Interaction Base 2 Domain
	DITA Learning Map Domain
	DITA Learning Interaction Base Domain
	DITA Learning Metadata Domain
	DITA Learning Domain
	DITA Learning 2 Domain
	DITA Abbreviated Form Domain
	DITA Markup Name Mention Next v Domain
	DITA MathML Domain
	DITA SVG
	DITA User ADD Domain
	DITA Equation Domain
	DITA Task Requirements Domain
	DITA Programming Domain
	DITA XML Construct Domain
	DITA Glossary Reference Domain
	DITA Software Domain
	DITA Release Management Domain
	DITA XNAL Domain
	DITAVAL Reference Domain
	DITA Delay Resolution Domain
	DITA Indexing Domain
	DITA Hazard Statement Domain
	DITA Highlight Domain
	DITA Map Group Domain
	DITA Utilities Domain
	DITA Subject Classification Domain

	Taking Advantage of DITA Element Hierarchy
	Element Selection During Editing
	Automatic Markup Detection
	Soft Generalization

	Exchanging DITA Documents

	Using DITA to Document a Software Product
	Git as a Version Control System
	Oxygen XML Author
	Oxygen Content Fusion
	Oxygen Publishing Engine
	Jenkins integration server
	Automated DITA Content Validation
	Atlassian Jira for Ticketing and Workflow

	Guided DITA Authoring Solution Overview
	Learning to Work with DITA and Oxygen
	Migrating to DITA
	Restricting the Visual Editing Experience
	Implementing Your own Style Guide
	Imposing Controlled Attribute Values
	Imposing Business Rules and Structure Restrictions to the DITA Content
	Running Batch Validation Checks on all of Your DITA Content
	Sharing DITA Editing Customizations with Your Team
	Sharing Global Application Settings with Your Team
	Collaboration, Content Management, and Version Tracking
	Allowing Subject Matter Experts to Review Content

	Maintaining a Healthy DITA Project
	How should a Happy and Healthy Documentation Project Look Like?
	Do you have a Healthy Project?
	Why do big companies use the DITA standard?
	DITA Doc Project Aspects
	Storage
	Version Control
	Working with the storage system
	Collaboration and Workflow
	Workflow
	Issue tracking
	Issue Tracking Examples
	Issue tracking – Simple Documentation Workflow
	Issue tracking – Development and Documentation Workflow
	Issue Tracking and Storage Integration
	Involving Subject Matter Experts
	How can end users collaborate with us?
	Contribution Consistency
	Sharing common settings between writers
	Custom Style Guide
	Automating Style Guide Rules
	Using the same terminology rules
	DITA Project Structure
	File and folder naming/organization conventions
	Managing Content Reuse
	Managing Links
	Project-wide refactor operations
	Translation
	Optimizing for translation
	Publishing
	Producing the deliverables
	Useful links
	Conclusions

	DITA Linking Strategies
	Map-Level Linking
	Chunking
	Topic-Level Linking
	In-Content Links
	Related Links
	Defining Related Links using Relationship Tables
	Indirect Links (Key References)
	Auto-Generated Links
	Conditional Links in Distinct Publications
	Conditional Links in the Same Publication
	Link Text
	Should I Link or Should I Reuse?
	Conclusions

	DITA 1.3 Branch Filtering - Next Generation of Reuse
	Case 1 - Combine Two Profiles in the Same Publication
	Case 2 - Reusing Common Topics with Different Product Names

	DITA 1.3 Key Scopes - Next Generation of Reuse
	DITA Reuse Strategies
	Introduction
	Version Control and Reuse
	Converting XML content to various output formats
	Create larger publications from existing ones
	Reuse content for similar products
	1. Use multiple Root Maps.
	Publication maps for phone models X1000 and X2000 using almost similar content except Blue-tooth chapter which appears in only one of them.
	2. Use a single Root Map.

	Reuse fragments of content
	Content References
	Small example of content referencing

	Content Key References
	Small example of content key referencing

	Content Reference Ranges
	Small example of content key reference with ranges

	Content Reuse Tips and Tricks
	Pushing Content
	Pushing Content to an existing sequence of steps

	Key References (Variables)
	Reusing keywords

	DITA 1.3 Contributions to Reuse
	Reuse with Key Scopes
	Reuse using key scopes

	Reuse with Branch Filtering
	Creating a Phones Catalogues publication

	Reuse non-DITA resources
	Conclusions

	Cross-Book Links
	DITA XML vs Markdown Syntax and Capabilities Comparison

	Publishing Customizations
	DITA Project Overview
	Embed Latex Equations in DITA Topics
	Embed PlantUML/Mermaid Diagrams in DITA Topics
	DITA Task Steps Presentation Alternatives
	Generate Google Structured Data Content from DITA Content
	Present Consecutive Elements as Tabs in HTML Output
	Convert OpenAPI Content to DITA
	Various Applications for DITA to Markdown Publishing
	DITA Prolog Customizations
	Marking DITA Topics with Labels for the HTML-based Output
	Generating Content for Google Chatbot
	Externally Contributed Articles
	DITA WebHelp Publishing Solution Advantages
	PDF
	DITA OT PDF Customization - Table with Alternate Row Background Colors
	Possibilities to obtain PDF from DITA
	DITA PDF publishing - Force page breaks between two block elements

	Embedding Diagrams in DITA topics using PlantUML
	Embedding Diagrams in DITA Topics Using Mermaid
	Presenting DITA Task Steps as Diagrams
	Show Consecutive DITA Code Blocks in Separate Tabs
	Show DITA Task Steps in Separate Tabs
	Converting OpenAPI to DITA XML and Publishing to WebHelp (Experimental)
	DITA to Confluence
	Publish DITA to Microsoft Word and import in Confluence
	Publish DITA to HTML5 and import in Confluence
	Publish DITA to HTML5 and paste from Web Browser to Confluence
	Creating a special DITA to Confluence-like HTML publishing flow

	Generating a list of changes between releases
	DITA Publishing Customization Overview
	DITA Open Toolkit Overview
	Publishing Customizations (Before you begin)
	Customizing the XHTML-based outputs
	Customizing the Oxygen WebHelp-based output
	Customizing the PDF Classic output
	Customizing the DITA + CSS to PDF output

	DITA Open Toolkit Frequently Asked Questions (FAQ)
	What is the DITA Open Toolkit?
	How do I use the DITA Open Toolkit?
	What version of DITA Open Toolkit should I use?
	What outputs can I obtain using the DITA Open Toolkit?
	What is the general architecture of the DITA Open Toolkit?
	What is a DITA Open Toolkit plugin?
	How do I customize the HTML-based outputs?
	How do I customize the PDF output?

	Enhancing DITA Publishing With Plugins
	Plugin that Converts DITA Maps to PDF Using CSS 3 [Bundled]
	DITA Metrics Report [Bundled]
	Export DITA Map Plugin [Bundled]
	Publish DITA Content with References to Video and Audio Resources. [Bundled]
	Plugin That Adds Edit Links in HTML or PDF-based Outputs [Bundled]
	Create Single Merged XML Document From Entire DITA Project [Bundled]
	Dynamically Publish Excel Content as DITA
	Dynamically Use JSON Content in DITA Topics
	Embed HTML Content in DITA Topics [Bundled]
	Embed LateX Equations in DITA Content
	Embed UML Diagrams in DITA Content
	Float Images in HTML and PDF Outputs
	Embed Referenced MathML and SVGZ Images in HTML Output
	Dynamically Convert DITA Tables to Graphs
	Show Oxygen Change Tracking Information in the PDF Output [Bundled]
	Sample Customization Plugin for Classic PDF Output
	PDF - Generate Numbers Before Topic's Title
	PDF Plugin That Presents Chapters With Landscape Orientation

	Adding support for embedding LaTeX equations in DITA content
	Useful DITA OT Plugins
	DITA to MS Word
	Convert MS Word to DITA
	DITA to EPUB
	Use Markdown content directly in DITA Maps
	Embed video and audio resources in DITA topics
	Publish RelaxNG-based DITA topics
	Present Oxygen track changes in the PDF output
	Publish DITA to PDF using CSS

	Creating a simple DITA Open Toolkit plugin to customize published HTML and PDF content
	Using Git client-side hooks to run DITA publishing pipelines
	Prerequisites
	What is a Git hook?
	Using a client side hook with a DITA project
	Installing a pre-commit hook

	Creating Link Graphs From DITA Maps
	Publishing DITA Content Using the MKDocs Web Site Generator
	Creating PowerPoint Slides from DITA Content
	Adding Labels to Topics in the WebHelp Responsive Output
	Inserting Labels
	Factoring Labels When Publishing

	Displaying prolog details (author, creation date, read time)
	Dynamically publishing a list with the most recent topics
	Dynamically Generating an RSS Feed
	Using the RSS Feed With Follow.it to Receive New Posts by Email

	Generating Google Structured Data from your DITA tasks
	Generating Google Structured Data from your DITA frequently asked questions

	Editing Customizations
	Startup DITA Project
	Project Structure
	Settings Saved at Project Level
	Framework Customizations
	Renaming/Moving Topics and Other Resources
	Terminology Checking
	Publishing

	Customizing the DITA Visual Editing Experience
	Customizing the DITA Framework Using a Framework Extension Script
	Creating the Framework Extension Script
	Customizing the New Document Templates
	Changing the Author Mode Rendering With a New CSS File
	Removing the Bold, Italic, Underline Actions From the Author Mode
	Adding the Insert Note Action to the Toolbar

	Controlled Attribute Values for your DITA Project
	Controlled Attribute Values (Part 2 - Advanced)
	The configuration file
	The XSLT script

	Converting Subject Scheme Map Values to a DITAVAL
	Converting .xpr Profiling Conditions to Standard DITA Files
	Profiling Conditions in the Oxygen .xpr Project File
	Profiling Conditions in Standard DITA Files
	What Are DITA Subject Scheme Files?
	Converting .xpr Profiling Conditions With Refactoring

	Other
	DITA For Small Technical Documentation Teams
	Overview of Tools Proposed for the Solution
	Learning DITA
	Project Storage - Using GitHub
	Creating and Modifying Content in the Repository
	Using Oxygen XML Author to Create/Modify Content in the Repository
	Organizing Your Project Structure using the Master Files Support
	Overall management of the DITA project
	Sharing Common Settings using the Project
	Manual Publishing
	Working with Branches
	Establishing a Workflow
	Adding Custom Validation Checks to the Project
	Adding Custom Actions
	Dynamic Publishing using an Integration Server
	Translating your content

	Using Git For Technical Writing
	Advantages of Using Git
	Disadvantages of Using Git
	Useful Resources
	Learning Git
	Workflows and Collaboration

	Applications for Working with Git
	Server-side solutions
	Client-side applications

	Typical Editing Session
	Commit Message
	Micro Commits
	Handling Simple Conflicts

	Validation
	Common Workflows
	Centralized Workflow
	Cherry Pick

	Feature Branches
	Branches For All Changes
	Release Branches
	Our Attempt at the Centralized Workflow
	The Release Branch Workflow
	The Branch-Merging Perl Script

	GitFlow

	Propose Changes
	Handling Translations
	Sharing Common Settings
	Publishing Content From Git

	Supporting the DITA OT Project as a Commercial Company
	Overview
	History and Context
	Implementing Plugins for the DITA Open Toolkit
	Helping with Publishing-related Questions
	DITA Open Toolkit Publishing-related Articles
	Registering and Analyzing Issues, Opening Pull Requests
	Contributing with Improvement Ideas to the DITA Open Toolkit Project
	Contributions to the DITA Open Toolkit Documentation
	The DITA Open Toolkit Day

	DITA Map Metrics Evolution
	Oxygen XML Editor DITA Editing solution strong points.
	DITA Oriented Tips And Tricks
	Add-ons
	Project-related Functionality:
	Navigation:
	Find/Replace Functionality
	DITA Maps Manager
	Editing in the Author Visual Editing Mode
	DITA-specific Editing in the Author Visual Editing Mode
	Preferences:
	Tools
	Import
	Other Views and Toolbars:
	Other Small Tips:
	Keeping in Touch

	DITA Project Enhancements
	Publishing
	Editing the DITA Project
	Adding the DITA Project in the "Master Files" folder
	Using the DITA Project information for editing
	Using the DITA Project for the "Validate and check for completeness" action
	DITA Project extensibility

	Translating your DITA Project
	Choosing a Translation Agency
	Optimizing Content for Translation
	General DITA Project Structure
	General Translation Workflow when the Translation agency accept DITA documents
	Translation Workflow when the Translation agency accepts XLIFF files
	Publishing your Translated Content
	Liability

	DITA Map Validate and Check for Completeness Overview
	Schematron Checks to help Technical Writing
	Implementing your own Style Guide
	Custom "Style Guide" toolbar button
	Link to Style Guide for each element in the content completion window
	Impose controlled attribute values
	Show validation errors or warning when guidelines are breached
	Bringing all of this together

	Preprocessing DITA-OT Project Files
	Quick Overview of Project Files
	Limitation – Specify Per-Deliverable PDF File Names (#3682)
	Limitation – Consider DITAVAL in Both <context> and <publication> (#3690)
	Using Preprocessing to Work Around the Limitations
	Exploring How the XSLT Transformation Works

	Re: 10 reasons for moving away from DITA
	DITA 2.0 Specification Support Cheat Sheet
	Refactoring
	Sorting Glossary Lists in a DITA Bookmap
	Replacing Direct Image References with Key References in a DITA Project.
	Deleting Elements in a Refactoring Operation
	Resolving DITA Cross-References in Refactoring Operations
	The Missing Piece - Resolving a @keyref
	Resolving Cross-References in Refactoring Operations
	Example Test Case

	Inserting and Reformatting Content in Refactoring Operations
	Re-indenting XML After Content Updates
	Considering Content Models During Content Insertion
	Example Test Case

	Surveys
	Small Problems with the DITA Standard
	DITA Linking Usage Survey
	DITA Inheritance Hierarchy
	DITA Usage Survey
	GIT is on a roll
	PDF is still the most popular output format
	Indirect addressing is becoming the main way of reusing content
	DITA 1.3 features
	Popular image formats
	Major DITA frustrations

	Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML content
	Using ChatGPT in a DITA XML Project
	Advice About DITA XML Standard Use
	Generate New Content
	Simple Conversions
	Writing Style
	Statistics
	Custom Validation (Schematron-based)

	Oxygen AI Positron Assistant Add-on
	Overview
	Manual Installation
	Connecting to the Oxygen AI Positron Service
	AI Server Requests and Credits
	Generating and Refining Content
	AI Positron Assistant View
	AI Refactoring
	AI Positron Assistant Preferences Page
	Validation Quick Fixes
	Creating Custom Actions
	Create Custom Prompts/Actions by Recording Changes
	Custom Validation Rules
	Resources

	Similarities Between Technical Doc Writers and Software Engineers

	Chapter 4. Migrate
	Migrating to a Structured Standards-based Documentation Solution
	Migrating Various Document Formats to DITA
	Migrating DocBook Content to DITA.
	Migrating Microsoft Word Content to DITA
	Migrating Excel Content to DITA
	Migrating LibreOffice Content to DITA
	Migrating Google Docs to DITA
	Migrating Markdown Content to DITA
	Migrating HTML Content to DITA
	Migrating Unstructured FrameMaker to DITA
	Migrating MadCap Content to DITA
	Migrating Confluence Content to DITA
	Migrating AsciiDoc to DITA
	Migrating reStructuredText to DITA
	Migrating LaTex to DITA
	Migrating Other Formats to DITA

	How to Migrate from Word to DITA
	Oxygen Batch Documents Converter add-on
	Smart Paste
	Word to HTML to DITA
	Word to DocBook to DITA
	Word to DITA using DITA For Publishers
	Migrating MS Word to DITA using the Batch Documents Converter
	Preparing Word Document for Migration
	Converting the Word Document
	Configuring Word styles mapping
	Configuring the Maximum Heading Level for Creating Topics
	Converting the document

	Post-processing the DITA Content Converted from Word
	Word to DITA Conversion FAQ
	How can I fix unrecognized style warnings?
	How can I configure the styles mapping when the wanted element doesn't exist in HTML?
	How can I configure the styles mapping for paragraphs styled as code blocks?
	How can I preserve the Word shapes?

	Batch converting HTML to XHTML
	Migrating Unstructured Adobe FrameMaker Content to DITA
	Using a FrameMaker Plugin
	Using FrameMaker Conversion Table
	Unstructured FrameMaker to HTML to DITA

	Automation - Using DITA XML Topic Titles to Generate File Names

	Chapter 5. SDK Development (Plugins, Frameworks)
	Customizing Oxygen XML Editor (Overview)
	Add support for editing a specific XML vocabulary
	Customize the existing support for a specific XML vocabulary
	Provide custom settings
	Modify the application appearance or behavior using plugins

	Document Type Extension Sharing
	Sharing Schematron Validation Rules
	Public hosted Oxygen Plugin and Framework Projects
	Sharing New Custom File Templates for a Specific Vocabulary
	Composing Author Actions
	Implementing a Custom Author Action to Split a Table
	Adding a Custom Author Action to the Content Completion Window
	How Special Paste works in Oxygen
	The Oxygen SDK (Part 1: Plugins)
	Plugins:

	The Oxygen SDK (Part 2: Frameworks)
	Your First Oxygen Add-on
	Oxygen Add-ons Overview
	Short History of Frameworks Support in Oxygen XML Editor
	Short History of Plugin Support in Oxygen XML Editor
	Public Hosted Plugins and Frameworks
	Private Hosted Plugins and Frameworks
	Why are we (the Oxygen XML Editor team) working on add-ons?
	Plugins and Frameworks Developed by Oxygen XML Editor
	Using Frameworks and Plugins in the WebAuthor in-browser editor
	Where can we go from here?

	Adding CALS-table related functionality to your custom Oxygen framework
	Convert Code Templates to External Author Actions

	Chapter 6. Miscellaneous
	Oxygen XML Ecosystem
	Add-ons For Technical Documentation
	Tips And Tricks
	General Layout - Views and Toolbars:
	Side Views You Probably Never Used
	Project-related Functionality:
	Navigation:
	Find/Replace Functionality
	Text Editing:
	Huge File Editing
	Grid editing mode:
	Editing in the Author Visual Editing Mode
	Preferences:
	CSS-based PDF Publishing
	Tools
	Import - Convert
	Connectivity
	Add-ons
	Keeping in Touch

	Checking Terminology with Oxygen XML Editor
	Built-in spell checker
	Oxygen Terminology Checker
	Commercial alternatives
	Open-source alternatives
	Building your own terminology checker

	Opinions about using Oxygen
	A set of rules for providing great tech support
	A Short Story of Reuse
	Sharing Application Settings
	Collaboration for Documenting a Software Product using DITA
	Oxygen XML Editor
	DITA Open Toolkit + WebHelp plugin
	Jenkins integration server
	Git as a version control system
	Atlassian Jira for workflow

	Collaboration (Teams working on a common XML project)
	Enable massive contributions with oXygen XML Web Author and GitHub
	All About Editor Variables
	Transformation Scenarios
	New File Templates
	Code Templates
	Custom Author Actions
	External Tools
	Custom Editor Variables

	XSLT Training
	Log4Shell - Oxygen XML Vulnerability Analysis FAQ
	Using Oxygen XML Editor in a Web Browser (Experimental)
	Oxygen XML Blog 2022 Retrospective
	Colors and Layout Redesign
	Migrating Word and Unstructured FrameMaker to DITA XML
	DITA Publishing
	DITA Perspectives
	Short Clips - DITA Editing

	Chapter 7. Contributors
	Index

