
Blog

Contents

Chapter 1. Welcome! ... 5

Chapter 2. Frequently Asked Questions...7

Chapter 3. DITA... 8

Learning... 8

Resources for learning DITA with Oxygen... 8

Using DITA to Document a Software Product.. 55

Guided DITA Authoring Solution Overview... 56

Maintaining a Healthy DITA Project... 58

DITA Linking Strategies...72

DITA 1.3 Branch Filtering - Next Generation of Reuse..76

DITA 1.3 Key Scopes - Next Generation of Reuse...78

DITA Reuse Strategies..79

Cross-Book Links..88

DITA XML vs Markdown Syntax and Capabilities Comparison..92

Publishing Customizations.. 97

DITA WebHelp Publishing Solution Advantages.. 98

PDF.. 99

Embedding Diagrams in DITA topics using PlantUML.. 101

Embedding Diagrams in DITA Topics Using Mermaid.. 102

Presenting DITA Task Steps as Diagrams... 103

Show Consecutive DITA Code Blocks in Separate Tabs.. 105

Show DITA Task Steps in Separate Tabs..106

Converting OpenAPI to DITA XML and Publishing to WebHelp (Experimental)... 107

DITA to Confluence..108

Generating a list of changes between releases... 111

DITA Publishing Customization Overview..112

DITA Open Toolkit Frequently Asked Questions (FAQ)..113

Enhancing DITA Publishing With Plugins...114

Adding support for embedding LaTeX equations in DITA content.. 116

Useful DITA OT Plugins..117

Creating a simple DITA Open Toolkit plugin to customize published HTML and PDF content..................................118

Using Git client-side hooks to run DITA publishing pipelines..119

Creating Link Graphs From DITA Maps... 121

Publishing DITA Content Using the MKDocs Web Site Generator..122

Creating PowerPoint Slides from DITA Content ..124

Adding Labels to Topics in the WebHelp Responsive Output.. 125

Displaying prolog details (author, creation date, read time).. 127

Dynamically publishing a list with the most recent topics.. 128

Dynamically Generating an RSS Feed... 129

Contents | iii

Generating Google Structured Data from your DITA tasks.. 131

Generating Google Structured Data from your DITA frequently asked questions.. 133

Editing Customizations... 135

Startup DITA Project.. 135

Customizing the DITA Visual Editing Experience.. 137

Customizing the DITA Framework Using a Framework Extension Script..138

Controlled Attribute Values for your DITA Project.. 140

Converting Subject Scheme Map Values to a DITAVAL... 142

Converting .xpr Profiling Conditions to Standard DITA Files.. 143

Other.. 150

DITA For Small Technical Documentation Teams..150

Using Git For Technical Writing..154

Supporting the DITA OT Project as a Commercial Company.. 168

DITA Map Metrics Evolution...170

Oxygen XML Editor DITA Editing solution strong points... 171

DITA Oriented Tips And Tricks.. 171

DITA Project Enhancements...175

Translating your DITA Project... 176

DITA Map Validate and Check for Completeness Overview..177

Schematron Checks to help Technical Writing.. 178

Implementing your own Style Guide..180

Preprocessing DITA-OT Project Files..182

Re: 10 reasons for moving away from DITA ... 187

DITA 2.0 Specification Support Cheat Sheet...189

Refactoring...191

Surveys...205

Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML content..216

Using ChatGPT in a DITA XML Project.. 221

Oxygen AI Positron Assistant Add-on... 230

Similarities Between Technical Doc Writers and Software Engineers.. 237

Chapter 4. Migrate..245

Migrating to a Structured Standards-based Documentation Solution.. 245

Migrating Various Document Formats to DITA.. 246

How to Migrate from Word to DITA.. 248

Migrating MS Word to DITA using the Batch Documents Converter.. 249

Batch converting HTML to XHTML... 255

Migrating Unstructured Adobe FrameMaker Content to DITA...255

Automation - Using DITA XML Topic Titles to Generate File Names..259

Chapter 5. SDK Development (Plugins, Frameworks)... 260

Customizing Oxygen XML Editor (Overview)..260

Document Type Extension Sharing.. 261

Sharing Schematron Validation Rules.. 262

Contents | iv

Public hosted Oxygen Plugin and Framework Projects... 263

Sharing New Custom File Templates for a Specific Vocabulary.. 264

Composing Author Actions...265

Implementing a Custom Author Action to Split a Table... 267

Adding a Custom Author Action to the Content Completion Window... 269

How Special Paste works in Oxygen... 271

The Oxygen SDK (Part 1: Plugins)..272

The Oxygen SDK (Part 2: Frameworks)..272

Your First Oxygen Add-on...274

Oxygen Add-ons Overview...275

Adding CALS-table related functionality to your custom Oxygen framework... 277

Convert Code Templates to External Author Actions... 278

Chapter 6. Miscellaneous..281

Oxygen XML Ecosystem..281

Add-ons For Technical Documentation..281

Tips And Tricks.. 282

Checking Terminology with Oxygen XML Editor.. 286

Opinions about using Oxygen...288

A set of rules for providing great tech support..288

A Short Story of Reuse...288

Sharing Application Settings...289

Collaboration for Documenting a Software Product using DITA..290

Collaboration (Teams working on a common XML project).. 291

Enable massive contributions with oXygen XML Web Author and GitHub...292

All About Editor Variables...292

XSLT Training.. 294

Miscellaneous..

Log4Shell - Oxygen XML Vulnerability Analysis FAQ... 294

Using Oxygen XML Editor in a Web Browser (Experimental).. 296

Oxygen XML Blog 2022 Retrospective...298

Chapter 7. Contributors... 300

Index..a

resources/sampleGraphBlog.html
resources/sampleGraphBlog.html
resources/sampleGraphBlog.html
resources/sampleGraphBlog.html

Chapter 1. Welcome!
Our blog contains various useful articles and tutorials covering various aspects of editing, developing, and publishing using
Oxygen XML Editor with various XML technologies.

Sometimes (quite often actually) articles originally written for the blog are curated by our technical writers and end up being part
of our official documentation: https://www.oxygenxml.com/doc/ug-editor/. However, the blog allows us to deploy various small
articles faster, without the need to wait for documentation updates.

Follow us!

You can use an RSS feed reader to follow the blog for new articles: https://blog.oxygenxml.com/rss.xml.

Or you can register to receive emails when new articles are posted.

History of the Oxygen XML Editor Blog

The blog was originally hosted by Google Blogs and the first articles on the blog appeared around 2007. Since Google Blogs did
not allow enough flexibility in creating the published content (for example, the inability to create a table of contents) the blog
was migrated to DITA XML content stored on GitHub and is now hosted both on the Oxygen XML Web site and on the Netlify
platform: https://oxygenxmlblog.netlify.com/.

How the Oxygen XML Editor Blog Works

The entire source code of the Oxygen XML Editor blog is stored in DITA content on a public GitHub repository: https://
github.com/oxygenxml/blog.

There is a Gradle build file that uses a special DITA Open Toolkit to produce WebHelp Responsive, EPUB and PDF outputs
from the DITA content. The following features are available in the published output:

• Color themes can be easily changed with CSS to modify how the output looks.
• Search functionality. Possibility to add index terms.
• RSS Feed is automatically generated from the entire list of topics.
• PDF output is automatically generated using Oxygen Chemistry Engine and can be customized with CSS.
• EPUB output is automatically generated using DITA For Publishers plugins.
• Each page has an Edit online link allowing it to be edited in the Oxygen XML Web Author.
• Each page has a comments section build using the Oxygen Feedback platform.
• Each time content is added to the project there is a configured GitHub action which runs a validation report of the DITA

content (reporting for example broken links).

How You can Contribute to the Oxygen XML Editor Blog.

We want to encourage our end users and collaborators to start creating small Oxygen-related articles for our blog. To post your
own articles, follow these steps:

1. Create your own GitHub account, if you do not already have one.
2. Fork the contents of the Oxygen XML Editor GitHub repository in your own GitHub Repository: https://github.com/

oxygenxml/blog. More details about how to fork a repository: https://docs.github.com/en/get-started/quickstart/
contributing-to-projects.

3. Make changes to your forked project or to a branch from it.
◦ If you have the Oxygen XML Editor application installed, you can download our Git add-on that should allow

you to clone the fork, make changes, and then commit and push them to your repository.
◦ As an alternative, you can use the Oxygen XML Web Author browser editing tool that has its own Git

connector: https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html.
◦ Please remember to add the name of the author and the created date for the topic in the DITA topic prolog

section like:

https://www.oxygenxml.com/doc/ug-editor/
https://blog.oxygenxml.com/rss.xml
https://blog.oxygenxml.com/
https://oxygenxmlblog.netlify.com/
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog/blob/master/build/build.gradle
https://www.oxygenxml.com/doc/ug-editor/topics/whr_generate_output.html
https://www.oxygenxml.com/oxygen_feedback.html
https://github.com/oxygenxml/blog/actions
https://github.com/
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog
https://docs.github.com/en/get-started/quickstart/contributing-to-projects
https://docs.github.com/en/get-started/quickstart/contributing-to-projects
https://github.com/oxygenxml/oxygen-git-plugin
https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html

Blog | 1 - Welcome! | 6

<prolog>
 <author>Radu Coravu</author>
 <critdates>
 <created date="2020-01-14"/>
 </critdates>
</prolog>

This prolog section will be used to add in the published HTML output the author information after the topic title.
◦ Each commit message must include a sign off.

4. After all changes have been made to your fork of the project, you can create a pull request to the Oxygen XML Editor
original GitHub project.

5. There is a GitHub action implemented in the project which will automatically run DITA validation on the entire project
branch and will report on the pull request if the validation is successful.

6. We will review your changes and if your pull requests is accepted, the blog web site will be automatically updated with
the new changes.

Technologies Used to Store, Build and Publish the Oxygen XML Blog

• The blog content is stored on a public GitHub repository.
• GitHub's issues list is used to organize the work and add new improvement ideas.
• Offline editing the blog is done using Oxygen XML Editor with its Git add-on installed.
• Online editing is done using Oxygen Web Author.
• A Gradle build file is used to download a custom DITA Open Toolkit which contains the Oxygen WebHelp Responsive

and PDF CSS plugins pre-installed, then run the publishing and validation stages.
• The DITA Open Toolkit is used along with custom plugins to publish the DITA content.

◦ Oxygen WebHelp is used to publish the DITA content to HTML output. Publishing templates are used to
customize the published output.

◦ The Oxygen Feedback system is used for adding feedback forms to each page.
◦ Oxygen PDF Chemistry is used to produce PDF for the publishing platform.
◦ The DITA For Publishers plugins are used to produce the EPUB output.

• Oxygen DITA Validate and Check for Completeness is run as a GitHub action with the help of a special scripting
license.

• Netlify is used to connect to the repository, run Gradle and publish the WebSite.

https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/managing-repository-settings/managing-the-commit-signoff-policy-for-your-repository
https://github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml
https://github.com/oxygenxml/blog
https://github.com/oxygenxml/blog/issues
https://www.oxygenxml.com/
https://www.oxygenxml.com/xml_web_author.html
https://github.com/oxygenxml/blog/blob/master/build/build.gradle
https://www.dita-ot.org/
https://www.oxygenxml.com/xml_editor/webhelp.html
https://www.oxygenxml.com/oxygen_feedback.html
https://www.oxygenxml.com/chemistry-html-to-pdf-converter.html
https://www.dita4publishers.org/
https://www.oxygenxml.com/doc/ug-editor/topics/dita-map-validate.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://www.netlify.com/

Chapter 2. Frequently Asked Questions
How do I register to receive notifications for new blog posts?

Each blog HTML page has at the end a form in which you can fill your email address if you want to be notified when new posts
are made.

Can I contribute articles to the Oxygen XML Blog?

Yes, the procedure is listed here: How You can Contribute to the Oxygen XML Editor Blog. (on page 5).

How do I learn DITA XML with Oxygen?

Read our Resources for learning DITA with Oxygen (on page 8) blog post.

How do I convert various output formats to DITA XML?

Read our Migrating Various Document Formats to DITA (on page 246) and How to Migrate from Word to DITA (on page
248) blog posts.

Are there any productivity tips and tricks?

Our Tips And Tricks (on page 282) and DITA Oriented Tips And Tricks (on page 171) posts contains lots of interesting
productivity tips and tricks.

Chapter 3. DITA

Learning

There are lots of resources available for learning to work with the DITA XML standard both online and in on Oxygen XML
Editor user's manual and blog.

Resources for learning DITA with Oxygen

From time to time we get requests from beginners or from users migrating from other tools who want to start using Oxygen with
DITA and they need to know a set of useful resources.

Resources for editing DITA with Oxygen:

We have a getting started section in our user's manual: https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-
topic.html and a larger section on DITA authoring: https://www.oxygenxml.com/doc/ug-editor/topics/author-dita.html.

We have a list of videos, some of them DITA-related here: https://www.oxygenxml.com/videos.html and a series of past webinar
recordings about editing DITA with Oxygen.

Getting Started with Oxygen and DITA

https://www.oxygenxml.com/events/2020/webinar_getting_started_with_dita_using_oxygen_xml_editor.html

Basic DITA Profiling and Reuse

https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html

Advanced DITA Profiling and Reuse

https://www.oxygenxml.com/events/2021/
webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html

Working with DITA in Oxygen - Customizing the Editing Experience

https://www.oxygenxml.com/events/2021/
webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

Working with DITA in Oxygen - Quick start with the DITA Startup Project

https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_startup_project.html

Working with DITA in Oxygen - Migrating to DITA and Refactoring

https://www.oxygenxml.com/events/2021/
webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html

All these webinars above are also listed here: https://www.oxygenxml.com/working_with_dita_in_oxygen.html.

Resources for learning DITA:

If you want to start learning about DITA in general there is a web site called Learning DITA.

DITA Introduction articles by Stefan Jung.

The free Oxygen Live Tutorials add-on contains various small tutorials for learning DITA.

The DITA 1.3 standard specification can be found here: https://www.oxygenxml.com/dita/1.3/specs/#introduction/dita-release-
overview.html.

There are also a number of good books like DITA For Practitioners and the DITA Style Guide.

https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-dita.html
https://www.oxygenxml.com/videos.html
https://www.oxygenxml.com/events/2020/webinar_getting_started_with_dita_using_oxygen_xml_editor.html
https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_startup_project.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html
https://www.oxygenxml.com/working_with_dita_in_oxygen.html
https://www.learningdita.com/
https://stefan-jung.org/dita-introduction/
https://www.oxygenxml.com/doc/ug-editor/topics/live-tutorials-addon.html
https://www.oxygenxml.com/dita/1.3/specs/#introduction/dita-release-overview.html
https://www.oxygenxml.com/dita/1.3/specs/#introduction/dita-release-overview.html
http://xmlpress.net/publications/dita/practitioners-1/
https://www.oxygenxml.com/dita/styleguide/

Blog | 3 - DITA | 9

Resources for customizing the DITA output formats

Usually customizing the XHTML based outputs means creating your custom CSS selectors. If you generate WebHelp output
using Oxygen, we have a section explaining basic WebHelp customizations: https://www.oxygenxml.com/doc/ug-editor/topics/
customize_webhelp.html.

For PDF-based outputs we recommend, support and maintain our CSS-based PDF publishing which is free to use from Oxygen
XML Editor. There are also a number of different choices to obtain PDF from DITA: Possibilities to obtain PDF from DITA (on
page 100).

Courses for learning DITA with Oxygen XML Editor

• Ryffine: https://www.ryffine.com/.
• Udemy: https://www.udemy.com/course/technical-writing-how-to-write-using-dita-xml/.
• Hyperwrite: http://www.hyperwrite.com/Training/crsoxygenintro.aspx.
• Mekon: http://mekon.com/news/dita-authoring-oxygen-author/
• French course by Tireme: http://dita.tireme.fr/#definition/m2_session_adapter_dita.html

DITA Trivia

There are a number of blogs on which you can read various DITA-related articles:

• Oxygen XML Blog: Welcome! (on page 5).
• Magda Caloian's Think DITA blog: http://think-dita.com/.
• Scriptorium Blog: http://www.scriptorium.com/blog/.
• Eliot Kimber's Blog: http://drmacros-xml-rants.blogspot.ro/.
• A larger selection of technical writing and DITA articles:http://idratherbewriting.com
• List of learning DITA blog posts from Mekon: http://mekon.com/bitesize-dita/
• DITA XML Benefits: https://technicallywewrite.com/2023/09/11/aboutdita
• Working with DITA projects in Oxygen: https://technicallywewrite.com/2023/09/14/aboutoxygen

Community

The DITA Users List is probably the first place where you can register and ask for help with DITA-related issues. A bunch of
other community support forums for the publishing engine are also listed here: https://www.dita-ot.org/support.

There is also a DITA Awareness Group on Linked In.

Learn DITA Editing with Oxygen with Small Clips

Short Clips - Insert Image References

Learn all ways to insert image references in DITA topics using small clips.

• Use Toolbar Action to Insert a Figure with an Image Reference (on page 9)
• Drag and Drop to Insert an Image Reference (on page 10)
• Copy/Paste to Insert an Image Reference (on page 10)
• Configure DITA Reusable Components/Media Tab Working Sets and Insert an Image Reference (on page 11)

Use Toolbar Action to Insert a Figure with an Image Reference

https://www.oxygenxml.com/doc/ug-editor/topics/customize_webhelp.html
https://www.oxygenxml.com/doc/ug-editor/topics/customize_webhelp.html
https://www.oxygenxml.com/doc/ug-editor/topics/pdf-css-customization.html
https://www.ryffine.com/
https://www.udemy.com/course/technical-writing-how-to-write-using-dita-xml/
http://www.hyperwrite.com/Training/crsoxygenintro.aspx
http://mekon.com/news/dita-authoring-oxygen-author/
http://dita.tireme.fr/#definition/m2_session_adapter_dita.html
http://think-dita.com/
http://www.scriptorium.com/blog/
http://drmacros-xml-rants.blogspot.ro/
http://idratherbewriting.com
http://mekon.com/bitesize-dita/
https://technicallywewrite.com/2023/09/11/aboutdita
https://technicallywewrite.com/2023/09/14/aboutoxygen
https://dita-users.groups.io/g/main
https://www.dita-ot.org/support
https://www.linkedin.com/groups/162465

Blog | 3 - DITA | 10

Drag and Drop to Insert an Image Reference

Copy/Paste to Insert an Image Reference

Blog | 3 - DITA | 11

Configure DITA Reusable Components/Media Tab Working Sets and Insert an Image Reference

Short Clips - Insert Links

Learn all ways to insert links in DITA topics using small clips.

Blog | 3 - DITA | 12

• Use Toolbar Action to Insert a Cross Reference to Another Topic (on page 12)
• Use Toolbar Action to Insert a Cross Reference to a Table (on page 12)
• Drag and Drop to Insert a Cross Reference (on page 13)
• Copy/Paste to Insert a Cross Reference (on page 13)
• Copy Paste to Insert a Cross Reference To a Table (on page 14)
• Use Toolbar Action to Insert a Related Link to Another Topic (on page 14)
• Use Toolbar Action to Insert a Link to a Web Site (on page 15)
• Use Toolbar Action to Insert a Link to a PDF (on page 15)

Use Toolbar Action to Insert a Cross Reference to Another Topic

Use Toolbar Action to Insert a Cross Reference to a Table

Blog | 3 - DITA | 13

Drag and Drop to Insert a Cross Reference

Copy/Paste to Insert a Cross Reference

Blog | 3 - DITA | 14

Copy Paste to Insert a Cross Reference To a Table

Use Toolbar Action to Insert a Related Link to Another Topic

Blog | 3 - DITA | 15

Use Toolbar Action to Insert a Link to a Web Site

Use Toolbar Action to Insert a Link to a PDF

Blog | 3 - DITA | 16

Short Clips - Reuse Content

Define a Key for a Product Name and Use It

Use an Already Defined Key for a Product Name Using The Toolbar Action

Blog | 3 - DITA | 17

Add a Content Reference to a Reusable Note Using the Toolbar Actions

Add a Content Reference Using Copy/Special Paste Operations

Blog | 3 - DITA | 18

Add a Content Reference Using the DITA Reusable Components View

DITA Perspectives

DITA is not defined as a flat list of elements, but each element is either a base element or it derives as a specialized version of
another element. This hierarchy should actually decrease the cognitive complexity of a vocabulary because it allows you to find
an element faster than working with a flat list.

Blog | 3 - DITA | 19

In this article, I want to show the hierarchy of elements in DITA and then explore how you can take advantage of this in
understanding the DITA architecture, learning DITA, document authoring, etc.

All the scripts I used to generate these diagrams can be found in the DITA Perspectives Github Project.

Overview of DITA

DITA Shells

DITA 1.3 defines multiple types of documents. Along with the generic topic and map, there are also many specialized topics
types and maps types. Each type of document is defined by a schema that is marked as a shell schema, a schema that should
be an entry point, the one that should be referred from an XML document. All the defined shells are presented in the following
diagram, grouped by the folder they are defined in:

DITA

bookmap

learning

technicalContent

xnal

machineryIndustry

base

subjectScheme

bookmap

learningObjectMap

learningBookmap bookmap
Learning overview learningOverview

learningSummary

learningMap map

learningAssessment

learningGroupMap

learningPlan

learningContent

troubleshooting

concept

ditabase dita
topic

glossary

glossgroup

map

Glossary Entry glossentry

reference

task

General Task task

Machinery Task task

basemap map

Base topic topic

subjectScheme

classifyMap map

DITA Modules

The DITA specification mentions that each element has a class attribute that encodes information about the type of that element,
for example:

<step class="- topic/li task/step">

and this information includes:

https://github.com/oxygenxml/DITAPerspectives

Blog | 3 - DITA | 20

“A sequence of one or more tokens of the form "modulename/typename", with each token separated by one or
more spaces, where modulename is the short name of the vocabulary module and typename is the element type
name. Tokens are ordered left to right from most general to most specialized.”

By analyzing all the class values from all the elements defined in the schemas, I can identify the base modules (top level ones). In
this case, topic and a hierarchy implied by how the elements are defined by this relation from more general to more specialized
modules, thus identifying how modules are specialized from others (in this example, task is specialized from topic).

The base DITA modules:

DITA

map

topic

The modules specialization hierarchy:

Blog | 3 - DITA | 21

map

bookmap

learningObjectMap

learningmap-d

learningGroupMap

glossref-d

ditavalref-d

mapgroup-d

classify-d

subjectScheme

topic

learningBase

learningInteractionBase2-d

learningInteractionBase-d

learningmeta-d

abbrev-d

markup-d

mathml-d

troubleshooting

svg-d

ui-d

reference

equation-d

task

pr-d

concept

sw-d

relmgmt-d

xnal-d

delay-d

indexing-d

hazard-d

hi-d

ut-d

learningSummary

learningPlan

learningOverview

learningContent

learningAssessment

learning2-d

learning-d
xml-d

taskreq-d

glossentry

glossgroup

DITA Elements

The total number of DITA elements defined in the schemas and how they are split into base elements, specialized element, and a
highlight of the duplicate elements, while having the same name but being defined on a different module can be observed here:

Blog | 3 - DITA | 22

DITA elements 616

base elements 119

specialized elements 497

duplicate elements 3

map navref

topicref

anchor

reltable

relheader

relcolspec

relrow

relcell

topicmeta

shortdesc

linktext

searchtitle

ux-window

author

source

publisher

copyright

copyryear

copyrholder

critdates

created

revised

permissions

category

metadata

audience

keywords

prodinfo

prodname

vrmlist

vrm

brand

series
platform

prognum

featnum

component

othermeta

resourceid

table

tgroup

colspec

thead

tbody

row

entry

data-about

data

unknown

foreign

title

navtitle
desc

p

note

longquoteref

lq
q

sl

sli

ul

ol

li

itemgroup

dl

dlhead

dthd

ddhd

dlentry

dt

dd fig

figgroup

pre

lines

div

text

keyword

term

ph

tm

boolean

state

image

alt

longdescref

object

param

simpletable

sthead

strow

stentry

draft-comment

required-cleanup

fn

indexterm

index-base

indextermref

cite

xref

topic

titlealts

abstract

body

bodydiv

no-topic-nesting

section

sectiondiv

example

prolog

related-links

link

linklist

linkinfo

linkpool

class = '- map/shortdesc'

class = '- topic/shortdesc'class = '- map/linktext'

class = '- topic/linktext'

class = '- map/searchtitle'

class = '- topic/searchtitle'

Blog | 3 - DITA | 23

Elements Split by Map and Topic Base

DITA elements

DITA map elements 87

DITA topic elements 528

base map elements 14

specialized map elements 73

map

navref

topicref

anchor

reltable

relheader

relcolspec

relrow

relcell
topicmeta

shortdesc
linktext

searchtitle

ux-window

base topic elements 105

specialized topic elements 423

author

source

publishercopyright

copyryear

copyrholder

critdates

created
revised

permissions

category

metadata

audience

keywords

prodinfo

prodname

vrmlist

vrm

brand

series

platform

prognum

featnum

component

othermeta

resourceid

table

tgroup

colspec

thead

tbody

row

entry

data-about

data

unknown
foreign

title

navtitle

desc

p

note

longquoteref lq

q

slsli

ul

ol

li

itemgroup

dl

dlhead

dthd

ddhd

dlentry

dt

dd

fig

figgroup

pre

lines

div

text

keyword

term

ph

tm

boolean

state

image

alt

longdescref

object

param

simpletable

sthead

strow

stentry

draft-comment

required-cleanup

fn

indexterm

index-base

indextermref

cite

xref
topic

titlealts

abstract

body

bodydiv

no-topic-nesting

section

sectiondiv

exampleprolog

related-links

link

linklist

linkinfo

linkpool

Topic Elements

The element information is projected on the topic base module:

DITA topic elements 528

base elements 105

specialized elements 423

author

source

publisher

copyright

copyryear

copyrholder

critdates

created

revised

permissions

category metadata

audience

keywords

prodinfo

prodname

vrmlist

vrm

brand

series

platform

prognum

featnum

component

othermeta

resourceid

table

tgroup

colspec

thead

tbody

row

entry

data-about

data

unknown

foreign

title

navtitle

desc

p

note

longquoteref

lq

q

sl

sli

ul

ol

li

itemgroup

dl

dlhead

dthd

ddhd

dlentry

dt

dd

figfiggroup

pre

lines

div
text

keyword

term

ph

tm

boolean

state

image

alt

longdescref

object

param

simpletable

sthead

strow

stentry

draft-comment
required-cleanup

fn

indexterm

index-base

indextermref

cite

xref

topic

titlealts

searchtitle

shortdesc

abstract

body

bodydiv

no-topic-nesting

section

sectiondiv

example

prolog

related-links

link

linktext

linklist

linkinfo

linkpool

Blog | 3 - DITA | 24

Map Elements

The element information is projected on the map base module:

DITA map elements 87

base elements 14

specialized elements 73
map

navref

topicref

anchor

reltable

relheader

relcolspec

relrow relcell

topicmeta

shortdesc

linktext

searchtitle

ux-window

bookmap

Defined in ../data/rng/bookmap/rng/bookmapMod.rng

Blog | 3 - DITA | 25

bookmapModule

map

topicmeta

topicref

publisher

data

ph

title

bookmap

bookmeta

frontmatter

backmatterdraftintro

bookabstract

dedication

preface

chapter

part

appendix

appendices

notices

amendments

colophon

booklists

toc

figurelist

tablelist

abbrevlist

trademarklist

bibliolist

glossarylist

indexlist

booklist

publisherinformation

person
organization

bookchangehistory

bookid

printlocation

published

publishtype

reviewed

edited

tested

approved

bookevent

bookeventtype

bookpartno

edition

isbn

booknumber

volume

maintainer

bookrights

copyrfirst

copyrlast
bookowner

bookrestriction

summaryrevisionid

started
completed

year

month

day

booklibrary

mainbooktitle

booktitlealt

booktitle

learningSummary

Defined in ../data/rng/learning/rng/learningSummaryMod.rng

Blog | 3 - DITA | 26

learningSummaryModule

learningBase

learningBasebody

learningSummary

learningSummarybody

learningPlan

Defined in ../data/rng/learning/rng/learningPlanMod.rng

learningPlanModule

learningBase

learningBasebody

section

fig

p

learningPlan

learningPlanbody

lcProjectlcNeedsAnalysis

lcGapAnalysis
lcIntervention

lcTechnical

lcClient

lcPlanTitle lcCIN

lcModDate

lcDelivDate

lcPlanSubject

lcPlanDescrip

lcPlanPrereqs lcOrganizational

lcPlanAudience

lcWorkEnv

lcTask

lcGapItem

lcInterventionItem

lcLMS
lcNoLMS

lcHandouts

lcClassroom

lcOJT

lcConstraints

lcW3ClcPlayers

lcGraphics

lcViewers

lcResolution

lcFileSizeLimitations

lcDownloadTime

lcSecurity

lcGeneralDescription

lcGoals

lcNeeds

lcValues

lcOrgConstraints

lcEdLevel

lcAge

lcBackground

lcSkills

lcKnowledge

lcMotivation

lcSpecChars

lcWorkEnvDescription

lcPlanResources

lcProcesses

lcTaskItem

lcAttitude

lcPlanObjective

lcJtaItem

lcGapItemDelta

lcLearnStrat

lcAssessment

lcDelivery

Blog | 3 - DITA | 27

learningOverview

Defined in ../data/rng/learning/rng/learningOverviewMod.rng

learningOverviewModule

learningBase

learningBasebody

learningOverview

learningOverviewbody

learningContent

Defined in ../data/rng/learning/rng/learningContentMod.rng

learningContentModule

learningBase

learningBasebody

learningContent

learningContentbody

Blog | 3 - DITA | 28

learningObjectMap

Defined in ../data/rng/learning/rng/learningObjectMapMod.rng

learningObjectMapModule

map

learningObjectMap

learningBase

Defined in ../data/rng/learning/rng/learningBaseMod.rng

learningBaseModule

topic

body

section

ph

ul

li

data

learningBase

learningBasebody

lcIntro

lcObjectives

lcAudience

lcDuration

lcPrereqs

lcSummary lcNextSteps

lcReview

lcResourceslcChallenge

lcInstruction

lcInteraction

lcObjectivesStem

lcObjectivesGroup

lcObjective

lcTime

Blog | 3 - DITA | 29

learningGroupMap

Defined in ../data/rng/learning/rng/learningGroupMapMod.rng

learningGroupMapModule

map

learningGroupMap

learningAssessment

Defined in ../data/rng/learning/rng/learningAssessmentMod.rng

learningAssessmentModule

learningBase

learningBasebody

learningAssessment

learningAssessmentbody

troubleshooting

Defined in ../data/rng/technicalContent/rng/troubleshootingMod.rng

Blog | 3 - DITA | 30

troubleshootingModule

topic

body

section

p
bodydiv

troubleshooting

troublebody

cause

condition

remedy

responsibleParty

troubleSolution

reference

Defined in ../data/rng/technicalContent/rng/referenceMod.rng

Blog | 3 - DITA | 31

referenceModule

topic

body

bodydiv

section

simpletable

sthead

stentry

strow

reference

refbody

refbodydiv

refsyn

properties

prophead

proptypehd

propvaluehd

propdeschd

proptype

propvalue

propdesc

property

task

Defined in ../data/rng/technicalContent/rng/taskMod.rng

Blog | 3 - DITA | 32

taskModule

topic

body

section

ol

ul

li

ph

itemgroup

simpletable

sthead

stentry

strow

task

taskbody

prereqcontext

steps-informal

tasktroubleshooting

result

postreq

steps

substeps

steps-unordered

choices

stepsection

step

substep

choice

cmd

info

tutorialinfo

stepxmp

stepresult
steptroubleshooting

choicetable

chhead

choptionhd

chdeschd

choption

chdesc chrow

glossentry

Defined in ../data/rng/technicalContent/rng/glossentryMod.rng

Blog | 3 - DITA | 33

glossentryModule

concept

title
abstract

conbody

data

p

note

image

section
xref

glossentry

glossterm
glossAbbreviation

glossAcronym

glossShortForm

glossSynonym glossdef

glossBody

glossPartOfSpeech

glossStatus

glossProperty

glossSurfaceForm

glossUsage

glossScopeNote

glossSymbolglossAlt

glossAlternateFor

glossgroup

Defined in ../data/rng/technicalContent/rng/glossgroupMod.rng

glossgroupModule

concept

glossgroup

concept

Defined in ../data/rng/technicalContent/rng/conceptMod.rng

Blog | 3 - DITA | 34

conceptModule

topic

body

bodydiv

concept

conbody

conbodydiv

subjectScheme

Defined in ../data/rng/subjectScheme/rng/subjectSchemeMod.rng

Blog | 3 - DITA | 35

subjectSchemeModule

map

topicref

topicmeta

data

reltable

relrow

relcell

subjectScheme

schemeref

hasNarrower

hasKind

hasPart

hasInstance
hasRelated

subjectdef

subjectHead

enumerationdef

defaultSubject
relatedSubjects

subjectHeadMeta

elementdef

attributedef

subjectRelTable

subjectRelHeader
subjectRel

subjectRole

DITA Domains

Some DITA elements are defined to be part of a domain that can be added on any DITA document type as a pluggable
component. A domain defines a number of semantic elements that are derived from other elements, providing a specialization of
the base elements but reflecting the semantics of a domain, such as programming, software, etc.

DITA Learning Interaction Base 2 Domain

learningInteractionBase2-d

divp

lcInteractionBase2

lcQuestionBase2lcInteractionLabel2

Blog | 3 - DITA | 36

DITA Learning Map Domain

learningmap-d
topicref

learningGroup

learningObject

learningPlanRef

learningOverviewRef

learningSummaryRef

learningContentRef

learningContentComponentRef

learningPreAssessmentRef

learningPostAssessmentRef

learningGroupMapRef

learningObjectMapRef

Blog | 3 - DITA | 37

DITA Learning Interaction Base Domain

learningInteractionBase-d

fig

p

lcInteractionBase

lcQuestionBase

Blog | 3 - DITA | 38

DITA Learning Metadata Domain

learningmeta-d

metadata

data

lcLom

lomStructure

lomCoverage

lomAggregationLevel

lomTechRequirement

lomInstallationRemarks

lomOtherPlatformRequirements

lomInteractivityType

lomLearningResourceType

lomInteractivityLevel

lomSemanticDensity

lomIntendedUserRole

lomContext

lomTypicalAgeRange

lomDifficulty

lomTypicalLearningTime

Blog | 3 - DITA | 39

DITA Learning Domain

learning-d

note

lcInteractionBase

lcQuestionBase

p

ul

ol

li

simpletable

sthead

strow

stentry

figgroup

keyword

ph

data

lcInstructornote

lcTrueFalse

lcSingleSelect

lcMultipleSelect
lcSequencing

lcMatching lcHotspot

lcOpenQuestion

lcQuestion

lcOpenAnswer

lcAsset
lcFeedback

lcFeedbackCorrect

lcFeedbackIncorrect
lcAnswerContent

lcAnswerOptionGroup

lcSequenceOptionGroup

lcSequenceOption

lcAnswerOption

lcMatchTable

lcMatchingHeader

lcMatchingPair

lcItem
lcMatchingItem

lcMatchingItemFeedback

lcHotspotMap

lcArea

lcAreaShape

lcAreaCoords

lcCorrectResponse

lcSequence

Blog | 3 - DITA | 40

DITA Learning 2 Domain

learning2-d

note

lcInteractionBase2

lcQuestionBase2

div

ul

ol

li

simpletable

sthead

strow

stentry

figgroup

keyword

ph

data

lcInstructornote2

lcTrueFalse2

lcSingleSelect2

lcMultipleSelect2

lcSequencing2
lcMatching2

lcHotspot2

lcOpenQuestion2

lcQuestion2
lcOpenAnswer2

lcAsset2lcFeedback2

lcFeedbackCorrect2

lcFeedbackIncorrect2

lcAnswerContent2

lcAnswerOptionGroup2

lcSequenceOptionGroup2

lcSequenceOption2

lcAnswerOption2

lcMatchTable2

lcMatchingHeader2

lcMatchingPair2

lcItem2

lcMatchingItem2

lcMatchingItemFeedback2

lcHotspotMap2

lcArea2

lcAreaShape2

lcAreaCoords2

lcCorrectResponse2

lcSequence2

Blog | 3 - DITA | 41

DITA Abbreviated Form Domain

abbrev-d

term

abbreviated-form

DITA Markup Name Mention Next v Domain

markup-d

keyword

markupname

DITA MathML Domain

Added locally

DITA SVG

svg-d

foreign

xref

svg-container

svgref

Blog | 3 - DITA | 42

DITA User ADD Domain

ui-d

ph
keyword

pre

uicontrol

menucascade
wintitle

shortcut

screen

DITA Equation Domain

equation-d

phdiv

fig

equation-inline

equation-number
equation-block

equation-figure

Blog | 3 - DITA | 43

DITA Task Requirements Domain

taskreq-d

prereq

postreq

ul

li

p

data

ol prelreqs

closereqs

reqconds

reqpers

supeqli

supplyli

sparesli

noconds

reqcond

reqcontp

personnel

perscat

perskill

esttime

supequi

supply

spare

nosafety

safecond

supequip

supplies

spares

nosupeq

nosupply

nospares

safety

Blog | 3 - DITA | 44

DITA Programming Domain

pr-d

ph

pre

xref

keyword

dl

dlentry

dt

dd

fig

figgroup

fn

codeph

var

synph

oper

delim

sep

repsep

codeblock

coderef
fragref

synnoteref

option

parmname

apiname

kwd

parml

plentry

pt

pd

syntaxdiagram

synblk

groupseq

groupchoice

groupcomp

fragment

synnote

Blog | 3 - DITA | 45

DITA XML Construct Domain

xml-d
markupname

numcharref

parameterentity
textentity

xmlatt

xmlelement
xmlnsname

xmlpi

DITA Glossary Reference Domain

glossref-d

topicref

glossref

Blog | 3 - DITA | 46

DITA Software Domain

sw-d

ph

pre
keyword

msgph

filepath

userinput

systemoutput

msgblock
msgnum

cmdname

varname

Blog | 3 - DITA | 47

DITA Release Management Domain

relmgmt-d

metadata

data

change-historylist

change-item

change-person

change-organization

change-revisionid

change-request-reference

change-request-system

change-request-id

change-started

change-completed

change-summary

Blog | 3 - DITA | 48

DITA XNAL Domain

xnal-d

author

data

ph

authorinformation

namedetails

personname

honorific

firstname

middlename

lastname

generationidentifier

otherinfo

personinfo

organizationinfo

contactnumbers

contactnumber

emailaddresses

emailaddress

urls

url

organizationnamedetails

organizationname

addressdetails

locality

localityname

administrativearea

thoroughfare

postalcode

country

DITAVAL Reference Domain

ditavalref-d

topicref

topicmeta

data

ditavalref

ditavalmeta

dvrResourcePrefix

dvrResourceSuffix

dvrKeyscopePrefix dvrKeyscopeSuffix

Blog | 3 - DITA | 49

DITA Delay Resolution Domain

delay-d

keywords

keyword

exportanchors

anchorid

anchorkey

DITA Indexing Domain

indexing-d

index-base

index-see

index-see-alsoindex-sort-as

Blog | 3 - DITA | 50

DITA Hazard Statement Domain

hazard-d
note

image

ul

li

hazardstatement

hazardsymbol

messagepanel

typeofhazard

consequence

howtoavoid

DITA Highlight Domain

hi-d

ph

b

u i
line-through

overline

tt

sup

sub

Blog | 3 - DITA | 51

DITA Map Group Domain

mapgroup-d
topicref

topichead

topicgroup

anchorref

mapref

topicset

topicsetref

keydef

DITA Utilities Domain

ut-d

fig

figgroup

keyword

ph

data

imagemap

area

shape

coords
sort-as

Blog | 3 - DITA | 52

DITA Subject Classification Domain

classify-d

topicref

reltable

relrow

relcell

topicsubject

topicapply

subjectref

topicSubjectTable

topicSubjectHeader

topicSubjectRow

topicCell

subjectCell

Taking Advantage of DITA Element Hierarchy

Elements in DITA are defined not as a flat list of elements, but instead as a hierarchy, similar to a type hierarchy, and elements
are either base elements or they are derived from another element. If we look at the analogy with a type system, the base elements
are similar to the primitive types and the other elements are equivalent to derived types.

This is realized using values specified in the class attribute. These values specify the category and the name of the current
element and (if we talk about a derived element) also the name and category of its parent, as well as all the ancestors up to the
base element.

For example, the @class value for the <lcPlanTitle> element is:

class="- topic/fig learningBase/fig learningPlan/lcPlanTitle"

This means that the current element is <lcPlanTitle> from the learningPlan category and this is derived from the <fig> element
from the learningBase category, which in turn is defined from the <fig> element from the topic category.

We can take this information into account in some situations.

Blog | 3 - DITA | 53

Element Selection During Editing

To take advantage of the fact that elements in DITA form a hierarchy, one possibility is to follow this hierarchy when we present
the user with the choice of an element to insert, so instead of presenting a flat list of choices, we can organize the elements
according to the hierarchy defined by the @class attribute values and thus, if the user selects an unordered list (element) to
insert (for example), we can further present all the elements specialized from the element that are valid in that position in
the document. Of course, this makes sense if the user is browsing for an element to insert, and the user already knows the element
and types its name, then we can just filter that name and eventually, if there are elements specializing the one identified by the
entered string, then we can show them further.

Another possibility is to present a drop-down for an element that has specialized elements, and those are valid at that location,
and allow the user to move to a more specialized element by selecting it from that drop-down.

Automatic Markup Detection

If we first detect the base element and then determine if it is in fact a more specialized one, it may help because it reduces the
number of choices.

Soft Generalization

To visualize how a document will look like when it is generalized but without really generalizing it (that is without replacing the
elements with more general ones), we implemented a CSS rendering to show the XML tags as if the document is generalized.

For example, an element on which we make the tags visible using CSS static content placed before and after the element looks
like this:

If we generalize on level, showing the first derived element type, then this sample <xmlelement> will turn into <markupname>:

Blog | 3 - DITA | 54

If we generalize to show the base elements, then many of the tag names will change, as highlighted in the following screen shot:

Exchanging DITA Documents

One advantage of using DITA is that we can tag at semantic level. For this to work, we need to create a specialization that
exactly reflects the concepts the users of that specialization are familiar with. If one tries to layer its actual needs over an existing
specialization (or one of the standard schemas), these may not exactly match the concepts of the audience and thus it will look
like DITA is not the best fit.

However, the problem with a specialization is how do we exchange it with other parties? We need to also provide them with our
specialization, and if they do not have our specialization, then what happens?

One approach is to export the DITA content as generalized content. Then import such a generalized package into an existing
DITA installation by specializing as much as possible, taking into account what is available on the target DITA installation.

How can this be achieved?

From the class of the root element, we can identify the possible specialized root elements and check if we have them defined in
a schema in the target DITA installation. Once we choose a root element, then we need to analyze the domain attributes of the
root element and see what domains are defined in the target topic type and then specialize elements from those domains back.
Otherwise, if a domain is not present in the target schema, we need to leave the base element.

We have support for generalization, which is relatively easy to implement, and we can probably also obtain the export package
in a generalized form. However, we are missing a tool to take a generalized package, analyze a current DITA installation, and
specialize everything so that it matches what is available in that specific DITA installation.

Blog | 3 - DITA | 55

Using DITA to Document a Software Product

Besides working on an XML editing tool with lots of DITA editing functionality we also use DITA internally for editing the
Oxygen User's Guide.

In this article I will try to give you an overview of our entire workflow as evidence that DITA does work and that it can be used
and implemented without expensive solutions.

First here's an overview of our needs:

• Online Help which is available as WebHelp Responsive on our web site. Our WebHelp Feedback integration allows
users to add comments and ratings to each topic. Those comments can later be used by us to rephrase and improve our
documentation.

• PDF containing the entire contents of the user's manual. The PDF output is styled using CSS and obtained from DITA
content using our Oxygen Publishing Engine. Nowadays most our users use the online WebHelp because it can be used
much easier for finding certain topics so in our case at least the PDF output is not popular anymore along users.

• Offline Help which is available inside the installed application. Oxygen is a multi-platform application so we need to
generate both HTML Help (CHM) for Windows and JavaHelp for the Mac OSX and Linux installations. Also for the
Oxygen Eclipse Plugin we need to generate Eclipse Help.

We have two main distributions (Standalone and Eclipse plugin) and three main products (Editor, Developer and Author). We
also have a web editing tool, WebHelp generation plugin and publishing engines. So we need to produce more than 9 different
publications from the same DITA content depending on the shipped product.

And here's an overview of the tools we use:

Git as a Version Control System

We store our DITA content in a private GitHub repository and we also made a public GitHub repository containing a copy
of our user manual's DITA content:https://github.com/oxygenxml/userguide. We use the free Oxygen Git client add-on for
collaborating on the project. Other external Git clients like SourceTree or Fork can also be used to check out, edit and push
changes to the Git repository. Our editing workflow is similar to what is described in this past webinar.

Oxygen XML Author

This may not come as a surprise but we use our own product to edit DITA content, partly because it's ours and partly because it
is a very good tool. During the last couple of years this has been a good opportunity to improve our product based on our own
feedback (feedback coming from our technical writers).

Oxygen is used by the technical writers to write DITA content but we also have colleagues who review content and propose
changes directly from the web browser.

Oxygen Content Fusion

The Content Fusion add-on for XML Author allows uploading the edited content to a cloud server and providing a web editing
tool for people to provide feedback and review the DITA content directly in a web browser: https://www.oxygenxml.com/
content_fusion.html.

Oxygen Publishing Engine

We use the Oxygen Publishing Engine (based on the DITA Open Toolkit) to publish DITA content to the outputs we are
interested in, mostly WebHelp Responsive, PDF and Windows Help.

Jenkins integration server

We have an automated script which builds all the user manual outputs every night.

https://www.oxygenxml.com/doc/ug-oxygen/
https://www.oxygenxml.com/doc/ug-feedback/topics/ofb-installing-feeback-oxygen.html
https://www.oxygenxml.com/publishing_engine.html
https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.oxygenxml.com/events/2020/webinar_using_dita_for_small_technical_documentation_teams.html
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/content_fusion.html
https://www.oxygenxml.com/content_fusion.html
https://www.oxygenxml.com/publishing_engine.html

Blog | 3 - DITA | 56

Automated DITA Content Validation

There is a Validate and Check for Completeness script which runs on a test server and does various types of checks on the DITA
content (including checks for validation, filtering problems, broken links, etc).

Atlassian Jira for Ticketing and Workflow

We use Atlassian Jira to provide a workflow both for the issues which are related directly to our software product and for the
issues which are related exclusively with our user's manual. The JIRA is integrated with both our SVN and GIT repositories so it
shows for a certain issue all resources which have been modified to fix it.

Guided DITA Authoring Solution Overview

We have some past blog posts about how Oxygen can be used to impose various editing behaviors for your team. In this one, will
try to bring all of these solutions together in a comprehensive overview.

Learning to Work with DITA and Oxygen

You can find useful links for learning how to edit DITA using Oxygen in this previous blog post: Resources for learning DITA
with Oxygen (on page 8).

Migrating to DITA

There are multiple reasons why you would want to migrate from unstructured content to structured: Migrating to a Structured
Standards-based Documentation Solution (on page 245).

This older blog post details some possibilities of migrating Word documents to DITA: How to Migrate from Word to DITA (on
page 248).

You also have ways to migrate from XML-based standards (like DocBook or XHTML to DITA) using a set of predefined
transformation scenarios.

Restricting the Visual Editing Experience

The entire visual editing experience in Oxygen's Author editing mode is driven by CSS. Oxygen has support for defining various
CSS layers that can be applied when editing DITA content. For example, if you choose to create a Lightweight DITA topic in
Oxygen, it has a special editing layer that contributes a combination of buttons, hints, and form controls designed to assist and
guide the author. The following blog post details how a custom CSS that will be used to enhance the visual editing experience
can be created and shared with others: Customizing the DITA Visual Editing Experience (on page 137).

Implementing Your own Style Guide

Suppose you are a team of technical writers collaborating on a DITA-based project and you have your own various best practices
in regards to which elements to use and when to use them. So, at some point you gather a set of HTML resources that explain
how various DITA elements should be used, you store them on an internal server, and you want all your team members to have
access to that set of HTML resources directly from Oxygen. This blog post provides more details and useful links to help you get
started: Implementing your own Style Guide (on page 180).

Imposing Controlled Attribute Values

If you want to impose DITA attribute values that need to be set for profiling or general use, this blog post should cover all you
need to know about this: Controlled Attribute Values for your DITA Project (on page 140).

Imposing Business Rules and Structure Restrictions to the DITA Content

In most cases, instead of relying on people to memorize numerous internal documentation style rules, you can convert many
of these rules to Schematron and allow the application to automatically signal the content author when a rule is violated. You
can also add quick fixes to provide authors various ways to rectify the problem. This blog post contains more details about this:
Schematron Checks to help Technical Writing (on page 178).

https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html

Blog | 3 - DITA | 57

The DITA framework can be extended to add new Schematron rules: Sharing Schematron Validation Rules (on page 262).

Running Batch Validation Checks on all of Your DITA Content

The Validate and Check For Completeness tool available in the DITA Maps Manager view performs a lot of different
consistency checks on all your DITA topics. It can also be used to apply Schematron business rules on all of your topics: DITA
Map Validate and Check for Completeness Overview (on page 177).

Sharing DITA Editing Customizations with Your Team

Most of the custom editing behaviors, toolbar, and menu buttons that are available when editing DITA content are defined in
the DITA framework configuration. A framework configuration's general anatomy is described here: The Oxygen SDK (Part 2:
Frameworks) (on page 272).

The framework configuration can be shared with all of your team members. For example, here is a way to restrict team members
from using certain DITA elements: Document Type Extension Sharing (on page 261).

Furthermore, here is a way to distribute new DITA file templates to your team: Sharing New Custom File Templates for a
Specific Vocabulary (on page 264).

Sharing Global Application Settings with Your Team

Suppose you want all of your team members to enable the automatic spell checker when writing documentation, or you want
all of them to use a custom term dictionary or a custom set of learned words. This older blog post offers some hints about how
global Oxygen settings can be distributed to your team members: Sharing Application Settings (on page 289).

Collaboration, Content Management, and Version Tracking

All major Content Management Systems (CMSs) have plugins that can be installed in Oxygen to provide access to the CMS:
https://www.oxygenxml.com/partners.html#cmssolutionpartners.

Even if you lack the funds to buy a commercial CMS, there are still plenty of open source version tracking solutions that provide
the possibility of collaboration on a single DITA project: Collaboration (Teams working on a common XML project) (on page
291). For example, the Oxygen User's Manual is written in DITA and we use a GitHub private repository to collaborate on it:
Collaboration for Documenting a Software Product using DITA (on page 290).

Allowing Subject Matter Experts to Review Content

Many technical writers are interested in having their content reviewed by the subject matter experts who are directly involved in
building the tools. Oxygen has support for change tracking and adding comments directly in the edited content. Subject matter
experts do not necessarily need to have the standalone version of Oxygen installed. The Oxygen Web Author is an online editing
and reviewing solution that allows them to add comments and propose changes directly in the DITA content by using any device
with a web browser (laptop, tablet, phone): https://www.oxygenxml.com/xml_web_author.html.

I hope this overview will help you to implement a complete guided authoring experience using Oxygen. As usual, if you have
any questions or suggestions, they are welcome.

https://www.oxygenxml.com/partners.html#cmssolutionpartners
https://www.oxygenxml.com/xml_web_author.html

Blog | 3 - DITA | 58

Maintaining a Healthy DITA Project

How should a Happy and Healthy Documentation Project Look Like?

Do you have a Healthy Project?

• Focus on writing and not on workflow.

• Involve peer-reviews, SMEs and end users.

• Easy start for first-time contributors.

• Easier produce deliverables and correct errors in older deliverables.

• Allow for future evolution: more writers, more outputs, more content, more products.

Why do big companies use the DITA standard?

• Standard means owning your content and no vendor lock-in (editing or publishing).

• DITA works very well with topic-based authoring.

• Lots of content reuse potential.

• Reuse lowers translation costs.

DITA Doc Project Aspects

• Storage

• Workflow

Blog | 3 - DITA | 59

• Collaboration

◦ Sharing Common Constraints (editing, validation, spell check dictionaries, ...)

• Structure

◦ Managing links and reusable content

• Translation

• Publishing (Producing Deliverables)

Storage

• Commercial content management systems (CMS).

• Open Source version control systems: Git, Subversion, CVS

Version Control

• Ability to Tag Releases and Create Branches.

• See history for resources.

Blog | 3 - DITA | 60

Working with the storage system

• Commercial CMSs – Remote editing, locking.

• Open Source version control systems – Local working copies, no editing restrictions → conflicts.

Hint: Maybe you can use the same storage system as software developers in your company.

Collaboration and Workflow

• We invest a lot of time each day collaborating with our team or external collaborators.

• Collaboration should be as comfortable as possible.

Blog | 3 - DITA | 61

Workflow

Issue tracking

• Using workflow features in the CMS

• Using issue management systems like Bugzilla, Atlassian JIRA or Trello.

◦ Tip: Linking the product development with the documentation development.

Issue Tracking Examples

Custom workflows

• Documentation task specific workflow

• Integrate QA and documentation in software development process

Blog | 3 - DITA | 62

Issue tracking – Simple Documentation Workflow

Blog | 3 - DITA | 63

Issue tracking – Development and Documentation Workflow

Issue Tracking and Storage Integration

Issue Tracker can provide a single place where you can monitor a ticket from start to end, including:

Issue description and details

• Who worked on that issue

• What was changed in the application

• What was changed in the documentation

• Who should be notified when issue is resolved.

Involving Subject Matter Experts

• SMEs provide original content (DITA or Markdown or ...)

• Let SMEs review the published output.

◦ HTML with feedback forms

◦ PDF with comments.

Blog | 3 - DITA | 64

◦ Formal review with web editing tool integrated with storage system.

◦ Informal review DITA content using change tracking and comment capabilities

How can end users collaborate with us?

• Send feedback via email/forum/phone.

• Send feedback in the published HTML output.

• Give feedback using an online DITA editing tool with comment-only capabilities.

Contribution Consistency

Sharing common settings between writers

• Custom style guide.

• Specific editing enhancements.

• Specific validation settings.

• Controlled attribute values.

Blog | 3 - DITA | 65

• Custom spell and auto-correct dictionaries.

• Various other common preferences.

Custom Style Guide

The style guide is internal documentation about how to write documentation.

How can we remember what’s written in the style guide?

• Searchable help output from internal style guide.

• Find an automatic way to impose style guide rules when editing.

Automating Style Guide Rules

Schematron Checks to help Technical Writing (on page 178)

• Schematron to add custom validation rules.

• Schematron Quick Fixes to propose quick fixes for each custom error message.

Using the same terminology rules

Checking Terminology with Oxygen XML Editor (on page 286)

• Custom Spell dictionaries.

• Custom auto-correct mappings.

• Advanced terminology checkers like Acrolinx, HyperSTE or LanguageTools.

• Building your own terminology checker using Schematron.

Blog | 3 - DITA | 66

DITA Project Structure

• Organizing various resources in various folders

• Some CMSs may not consider this relevant.

File and folder naming/organization conventions

• By type:

◦ Tasks/t_installation.dita

◦ Concepts/c_profiler.dita

• By semantics:

◦ xslt_debugger/backmapping.dita

DITA Style Guide

Managing Content Reuse

DITA Reuse Strategies (on page 79)

https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/Artefact/Documentation_Process/c_File_Naming_Conventions.html

Blog | 3 - DITA | 67

• Separate folders containing reusable content.

• Keep dictionaries of reusable components

• Prefer indirect references (conkeyrefs)

Managing Links

DITA Linking Strategies (on page 72)

Blog | 3 - DITA | 68

• Prefer indirect links (key references)

• Reuse link targets

• Re-direct links depending on publication

• Use relationship tables

Project-wide refactor operations

• Convert between various topic types.

• Rename or move one or more topics.

• Change XML structure in topics from the entire project.

◦ Example: Change the value of a specific attribute.

Blog | 3 - DITA | 69

Translation

Translating your DITA Project (on page 176)

• You create your content in the primary language using a DITA authoring tool .

• Send a copy of the relevant DITA files to the localization service provider (LSP).

• Receive translated DITA content back from (LSP).

Blog | 3 - DITA | 70

Optimizing for translation

• Use a controlled vocabulary (simplified English).

• Avoid reusing inline elements other than product names.

https://lists.oasis-open.org/archives/dita/201301/msg00029.html

• Avoid profiling/filtering content at inline level.

Publishing

• Map-wide Validation and Consistency Checks

• Validate each topic according to DITA standard.

• Check for broken links, key references and content references, missing images or referenced resources.

• Check for broken links to remote web sites.

• Check for broken links in the context of profiling filters.

https://lists.oasis-open.org/archives/dita/201301/msg00029.html

Blog | 3 - DITA | 71

Producing the deliverables

• Checking the project before publishing.

• Sharing publishing customizations

• Automatic production of deliverables either via CMS or via an automated open source server (Jenkins).

Useful links

• DITA Style Guide (by dr. Tony Self):

https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/

• Intelligent Style Guide (by George Bina):

https://github.com/oxygenxml/dim

• Oxygen XML Blog (Reuse, Linking, custom validation, sharing settings):

Welcome! (on page 5)

Conclusions

A healthy DITA project needs to:

• Be Manageable.

• Allow for scalability.

• Allow for easy collaboration.

• Allow for detection and correction of mistakes before the deliverables are published.

• Allow for correction of mistakes after the deliverables are published.

But don’t panic if you do not have all the aspects of a project covered, your project does not need to be perfect, it needs to be
perfectible.

https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/
https://github.com/oxygenxml/dim

Blog | 3 - DITA | 72

DITA Linking Strategies

This small tutorial is based on the "DITA Linking Strategies" presentations I made for the DITA Europe 2016 and DITA North
America 2017 conferences. It's a general overview about DITA linking possibilities and best practices. Also, it's meant as a
continuation of the DITA Reuse Strategies (on page 79) blog post.

According to Wikipedia:

“"A link, is a reference to data that the reader can directly follow either by clicking, tapping, or hovering."”

Basically, we should regard linking as yet another form of content reuse, except that instead of presenting the content in place, it
re-directs the end user to some other resource.

I'll start with describing linking at DITA Map level.

Map-Level Linking

A DITA Map uses topic references to assemble the content of a publication.

 <topicref href="installation.dita">
 <topicref href="server_installation.dita"/>
 <topicref href="client_side_installation.dita"/>
 </topicref>

Depending on the output format, the topic reference may be a link in the table of contents for the XHTML-based outputs or it
may be interpreted as a content reference for the PDF-based output that generates a single monolith document. So the role of the
topicref is dual, it may sometimes be regarded as a link to a topic and sometimes as a content reference.

https://en.wikipedia.org/wiki/Hyperlink

Blog | 3 - DITA | 73

Chunking

DITA topic modules should be kept as small as possible, but sometimes the end user may need to read more than one topic to
achieve a single task. So, when publishing to HTML-based outputs, you will end up asking yourself this question:

“Should I prefer larger HTML files or more links in the TOC?”

And you should always consider these two ideas:

• Links are disruptive. Ideally, users would not need to jump around in content to read the entire story they are searching
for.

• Small topics that are usually read consecutively by the end user can probably get merged together.

For example, if the installation of your product requires installing both a server-side and a client-side component, by using DITA
chunking you can choose to have separate DITA topic modules for each of the installation procedures but merge the topics
together in the web-based outputs:

<map>
 <title>User Guide</title>
 <topicref href="installation.dita" chunk="to-content">
 <topicref href="server_installation.dita" toc="no"/>
 <topicref href="client_side_installation.dita" toc="no"/>
 </topicref>
</map>

You can read more about chunking in the DITA 1.3 specification. The DITA Style Guide also has a good overview about why it
is preferable to write small topics and then merge them together using the chunking mechanism.

Topic-Level Linking

Links that appear inside topics can be divided into various categories and I'll discuss each of these categories separately.

In-Content Links

In-content links are links added manually in the topic content:

See: <xref href="http://www.../" format="html" scope="external"/>

You should keep in mind that this kind of link is disruptive to the reading experience because when end users encounter them,
they need to decide weather to read further on or to follow the link. On the other hand, this may sometimes be a good thing. For
example, one of the installation steps may require the end user to download a certain library from an external website before
continuing.

You can read more about links in general in the DITA 1.3 specification. The DITA Style Guide, written by Tony Self, also
discourages the use of in-content links.

Related Links

Related links are placed at the end of the DITA topic and they allow the end user to explore additional resources after the current
topic has been read.

<related-links>
 <link href="http://tomcat.apache.org/" format="html" scope="external"/>
</related-links>

To minimize disruption when reading the content in general, the preferred place where to place links is at the end of the
generated HTML page.

You can read more about related links in the DITA 1.3 specification.

http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/archSpec/base/chunking.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/#Artefact/Topics_and_Information_Types/c_Avoiding_Hierarchy_in_Topics.html
http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/langRef/base/xref.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/Artefact/Cross_Referencing/c_Avoiding_Cross_References.html
http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/langRef/base/related-links.html

Blog | 3 - DITA | 74

Defining Related Links using Relationship Tables

Related links do not need to be manually added at the end of each topic. You can define relationship tables in the DITA Map:

<reltable>
 <relrow>
 <relcell>
 <topicref href="client_side_installation.dita"/>
 </relcell>
 <relcell>
 <topicref href="server_installation.dita"/>
 </relcell>
 </relrow>
 ……..
 </reltable>

These tables can define associations between two or more topics, associations that automatically contribute to the related links
creation in the generated HTML output.

Here are some benefits of using relationship tables:

• A topic should have as few links as possible defined directly within. This makes it easier to reuse the topic in various
contexts and keeps it as separate as possible for other parts of the DITA project, decreasing the possibility of broken
links.

• By default, links defined in relationship tables are bi-directional, allowing users to land on any of the topics when
searching for solutions and find their way to the related ones.

• Using a relationship table separates the task of writing topics from the task of finding relationships between topics.

You can read more about relationship tables in the DITA 1.3 specification. The DITA Style Guide also recommends using
relationship tables.

Indirect Links (Key References)

All the link samples we've look at so far have been direct links, links that point to the target using the @href attribute. Indirect
links require two steps:

1. Define a key in the DITA Map for the target.

<keydef keys="client_installation" href="client_side_installation.dita"/>

2. Use the defined key to reference the target resources.

<xref keyref="client_installation"/>

Here are some of the benefits of indirect linking:

• Offers the ability to reuse link target text and meta data. If you want to have custom text for a certain link, you can define
it directly in the DITA Map:

<keydef keys="dita_ot_website" href="http://www.dita-ot.org/" format="html"
 scope="external">
 <topicmeta>
 <linktext>DITA Open Toolkit Web Site</linktext>
 </topicmeta>
 </keydef>

and then add key references in all other places:

<xref keyref="dita_ot_website"/>

• Easier conditional linking (including links to topics that sometimes may be missing). If you want your topic to link either
to one target or to another depending on the filtering/profiling conditions, instead of adding profiling directly on the link,
you can add the profiling conditions directly in the DITA Map:

http://docs.oasis-open.org/dita/dita/v1.3/os/part3-all-inclusive/langRef/base/reltable.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/index.html#Artefact/Cross_Referencing/c_Related_Links_Section.html

Blog | 3 - DITA | 75

 <topicref keys="slicing" href="slicing_vegetables_for_experts.dita" audience="expert"/>
 <topicref keys="slicing" href="slicing_vegetables_for_novices.dita" audience="novice"/>
 <keydef keys="slicing" audience="noLink"><topicmeta><keywords>
 <keyword>Slicing</keyword></keywords></topicmeta>
 </keydef>

and then link to the key from each topic:

<xref keyref="slicing"/>

• Easier link management. A good overview about all the outbound links in your project helps you maintain and control
lists of allowed external web sites. With indirect references, you can define all references to external resources in a
separate DITA Map. An example of a DITA project using indirect links to achieve separation of links by purpose can be
found here: https://github.com/oxygenxml/dita-project-best-practices.

• Makes it easier to move/rename topics. When you move or rename a topic referenced via indirect links, only the link
defined in the DITA Map will break, making it easier to fix broken links.

The DITA 1.3 specification has a chapter about indirect links.

Auto-Generated Links

Until now, I've talked about manually added links, either in the topic or in relationship tables. Using the DITA @collection-type
attribute, you can define relationships between parent and child topic references in the DITA Map, relationships that result in
automatic links added between them:

 <topicref href="installation.dita" collection-type="sequence">
 <topicref href="server_installation.dita"/>
 <topicref href="client_side_installation.dita"/>
 </topicref>

There are 3 useful types of @collection-type values:

• Unordered - Links are generated from parent to children, and from children to parent.

• Family - Links are generated from parent to children, from children to parent, and from sibling to sibling.

• Sequence - Links are generated from parent to children, from children to parent, and from child to previous sibling (if
applicable) and next sibling (if applicable).

You can read more about auto-generated links in the DITA Style Guide.

Conditional Links in Distinct Publications

You may publish documentation for multiple products from the same DITA content. Also, you may want to have links point to
various targets depending on the product for which you want to publish the documentation. Or, you may want to suppress links
completely in certain publications.

When using direct linking, you will need to profile each link depending on the publication:

Find our more about slicing vegetables: <xref href="slicing_vegetables_for_experts.dita" audience="expert"/>
<xref href="slicing_vegetables_for_novices.dita" audience="novice"/>.

With indirect links, you can define the profiling attributes as DITA Map level:

 <topicref keys="slicing" href="slicing_vegetables_for_experts.dita" audience="expert"/>
 <topicref keys="slicing" href="slicing_vegetables_for_novices.dita" audience="novice"/>

and thus, simplify the reference made in the topic content:

Find our more about slicing vegetables: <xref keyref="slicing/>.

https://github.com/oxygenxml/dita-project-best-practices
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/key-based-addressing.html
https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/#Artefact/Maps/c_Collection_Types.html

Blog | 3 - DITA | 76

Conditional Links in the Same Publication

Using DITA 1.3 key scopes, you can reuse a topic multiple times in a DITA Map and have each referenced topic contain links to
various target topics. For example, if my preparing_vegetables.dita topic has a link:

<link keyref="slicing"/>

you can define various key scopes in the DITA Map that bind the "slicing" key to various targets:

 <topichead navtitle="Cooking for Experts" keyscope="expert">
 <topicref href="preparing_vegetables.dita" keys="preparing"/>
 <topicref href="slicing_vegetables_for_experts.dita" keys="slicing"/>
 </topichead>
 <topichead navtitle="Cooking for Novices" keyscope="novice">
 <topicref href="preparing_vegetables.dita" keys="preparing"/>
 <topicref href="slicing_vegetables_for_novices.dita" keys="slicing"/>
 </topichead>

This previous blog post (on page 78) contains more details about key scopes.

Link Text

When linking to an external resource or to a DITA topic or element, the publishing engine will attempt to deduce the link text
from the target context. For example, the link to a DITA topic or element that contains a <title> will use that title as the link
text. The link to an external resource (for example to http://www.oxygenxml.com) will, by default, use the HTTP location as
the link text. You can also customize each link text individually. So, ask yourself this question:

“Should I leave the link text to be automatically computed or should I set a more friendly text?”

For internal links to elements that have a title, in general it is more flexible to not set a custom text and let the publishing engine
decide one for you. For external links, you should usually specify your custom link text.

Should I Link or Should I Reuse?

Suppose you want to bring a certain paragraph, note, or section to the end user's attention. If that particular target element is not
very large, you should always reuse it (using a content reference) instead of linking to it.

Conclusions

As with all large projects, managing links in a growing DITA project can be problematic, so you need to become organized. As
an overview of what we've discussed so far, I suggest the following best practices:

• Linking is a form of reuse so:

◦ Reuse small pieces of content instead of linking to them
◦ Avoid too much linking (linking is disruptive)

• Use indirect links. It will allow you to reuse link text and make profiling/filtering easier while giving you a better
overview of the outbound links for your project.

If you want to experiment with the various linking strategies I discussed above, you can find some samples here: https://
www.oxygenxml.com/forum/files/linking-strategies-samples.zip.

DITA 1.3 Branch Filtering - Next Generation of Reuse

In this blog post, I'm going to give you a small example of how branch filtering can benefit two cases of reuse, which could not
be done previously. You can read more about branch filtering in the DITA 1.3 specs.

Case 1 - Combine Two Profiles in the Same Publication

Suppose that you have a DITA Project about preparing and cooking vegetables and your DITA map looks like this:

https://www.oxygenxml.com/forum/files/linking-strategies-samples.zip
https://www.oxygenxml.com/forum/files/linking-strategies-samples.zip
https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/branch-filtering.html

Blog | 3 - DITA | 77

<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Cooking vegetables</title>
 <topicref href="cleaningTableArea.dita" audience="novice"/>
 <topicref href="preparingVegetables.dita"/>
 <topicref href="addingExtraFlavor.dita" audience="expert"/>
 </map>

You have some content common both for expert and novice users but you also have content that is specific for a target audience.
You do not need to teach expert chefs how to clean the table and you do not want to teach novice cooks about enhanced
flavoring techniques.

All of this is fine until at some point you decide to produce a publication that contains content merged inside both the novice and
the expert map content. Here's where branch filtering can help. You can create a main DITA map that reuses your current DITA
map with two profiling contexts:

<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Cooking Vegetables.</title>
 <topichead navtitle="Cooking for Beginners" keyscope="novice">
 <topicref href="vegetables.ditamap" format="ditamap">
 <ditavalref href="novice.ditaval"/>
 </topicref>
 </topichead>

 <topichead navtitle="Cooking for Experts" keyscope="expert">
 <topicref href="vegetables.ditamap" format="ditamap">
 <ditavalref href="expert.ditaval"/>
 </topicref>
 </topichead>
</map>

Case 2 - Reusing Common Topics with Different Product Names

Suppose that you have a simple DITA task in which you have described how a certain task can be performed for a certain
product. In our case, the task describes peeling potatoes:

The task works and at some point in your Vegetables Soup publication, you realize that you need to write a similar task about
peeling cucumbers. The task is exactly the same, except for the product name. So naturally you want to reuse the existing written
task. For this, we re-write the task so that instead of the product potatoes, it contains two consecutive profiled product names:

Peeling <ph product="potatoes">potatoes</ph><ph product="cucumbers">cucumbers</ph>

and include the task in the main DITA map in two places with different ditaval filters applied:

<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Peeling Vegetables.</title>
 <topichead navtitle="Potatoes">
 <topicref href="peeling.dita">
 <ditavalref href="potatoes.ditaval"/>
 </topicref>
 </topichead>

Blog | 3 - DITA | 78

 <topichead navtitle="Cucumbers">
 <topicref href="peeling.dita">
 <ditavalref href="cucumbers.ditaval"/>
 </topicref>
 </topichead>
</map>

This kind of usage will produce two topic HTML files from the single peeling.dita (in the HTML output folder), one for
each filter context.

The DITA samples for this post can be downloaded from https://www.oxygenxml.com/forum/files/
branchFilteringBlogSamples.zip.

As usual, any feedback is welcomed.

DITA 1.3 Key Scopes - Next Generation of Reuse

In this blog post I'm going to give you a small example of how key scopes can benefit simple cases of reuse which could not be
done previously.

Let's say you have a simple DITA task in which you have described how a certain task can be performed for a certain product. In
our case, the task describes peeling a potato:

The task works and at some point in your Vegetables Soup publication you realise you need to write a similar task about peeling
cucumbers. The task is exactly the same, except the product name. So naturally you want to reuse the existing written task. For
this we re-write the task so that instead of the product potatoes it contains a key reference:

<ph keyref="vegetable"/>

Next we need to define in our DITA Map the vegetable key and bind it to a specific value in the potatoes context:

 <topicref href="potatoes_overview.dita" keyscope="potatoes">
 <!-- Define the vegetable key value in this key scope -->
 <keydef keys="vegetable">
 <topicmeta>
 <keywords>
 <keyword>potatoes</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <!-- Reference to the common task -->
 <topicref href="peeling.dita"/>
 </topicref>

and add in our DITA Map another key scope with the overview and the task which deal with cucumbers peeling:

 <topicref href="cucumbers_overview.dita" keyscope="cucumbers">
 <!-- Define the vegetable key value in this key scope -->
 <keydef keys="vegetable">
 <topicmeta>
 <keywords>
 <keyword>cucumbers</keyword>
 </keywords>

https://www.oxygenxml.com/forum/files/branchFilteringBlogSamples.zip
https://www.oxygenxml.com/forum/files/branchFilteringBlogSamples.zip

Blog | 3 - DITA | 79

 </topicmeta>
 </keydef>
 <!-- Reference to the common task -->
 <topicref href="peeling.dita"/>
 </topicref>

As you may have noticed, we have not used the key scope names for anything. Just by defining the key scopes, we made the
product name to be expanded differently in both contexts. But our Vegetables Soup publication may also contain a topic which
lists all possible vegetables. This topic is defined in a context outside any key scope:

<topicref href="vegetables_over.dita"/>

and this overview topic can refer to each product name using the full keyscope key reference value:

<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="vegetables_over">
 <title>Vegetables Overview</title>
 <body>
 <p>This is an overview of all vegetables necessary to make soup. You will learn how to use
 vegetables like <ph keyref="potatoes.vegetable"/> and <ph keyref="cucumbers.vegetable"/> to
 make a great starter soup.</p>
 </body>
</topic>

As stated before, this kind of reuse was not possible using the standard DITA 1.2 standard constructs. As it turns out, with DITA
1.3 we can also implement this kind of reuse using branch filtering. The DITA samples for this post can be downloaded from
https://www.oxygenxml.com/forum/files/keyscopesBlogSamples.zip.

As usual any feedback is welcomed.

DITA Reuse Strategies

Introduction

This small tutorial is based on a presentation called DITA Reuse Strategies I made at DITA Europe 2015. It's main purpose is to
explore the numerous possibilities of reusing content within the DITA standard.

First of all I think the main reasons we want to reuse content in technical documentation are these ones:

• Consistent explanations for the same situations.
• Less content to translate.
• Decreased time spent writing content.
• Obtain different publications from common content.

I would like to start by saying that technical documentation writers have two very important roles:

• Record knowledge about using tools and processes.
• Spread knowledge to reach large audiences.

As a software engineer, having a product user's manual which is rich in examples and answers to frequently asked questions
saves me time. Instead of individually explaining to end users various application behaviors I can give links to the manual or
better yet our end users find that content by themselves. Because there are just not enough human resources in any company in
order to individually help each end user.

We'll start with a top down approach to reuse. Complete small examples for most of the reuse situations described below can be
found here: https://www.oxygenxml.com/forum/files/dita_reuse_strategies_samples.zip.

https://www.oxygenxml.com/forum/files/keyscopesBlogSamples.zip
https://www.oxygenxml.com/forum/files/dita_reuse_strategies_samples.zip

Blog | 3 - DITA | 80

Version Control and Reuse

Version Control allows you to reuse content tagged at a certain point in time in order to produce older versions of your
publications. So no matter what open source version control system like SVN or GIT you are using or commercial CMS, you
should always have the possibility to produce older bug-fix versions for your documentation. So you can think of Version
Control as content reuse on the time line axis.

Converting XML content to various output formats

XML in itself is perfect for reuse because:

• XML is an intermediary format. We don't do XML for the pleasure of it. We do it because we want to obtain multiple
outputs from it and it has enough content and structure inside to allow for it. Some call this single source publishing but
it can be just as easily be called content reuse.

• XML contains the necessary content.
• XML contains the necessary structure.
• XML is a standard. So you have a choice between open source and commercial tools.
• XML is a standard for defining standards. Among which DITA, the most versatile standard XML vocabulary when it

comes to reuse.

Whatever output you will obtain from the XML, there is a constant, this XML format which contains all your data will contain
more semantic meaning than any of the published outputs.

You can read more about the selling points of using XML in this older blog post: A Short Story of Reuse (on page 288).

Create larger publications from existing ones

You can merge multiple existing DITA Maps in various new publications.

The only existing danger for this would be if you define keys with the same name but different values in both publications.
Fortunately DITA 1.3 comes to the rescue with the new keyscopes support which allows keys with the same name to be resolved
to various values on each scope:

<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Vegetables Soup</title>

https://www.oxygenxml.com/dita/1.3/specs/index.html#archSpec/base/keyScopes.html

Blog | 3 - DITA | 81

 <topicref href="carrots/carrots.ditamap" format="ditamap" keyscope="ks1"/>
 <topicref href="potatoes/potatoes.ditamap" format="ditamap" keyscope="ks2"/>
</map>

 Even if you have a single root map you can keep related sections or chapters in different DITA Maps. Besides
adding more logical structure to your content you never know when you'll reuse those sub-maps in different publications.

Reuse content for similar products

This is the most common case for successful reuse, you have multiple similar products which share common functionality. So
similarly the technical documentation for each of those products will also share common content. This is usually done in two
ways. In the following sections I will use the term root map for referring to the DITA Map which will actually get published.

1. Use multiple Root Maps.

Each root map is published to obtain the output for a certain product type. As major benefits you can:

• Reuse entire topics.
• Define variable product names.
• Remap links and reused content using keys.

Blog | 3 - DITA | 82

Publication maps for phone models X1000 and X2000 using almost similar content except Blue-tooth
chapter which appears in only one of them.

2. Use a single Root Map.

You have a single publication root map which gets published for various products using profiling filters applied on it. These
filters can be applied either at topic or element levels. The product name is variable and depends on the applied filters.

Related information
DITA Profiling / Conditional Text

Reuse fragments of content

Until now we have regarded the topic as an indivisible unit in our project. But there are many times when it becomes useful to
reuse smaller elements in various places throughout the publication.

Content References

Content references are the initial and probably the mostly used reuse mechanism in the DITA specification. They allow reusing
elements from a topic in various other topics throughout the publication.

https://www.oxygenxml.com/doc/ug-editor/topics/dita-profiling-conditional-text.html

Blog | 3 - DITA | 83

Small example of content referencing

Reusable Component from topic reusables.dita:

 <dd id="CPU">
 <ul id="ul_lym_bqd_x4">
 Minimum - <tm tmtype="tm">Intel Pentium III</tm>/<tm tmtype="tm">AMD Athlon</tm>
 class processor, 1 <term>GHz</term>.
 Recommended - Dual Core class processor.

 </dd>

Content reference:

<dd conref="path/to/reusables.dita#topicID/CPU"/>

You can read more about how content references can be inserted in Oxygen here: https://www.oxygenxml.com/doc/ug-editor/
#topics/eppo-create-conref.html.

Content Key References

When compared to direct content references, content key references are done with indirect addressing. You first need to define a
key for the topic which contains the reused content and make the content key reference using that key.

Small example of content key referencing

Reusable Component from topic reusables.dita:

 <dd id="CPU">
 <ul id="ul_lym_bqd_x4">
 Minimum - <tm tmtype="tm">Intel Pentium III</tm>/<tm tmtype="tm">AMD Athlon</tm>
 class processor, 1 <term>GHz</term>.
 Recommended - Dual Core class processor.

 </dd>

Key definition in DITA Map:

<keydef keys="reusable.install" href="reusables/reusables.dita"/>

Content key reference:

<dd conkeyref="reusable.install/CPU"/>

You can read more about how content key references can be inserted in Oxygen here: https://www.oxygenxml.com/doc/ug-
editor/#topics/eppo-create-conkeyref.html

Content Reference Ranges

Instead of reusing a series of consecutive elements (for example steps, list items) one by one you can reuse an entire range of
sibling elements. For this to work, both the initial and the final elements need to have IDs defined on them.

Small example of content key reference with ranges

Reusable steps from task reusable_steps.dita:

 <steps>
 <step id="washing">
 <cmd>Wash the vegetables thoroughly.</cmd>
 </step>
 …..
 <step id="peeling">
 <cmd>Pass the peeler gently over the vegetable.</cmd>
 </step>
 </steps>

https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conref.html
https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conref.html
https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conkeyref.html
https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conkeyref.html

Blog | 3 - DITA | 84

Key definition in DITA Map:

 <keydef keys="reusable_steps" href="reusable_steps.dita"/>

Content key reference range:

 <steps>
 <step conkeyref="reusable_steps/washing" conrefend="default.dita#default/peeling">
 <cmd/>
 </step>
 </steps>

The usual dialog from Oxygen used to insert reusable content can also be used to select the range of elements to insert: https://
www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html.

Content Reuse Tips and Tricks

I tried to compile below a set of best practices to follow when reusing content:

• Keep all your reused content in special topics located in special folders. Technical writers need to know that they are
editing content which potentially is used in multiple contexts.

• Keep a description for each reused element. You can have topics which act like dictionaries of reused content. A table
of reused content can have two columns. On the first column each cell contains the reused element and on the second
one you can have a small description for each reused element. The description acts as metadata, it may give the technical
writer more details about how that content should be reused.

• Use conkeyrefs instead of conrefs. Really, because they use relative paths conrefs always break when you move topics
around. But more about conkeyrefs in the next section.

• When using conkeyrefs you should create a special map with key definitions. This keeps the reused content and the keys
for it separate from the live content.

Pushing Content

Besides the techniques we've seen so far for pulling reused content in multiple places you can also push content to a certain
specified place inside an existing topic.

So why push content?

Imagine you have an existing publication "Cooking Book" containing a task with a couple of steps for peeling vegetables. At
some point you create the DITA Map for a larger publication called "Cooking Book for Pros" which reuses the entire original
publication by referencing to the original publication DITA Map. But you somehow need to add extra steps in the original task
when the larger publication gets printed.

https://www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html
https://www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html

Blog | 3 - DITA | 85

Pushing Content to an existing sequence of steps

Sequence of steps from the original task:

 <steps>

 <step id="peeler_handling">
 <cmd>Pass the peeler gently over the vegetable.</cmd>
 </step>
 </steps>

Key definition in DITA Map for the task which will push the content:

<keydef href="stepsPusher.dita" keys=”peeling”/>

Content key reference push done from the "stepsPusher.dita" task:

 <steps>
 <step conaction="mark" conkeyref="peeling/peeler_handling">
 <cmd/>
 </step>
 <step conaction="pushafter">
 <cmd>Read the instructions.</cmd>
 </step>
 </steps>

So the only purpose of the "stepsPusher.dita" task which is referenced with a resource-only processing role and thus
does not appear at all in the output is to modify the content of the original task which gets published.

How do we push content in Oxygen? First you would need to define an ID on an element which will be the target for our push.
The conref push mechanism allows us either to replace, insert an element before or after this target element. After this you can
create the topic which pushes the content, create the step which will be pushed. You can right click inside this steps and choose
Reuse->Push Current Element....

Blog | 3 - DITA | 86

Key References (Variables)

You can reuse simple variables like product name, executable, and so on by defining keywords in the Dita Map and then using
keyref's in topics to reuse those text fragments.

Reusing keywords

Defining the reused keyword in the DITA Map:

<!-- product name -->
 <keydef keys="product" product="editor">
 <topicmeta>
 <keywords>
 <keyword>Oxygen XML Editor</keyword>
 </keywords>
 </topicmeta>
 </keydef>

Reusing the keyword in a topic:

<title>Installation Options for <ph keyref="product"/></title>

In Oxygen you can create key definitions in the DITA Map by right clicking in the DITA Maps Manager and choosing
Append Child->Key definition with keyword.... After this, in the topic you can use Oxygen's regular Reuse Content action to
insert the keyref.

DITA 1.3 Contributions to Reuse

DITA 1.3 takes content reuse to an entire new level allowing you to:

• Reuse topic with variable content depending on context (keyscopes).
• Reuse the same content profiled in various ways in the same publication (branch filtering).

Reuse with Key Scopes

Using DITA 1.3 key scopes you can reuse a topic in multiple places in the DITA Map with slightly different content.

Reuse using key scopes

Let's say you write a topic about Windows installation for your software product:

<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="installation">
 <title><ph keyref="osName"/> Installation</title>
 <body>
 <p>
 <ol id="ol_g5h_st4_zt">
 Download the executable.
 Run the executable by double clicking it.
 Follow steps described in the installation wizard.

 </p>
 </body>
</topic>

and at some point your realise that exactly the same steps need to be followed for the Linux installation. The only difference is
the name of the operating system. You use a keyref to refer to the operating system name but just with DITA 1.2 support the key
will resolve to a single value.

Using keyscopes in the DITA Map you can define multiple values for your key depending on the context:

 <topicgroup keyscope="windows">
 <keydef keys="osName">
 <topicmeta>
 <keywords>

https://www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html

Blog | 3 - DITA | 87

 <keyword>Windows</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="installation.dita"/>
 </topicgroup>
 <topicgroup keyscope="linux">
 <keydef keys="osName">
 <topicmeta>
 <keywords>
 <keyword>Linux</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="installation.dita"/>
 </topicgroup>

You can find a more detailed example and download samples for reuse based on key scopes in this blog post: DITA 1.3 Key
Scopes - Next Generation of Reuse (on page 78).

Reuse with Branch Filtering

With branch filtering you can combine two profiles of the same DITA Map in a larger publication.

Creating a Phones Catalogues publication

If you already have a DITA Map from which you can obtain publications for various mobile phone versions based on the
profiling filters applied to it, you can use branch filtering to create a larger publication which incorporates the publications for all
mobile phone versions:

….................
 <topicref href="phoneDetails.ditamap" format="ditamap">
 <ditavalref href="ditaval/X1000Branch.ditaval">
 <ditavalmeta><dvrResourceSuffix>1</dvrResourceSuffix></ditavalmeta>
 </ditavalref>
 </topicref>
….......................
 <topicref href="phoneDetails.ditamap" format="ditamap">
 <ditavalref href="ditaval/X2000Branch.ditaval">
 <ditavalmeta><dvrResourceSuffix>2</dvrResourceSuffix></ditavalmeta>
 </ditavalref>
 </topicref>
…...................

You can find a more detailed example and download samples for reuse based on branch filtering in this blog post: DITA 1.3
Branch Filtering - Next Generation of Reuse (on page 76)

Reuse non-DITA resources

Besides DITA topics you can reuse other resources in your DITA project:

• Reuse images either referenced directly or via a key reference.
• Reuse other linked resources (like videos, PDFs and so on).

As binary resources are not embedded in the DITA topics, they are naturally reused by being kept in separate files and linked
when necessary.

You can reuse images and link to other resources either via direct references or via indirect key references. What to choose may
depend on how many times you refer to a certain image or binary resource. If you refer to it only once or twice you can use direct
referencing.

Blog | 3 - DITA | 88

If you have problems getting images to appear the same size when published to PDF and XHTML-based outputs you should
make sure they do not have the dots-per-inch information saved inside them: https://www.oxygenxml.com/doc/ug-editor/topics/
stretched-images-pdf-output.html.

Conclusions

The DITA standard can provide for you quite a large toolbox for reuse scenarios.

Besides the tips which are spread during this tutorial here is some additional advice for you:

• Know a little bit about all these possibilities (at least know that they exist), you never know when one of them might
come in handy.

• For any given potential reuse situation you may find out that you can use multiple reuse strategies. So at a given time you
could reuse a piece of simple text either via direct conrefs, indirect conkeyrefs or keyword keyrefs. Choosing one of the
strategies will depend on the situation. For example if you plan in the future to also have inline elements in the reused
text, you should go with either conref or conkeyref. If you reuse that content only in one or two places you can go with
conref. But if you reuse it extensively you can define a key and use conkeyref.

• Try to keep the reused content separately, in special folders. Writers will know that when they are editing resources from
these special folders they might modify content which is potentially used in multiple places.

• If you plan to translate your content to other languages try not to reuse inline elements (other than product name and
constants which do not change when translated). Usually the translators need to translate entire block level-elements in
order to have a good flow of translated content. The DITA 1.3 specs contains quite an useful recommendation for this:
https://www.oxygenxml.com/dita/1.3/specs/index.html#non-normative/elementsMerged.html.

Cross-Book Links

We use cross-book links in our DITA books, and I wanted to share some of our experiences in using them.

A cross-book link is a link that crosses book boundaries. More specifically, it is a link from a topic in one book to another topic in
another book. Cross-book links are made possible by the introduction of keyscopes in DITA 1.3. For more about keyscopes, see
the related blog post, DITA 1.3 Key Scopes - Next Generation of Reuse (on page 78).

Note:

References to "book" in this article apply equally to both <map> and <bookmap> maps.

To define a cross-book link, two components are needed:

• In the source book map, a peer map reference defines a keyscope for each target map that might be referenced by a
cross-book link:

<map>
 <title>Book 1</title>
 <mapref href="book2.ditamap" keyscope="book2" processing-role="resource-only" scope="peer"/>
 ...
 </map>

In DITA, a peer map is a map that exists alongside your current map. It is a declaration of another map's existence, but
not an inclusion of that map for processing or publication.

• To create a cross-book link in a source book topic, use a keyref (key-based) reference to the target topic that includes the
keyscope prefix for the target book:

<xref keyref="book2.topic2">topic 2</xref>

The following example shows a simple case with two books, each containing a topic that references a topic in the other book:

https://www.oxygenxml.com/doc/ug-editor/topics/stretched-images-pdf-output.html
https://www.oxygenxml.com/doc/ug-editor/topics/stretched-images-pdf-output.html
https://www.oxygenxml.com/dita/1.3/specs/index.html#non-normative/elementsMerged.html

Blog | 3 - DITA | 89

<map>
<title>Book 1</title>
<mapref href="book2.ditamap" keyscope="book2" scope="peer"/>

<topicref href="topic1.dita" keys="topic1"/>

</map>

book1.ditamap

<map>
<title>Book 2</title>
<mapref href="book1.ditamap" keyscope="book1" scope="peer"/>

<topicref href="topic2.dita" keys="topic2"/>

</map>

book2.ditamap

<p>See <xref keyref="book2.topic2">topic 2</xref>
for details.</p>

topic1.dita

<p>See <xref keyref="book1.topic1">topic 1</xref>
for details.</p>

topic2.dita

Cross-book
links

Note: The figures in this article omit processing-role="resource-only" from <mapref scope="peer"> elements for
brevity. Although the DITA-OT implicitly treats peer map references as resource-only by default, we do explicitly
define their processing role in our books.

Cross-book <xref> elements must explicitly contain their target text inside them. Although Oxygen automatically resolves and
displays cross-book link target text during authoring, the DITA-OT does not resolve or include the target text during publishing
(because peer maps are not processed). As a result, you must manually include the target text inside cross-book link elements.

Oxygen provides good support for creating cross-book links in its authoring environment. You can create cross-book links in two
ways:

• Choosing a scoped key from the Cross reference insertion dialog box

• Doing a drag-and-drop operation from the source book in the DITA Maps Manager view into the topic editing window

• Doing a Copy of the target topic's <topic> element, then a Paste special > Paste as link where you want the link

After you create the link, check that the @keyref value uses the expected keyscope value. If not, check that the map context in
the DITA Maps Manager is set to the source map so that the link is created within the correct source context. This can be done
either by setting the context drop-down to <Current map> and ensuring that the source map tab is selected, or by explicitly
setting the context drop-down to the source map (but remember to change it back if you do this).

An interesting cross-book link problem occurred when we started reusing topics across books. We encountered a case where (1)
multiple books reused the same topic, and (2) that topic had cross-book links to topics in those books:

Blog | 3 - DITA | 90

<map>
<title>Book 1</title>
<mapref href="book2.ditamap" keyscope="book2" scope="peer"/>

<topicref href="topic1.dita" keys="topic1"/>

<topicref href="shared.dita" keys="shared"/>

</map>

book1.ditamap

<map>
<title>Book 2</title>
<mapref href="book1.ditamap" keyscope="book1" scope="peer"/>

<topicref href="topic2.dita" keys="topic2"/>

<topicref href="shared.dita" keys="shared"/>

</map>

book2.ditamap

<p>See <xref keyref="book1.topic1">topic 1</xref>

and <xref keyref="book2.topic2">topic 2</xref>

for details.</p>

shared.dita

In this example, the shared.dita topic is included in both book1 and book2, and it contains references to other topics in those
books. The link to book1.topic1 was broken for the topic instance in book1 (because book1 had no knowledge of a "book1"
keyscope), but the same link worked for the topic instance in book 2 (because book2 had a "book1" peer map keyscope defined).
A similar issue happened for the link to book2.topic2 in book2.

The solution was to define local map-level keyscopes for book1 and book2:

Blog | 3 - DITA | 91

<map keyscope="book1">

<title>Book 1</title>
<mapref href="book2.ditamap" keyscope="book2" scope="peer"/>
<topicref href="topic1.dita" keys="topic1"/>
<topicref href="shared.dita" keys="shared"/>

</map>

book1.ditamap

<map keyscope="book2">

<title>Book 2</title>
<mapref href="book1.ditamap" keyscope="book1" scope="peer"/>
<topicref href="topic2.dita" keys="topic2"/>
<topicref href="shared.dita" keys="shared"/>

</map>

book2.ditamap

<p>See <xref keyref="book1.topic1">topic 1</xref>

and <xref keyref="book2.topic2">topic 2</xref>

for details.</p>

shared.dita
Local

map-level
keyscopes

This allowed keyscoped links in reused topics to always resolve properly, whether they pointed to a topic in the same book or a
peer map book.

Note:

If you use local map-level keyscopes, be sure to use Oxygen 24.0 or later to author your content. It contains some fixes
to create cross-book links properly in locally keyscoped map contexts.

If you use cross-book links, it is important to understand how the DITA-OT handles them. When a book containing cross-
book links is published by itself, the cross-book link elements are accepted syntactically, but during processing they become
unresolved links because the target peer maps are not processed. To fix the links, you can run some kind of post-processing
utility on the final set of published content. For HTML-based output (such as WebHelp), we use the following utility:

https://github.com/chrispy-snps/DITA-fix-xbook-html-links

(We do not yet have a solution for cross-book links in our PDF output, but we plan to look into it in the future.)

But, something very interesting happens when these books are published together as part of a higher-level "collection" map:

https://github.com/chrispy-snps/DITA-fix-xbook-html-links

Blog | 3 - DITA | 92

<map>
<title>Online Help</title>
<mapref href="book1.ditamap" keyscope="book1"/>
<mapref href="book2.ditamap" keyscope="book2"/>
<mapref href="book3.ditamap" keyscope="book3"/>

</map>

olh.ditamap

<map keyscope="book1">
<title>Book 1</title>
<mapref href="book2.ditamap" keyscope="book2" scope="peer"/>
<mapref href="book3.ditamap" keyscope="book3" scope="peer"/>
<!-- book 1 topics -->

</map>

book1.ditamap

<map keyscope="book2">
<title>Book 2</title>
<mapref href="book1.ditamap" keyscope="book1" scope="peer"/>
<mapref href="book3.ditamap" keyscope="book3" scope="peer"/>
<!-- book 2 topics -->

</map>

book2.ditamap

<map keyscope="book3">
<title>Book 3</title>
<mapref href="book1.ditamap" keyscope="book1" scope="peer"/>
<mapref href="book2.ditamap" keyscope="book2" scope="peer"/>
<!-- book 3 topics -->

</map>

book3.ditamap

Note that the top-level "collection" map includes each book map within its relevant keyscope. As a result, links that were "cross-
book" in the individual maps automatically resolve and become local links in the higher-level collection map! And because these
links resolve during publishing, no post-processing is needed.

Note:

When a keyscoped <mapref> points to a map that has its own local map-level keyscope, the keyscopes are not cascaded.
Instead, a single keyscope with the union of keyscope values is used, so that any keyscope in the union can be used to
reference into the map. For details, see 2.3.4.2 Key scopes.

This demonstrates a very useful aspect of keyscoped links between books—links automatically become cross-book or local
as needed, depending on what is included in publishing. This gives you the freedom to publish books individually, in a single
collection, or in multiple collections. And you can even rearrange books across collections, all without having to modify any
links in the DITA source.

DITA XML vs Markdown Syntax and Capabilities Comparison

The following article is a comparison between the DITA XML standard and Markdown. The comparison attempts to cover
syntax specification and features. I attempted to write this comparison without any implicit bias towards one or the other. If there
are DITA XML or Markdown features that I missed, that was done out of ignorance and not out of malice. Feedback is always
welcomed, as usual.

http://docs.oasis-open.org/dita/dita/v1.3/errata01/os/complete/part1-base/archSpec/base/keyScopes.html

Blog | 3 - DITA | 93

Table 1. DITA XML vs Markdown

DITA XML Markdown

Short de
scription

DITA XML is a standard for designing, writing, man
aging, and publishing information. There are multiple
versions of the DITA standard, the most popular one
being version 1.3.

Markdown is a lightweight markup language that you
can use to add formatting elements to plain text docu
ments. There was an effort to standardize Markdown to
a specification named CommonMark. There are lots of
Markdown flavors and extensions, most of them sharing
a common set of features. The most popular are probably
CommonMark and Github-flavored Markdown.

Useful re
sources for
learning

Resources for learning DITA with Oxygen (on page
8) • Basic Markdown Syntax

• Markdown: Syntax

Pros
• OASIS Open standard.
• Advanced support for content reuse (on page

79) either at topic, block, or inline level.
• Advanced support for filtering (on page

81) (generating multiple similar user
guides from the same content).

• Open-source publishing engine with lots of
supported output formats (some free, some
commercial) like HTML5, Windows Help,
PDF, Word, EPUB, and so on.

Why use DITA

Pros and Cons

• Large user base. Familiar to software engineers
who use it to write issues.

• Basic syntax, easy to learn.
• Easier to read without specialized tools.
• Offline and online free editing tools.
• For the base syntax, quite easy to edit the con

tent in a plain text editor tool.
• Lots of static web site generator open-source

tools like MKDocs or Jekyll.

Cons
• Smaller user base.
• Harder to learn.
• XML is more verbose than plain text.
• Visual editing requires the use of a commer

cial tool like Oxygen.
• Smaller number of open source tools to gener

ate professional looking outputs.

Pros and Cons

• Not all language features are available in the
base Markdown "specification". There are var
ious flavors with various syntax differences be
tween them and you probably need to pick a fla
vor to use and stick to it.

• Advanced features like content reuse, for exam
ple, are not in the base standard but may be im
plemented with different syntaxes for various
flavors.

• Static web site generators are not compatible
with each other (they have various specific con
figuration files) or to link between files.

• Not many possibilities to assemble multiple
Markdown files and publish outputs like PDF or
Word, for example.

• Cannot render complex cell content (multiple
paragraphs, for example) in table cells or in list
items.

Cross-
Compati
bility

A DITA Map can refer to a Github-flavored Mark
down file and the publishing engine can perform a dy
namic conversion from Markdown to DITA while edit
ing.

-

https://www.oxygenxml.com/dita/1.3/specs/introduction/dita-release-overview.html
https://www.markdownguide.org/getting-started/
https://commonmark.org/
https://www.markdownguide.org/extended-syntax/
https://www.markdownguide.org/basic-syntax/
https://daringfireball.net/projects/markdown/syntax
https://stefan-jung.org/dita-introduction/topics/why-dita.html
https://stefan-jung.org/dita-introduction/topics/pros-and-cons.html
https://www.mkdocs.org/
https://jekyllrb.com/
https://stefan-jung.org/dita-introduction/topics/pros-and-cons.html
https://www.dita-ot.org/dev/topics/markdown-dita-syntax-reference.html#ariaid-title1
https://www.dita-ot.org/dev/topics/markdown-dita-syntax-reference.html#ariaid-title1

Blog | 3 - DITA | 94

Table 1. DITA XML vs Markdown (continued)

DITA XML Markdown

Table of
contents

Gathering multiple DITA topics in a larger publication
and defining the table of contents is done by using DI
TA Maps.

Working with DITA Maps

CommonMark does not define the possibility to create
a table of contents or to aggregate multiple Markdown
files in larger publications.

Various static web site generators have various ways
to define table of contents, usually based on Yaml, like
MKDocs.

Validation
• Validation according to the DITA specifica

tion DTDs/schemas done when publishing or
when editing.

• Additional validation can be done with
Schematron rules (on page 262).

• Usually with Markdown, you can look at a live
preview while typing to see that everything
looks OK.

• There are various processors that may be used to
validate Markdown, for example using a set of
JSON rules.

Publishing
• The DITA Open toolkit publishing engine

comes with default support to publish DITA
Maps and customize to plain HTML5, PDF.

• There are additional open-source plugins to
publish to MS Word or EPUB.

• Other curated open-source plugins are avail
able in the DITA OT plugins registry.

• Commercial plugins are available to publish
to WebHelp output like Oxygen WebHelp or
Fluid Topics.

Most publishing libraries rely on the conversion from
Markdown to HTML.

• Lots of open-source static web site generators.
• Lots of libraries (Javascript, Java, Python, etc)

to convert Markdown to HTML.
• Other conversion types available using Pandoc.

Transla
tion

There are translation agencies directly accepting DITA
XML content or you can convert DITA XML to XLiff
and use a translation system. Each DITA XML topic
or map can have an @xml:lang attribute to specify the
current language in which it is written.

Translating your DITA Project (on page 176)

There are various tools like Simpleen that seem to
specifically handle Markdown translation.

Extensibil
ity • Possibility to define a new specialization

of the DITA vocabulary with new element
names.

• Use the @outputclass attribute value on ele
ments to set custom values used when styling
the output.

• Use the DITA <data> element with custom
names and values and take them into account
with publishing time customizations.

• Use the DITA <foreign> element (for exam
ple, embed HTML inside it using a custom
publishing plugin).

• Use HTML elements inside Markdown, for ex
ample, when defining complex tables or you do
not have a Markdown equivalent.

• Yaml headers.
• Ability on certain Markdown flavors/extensions

to define attributes for each element.

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/definition-of-ditamaps.html
https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/definition-of-ditamaps.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-pathfinder-documents.html
https://www.mkdocs.org/user-guide/configuration/
https://github.com/mattbriggs/markdown-validator
https://github.com/mattbriggs/markdown-validator
https://www.dita-ot.org/
https://www.dita-ot.org/plugins
https://www.oxygenxml.com/xml_editor/webhelp.html
https://www.fluidtopics.com/
https://about.gitlab.com/blog/2022/04/18/comparing-static-site-generators/
https://pandoc.org/
https://simpleen.io/blog/translate-markdown-files
https://www.oxygenxml.com/doc/ug-editor/topics/dita-integrate-specialization.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-embed-html.html
https://python-markdown.github.io/extensions/attr_list/

Blog | 3 - DITA | 95

Table 1. DITA XML vs Markdown (continued)

DITA XML Markdown

Metadata
• The DITA <prolog> element can contain lots

of metadata information, but not visible in the
published output. Example:

<topic id="topic_wcj_tgy_5wb">
 <title>The Title</title>
 <prolog>
 <author>The Author</author>
 <metadata>
 <keywords>
 <keyword>one</keyword>
 <keyword>two</keyword>
 </keywords>
 </metadata>
 </prolog>

• The <indexterm> elements are also considered
metadata, as they are used to generate an index
table.

• Sometimes, Markdown files may contain Yaml
headers before the actual content that define
simple keys and values. Example:

title: The Title
author: The Author
keywords: [one, two, three, four]

A Heading
Text body.

Content
reuse: • Key references to re-used product names.

• Content references to re-used elements in mul
tiple places.

• Content reference push to push content in mul
tiple places.

• Code references to re-use pieces of code in
multiple places.

• Key scopes and branch filtering to re-use the
same topics in multiple contexts with different
content in each context.

• Re-use a topic in multiple places in the publi
cation.

No content re-use support is in the standard base. Vari
ous extensions do exist, for example:

• Redocly uses HTML <embed> tags with refer
ences to Markdown files to re-use entire chunks
of Markdown content placed inside a file.

• Hugo uses special notations named shortcuts.

Filters You can use profiling attributes in DITA XML topics
or on topic references in a DITA Map map. By using a
single DITA Map and filtering (on page 81) it dif
ferently, you can obtain multiple publications from it.

For example, for the Oxygen user's manual, we obtain
lots of distinct publications for "Oxygen XML Editor",
"Oxygen XML Author", "Oxygen XML Web Author"
from the same DITA Map.

There may be, but I am not aware of such a feature in
Markdown.

Headings
• DITA topics have a <title> element that ap

pears as a heading 1 when published and is al
so used for the <title > element in the pub
lished HTML document.

• You can nest topics one inside the other and
the generated HTML output will have <h2>,
<h3>, etc for each nested topic, depending on
the nested depth.

• You can have <section> elements with <ti
tle>elements inside a topic (they cannot be
nested one inside the other).

You can use a number of # characters followed by space
and text to define a new heading. Headings do not neces
sarily need to be incremental, you can start with heading
level 2 and then have a heading level 1.

Heading level 1
Heading level 3
Heading level 2
....

https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/prolog-elements.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/indexing-d.html
https://www.oxygenxml.com/dita/1.3/specs/langRef/containers/indexing-d.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-variables.html
https://www.oxygenxml.com/doc/ug-editor/topics/working-with-content-references.html
https://www.oxygenxml.com/doc/ug-editor/topics/conref-push-mechanism.html
https://www.oxygenxml.com/doc/ug-editor/topics/coderef.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-keyscopes.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-branch-filtering.html
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-reuse-topics.html
https://redocly.com/docs/developer-portal/guides/reusing-content/
https://gohugo.io/content-management/shortcodes/#shortcodes-with-markdown
https://www.oxygenxml.com/doc/ug-editor/topics/dita-profiling-conditional-text.html
https://www.markdownguide.org/basic-syntax/#headings

Blog | 3 - DITA | 96

Table 1. DITA XML vs Markdown (continued)

DITA XML Markdown

<topic id="topic_wcj_tgy_5wb">
 <title>Title1</title>
 <body>
 <section>
 <title>Section 1</title>
 <p>paragraph</p>
 </section>
 </body>
 <topic id="inner">
 <title>Inner topic title</title>
 </topic>
</topic>

Block ele
ments

There are multiple topic types like <concept>, <task>,
<reference>, and extra topic types can be added using
a specialization. The basic block elements are <top
ic>, <title>, paragraph <p> elements, <codeblock>,
lists , <table>, <section>, <fig>, 
 <xsl:for-each select="//toc:topic">
 <xsl:if test="not(@href = 'javascript:void(0)')">
 <item>
 <title><xsl:value-of select="toc:title"/></title>
 <link><xsl:value-of select="concat('/', @href)"/></link>
 <guid isPermaLink="false"><xsl:value-of select="@href"/></guid>
 <xsl:variable name="ref" select="replace(resolve-uri(@href, base-uri()),
 '\.html', '.dita')"/>

 <xsl:variable name="date" select="document($ref)/*/prolog/critdates/created/@date"/>
 <xsl:choose>
 <xsl:when test="$date">
 <pubDate><xsl:value-of select="
 format-date(xs:date($date),
 '[F], [D01] [MNn,*-3] [Y] 00:00:00 GMT')"/></pubDate>
 <!-- Format like: Thu, 20 Dec 2022 02:46:11 UTC -->
 </xsl:when>
 <xsl:otherwise>
 <!-- Set some fixed date so that the topic does not appear as new -->
 <pubDate> Wed, 1 Jan 2020 02:46:11 GMT</pubDate>
 </xsl:otherwise>
 </xsl:choose>
 </item>
 </xsl:if>
 </xsl:for-each>
 </channel>
 </rss>
 </xsl:result-document>

Blog | 3 - DITA | 131

 </xsl:template>
</xsl:stylesheet>

The published output will produce an RSS feed similar to the one here: https://blog.oxygenxml.com/rss.xml. For each topic
referenced in the feed, a publication date is computed based on its creation date specified in the prolog:

<topic id="rss_feed_generation">
 <title>...</title>
 <prolog>
 <author>...</author>
 <critdates>
 <created date="YYYY-MM-DD"/>
 </critdates>

The WebHelp publishing template used for publishing this blog already has a customization to create the RSS feed: https://
github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate.

Using the RSS Feed With Follow.it to Receive New Posts by Email

Websites such as Follow.it allow you to register a link to your RSS feed and produce a small HTML form that can be embedded
in your blog. Users who register to receive notifications when new posts are available in the RSS feed will receive automatic
emails.

Once the RSS feed is available on the website, the following steps can be followed to integrate with Follow.it:

1. Go to the Follow.it website and add a reference to your RSS feed.
2. On the website, customize the form that will be embedded in your blog HTML contents.
3. In the the opt file (inside the Oxygen WebHelp publishing template folder), add references to an XML file that contains

the structure for it to appear after the content of each article:

<fragment file="html-fragments/subscribe.xml" placeholder="webhelp.fragment.after.toc_or_tiles"/>
<fragment file="html-fragments/subscribe.xml" placeholder="webhelp.fragment.after.feedback"/>

4. Create the subscribe.xml file and paste the form HTML content created by Follow.it inside it. Make the HTML
content well-formed.

Generating Google Structured Data from your DITA tasks

HTML pages published on the web can contain metadata specified using the Google Structured Data specification. Once such
metadata exists in an HTML page, the Google search engine can present, for example, steps to complete a certain task directly
in the search page without the need to open the target HTML page. Below is a set of steps for automatically generating Google
Structured Data metadata for DITA tasks when publishing DITA content to Oxygen WebHelp Responsive output, which can be
customized using a publishing template mechanism.

1. In your DITA project, create a task type of topic with a specific @outputclass attribute value to signal that you want the
Google structured data to be automatically generated for it.

<task id="task_id" outputclass="google-structured-data-steps">
 <title>My task</title>
</task>
<steps>
 <step>
 <cmd>Step 1 content.</cmd>
 </step>
 <step>
 <cmd>Step 2 content.</cmd>
 </step>
</steps>

2. Inside a WebHelp publishing template folder, there is an opt file that can contain links to various XSLT stylesheets
that are useful for customizations. For example, we'll add a link to a stylesheet for processing such special tasks and
producing a special script that contains details for each step.

<publishing-template>
 <name>.....</name>

https://blog.oxygenxml.com/rss.xml
https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate
https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate
https://follow.it/ni
https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data#structured-data-format
https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA | 132

 <xslt>

 <extension file="xslt/addGoogleStructuredData.xsl" id="com.oxygenxml.webhelp.xsl.dita2webhelp"/>

 </xslt>
 </webhelp>
</publishing-template>

3. Create the addGoogleStructuredData.xsl XSLT stylesheet that processes the task contents and adds in the
HTML head a script that contains the steps in Google Structured Data format.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:template match="*[contains(@class, ' topic/prolog ')]">
 <xsl:if test="/*[@outputclass='google-structured-data-steps']">
 <xsl:apply-templates select="/*" mode="google-structured-data"/>
 </xsl:if>
 <xsl:next-match/>
 </xsl:template>
 <xsl:template match="*" mode="google-structured-data">
 <script type="application/ld+json">
 {
 "@context": "https://schema.org",
 "@type": "HowTo",
 "name": "<xsl:value-of select="title"/>",
 "step": [
 <xsl:for-each select="taskbody/steps/step">
 {
 "@type": "HowToSection",
 "name": "Step",
 "position": "<xsl:value-of select="position()"/>",
 "itemListElement": [
 {
 "@type": "HowToStep",
 "position": "1",
 "itemListElement": [
 {
 "@type": "HowToDirection",
 "position": "1",
 "text": "<xsl:value-of select="normalize-space(cmd)"/>"
 }]}]}
 <xsl:if test="position() < last()">,</xsl:if>
 </xsl:for-each>
]}
 </script>
 </xsl:template>
</xsl:stylesheet>

4. Publish the DITA XML Content to a web site.
5. Test your HTML page using the Google Rich Results Tester: https://search.google.com/test/rich-results.

https://search.google.com/test/rich-results

Blog | 3 - DITA | 133

6. Once Google indexes your page, google search for it.

Related information
Generating Google Structured Data from your DITA frequently asked questions (on page 133)

Generating Google Structured Data from your DITA frequently asked questions

HTML pages published on the web can contain metadata specified using the Google Structured Data specification. Once such
metadata exists in an HTML page, the Google search engine can present, for example, lists of frequently asked questions directly
in the search page without the need to open the target HTML page. Below is a set of steps for automatically generating Google
Structured Data metadata for DITA frequently asked questions when publishing DITA content to Oxygen WebHelp Responsive
output, which can be customized using a publishing template mechanism.

1. In your DITA project, create a topic with a specific @outputclass attribute value to signal that you want the Google
structured data to be automatically generated for it.

<topic id="frequently_asked_questions" outputclass="google-structured-data-faq">
 <title>Frequently Asked Questions</title>
 <body>
 <section>
 <title>How do I register to receive notifications for new blog posts?</title>
 <p>Each blog HTML page has at the end a form in which you can fill your email address if
 you want to be notified when new posts are made.</p>
 </section>
..............

2. Inside a WebHelp publishing template folder, there is an opt file that can contain links to various XSLT stylesheets that
are useful for customizations. For example, we'll add a link to a stylesheet for processing such special DITA topics and
producing a special script that contains details for each question/answer pair.

https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data#structured-data-format
https://www.oxygenxml.com/doc/ug-editor/topics/whr_publishing_template_contents.html

Blog | 3 - DITA | 134

<publishing-template>
 <name>.....</name>

 <xslt>

 <extension file="xslt/addGoogleStructuredData.xsl" id="com.oxygenxml.webhelp.xsl.dita2webhelp"/>

 </xslt>
 </webhelp>
</publishing-template>

3. Create the addGoogleStructuredData.xsl XSLT stylesheet that processes the task contents and adds a script in
the HTML head that contains the frequently asked questions in Google Structured Data format.

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:template match="*[contains(@class, ' topic/prolog ')]">
 <xsl:choose>
 <xsl:when test="/*[@outputclass='google-structured-data-faq']">
 <xsl:apply-templates select="/*" mode="google-structured-data-faq"/>
 </xsl:when>
 </xsl:choose>
 <xsl:next-match/>
 </xsl:template>

 <xsl:template match="*" mode="google-structured-data-faq">
 <script type="application/ld+json">
 {
 "@context": "https://schema.org",
 "@type": "FAQPage",
 "mainEntity": [
 <xsl:for-each select="body/section">
 {
 "@type": "Question",
 "name": "<xsl:value-of select="normalize-space(title)"/>",
 "acceptedAnswer": {
 "@type": "Answer",
 "text": "<xsl:value-of select="normalize-space(string-join(*[not(self::title)], ''))"/>"
 }
 }
 <xsl:if test="position() < last()">,</xsl:if>
 </xsl:for-each>
]
 }
 </script>
 </xsl:template>

</xsl:stylesheet>

4. Publish the DITA XML Content to a web site using the WebHelp Responsive transformation.
5. Test your HTML page using the Google Rich Results Tester: https://search.google.com/test/rich-results.

https://search.google.com/test/rich-results

Blog | 3 - DITA | 135

6. Once Google indexes your page, google search for it.

Related information
Generating Google Structured Data from your DITA tasks (on page 131)

Editing Customizations

The DITA XML editing features (visual editing, validation, custom actions) can be customized by extending and changing the
base DITA framework configuration.

Startup DITA Project

The Startup DITA Project contents are useful for starting a new DITA project with Oxygen XML Editor version 23.0 or newer,
using collaboration version control systems such as Git or Subversion.

When the project.xpr is open in the Project view, it imposes a custom set of options, as well as an imposed custom DITA
framework extension.

Project Structure

The project contains the following folder structure:

• custom-settings/frameworks - Contains custom DITA and DITA Map framework extensions.
• custom-settings/learned-words - Contains learned words for the English dictionary.
• filters - This initially empty folder can be updated to contain DITAVAL Filter files used to profile the DITA content

when publishing.
• images - Contains images used in the DITA project.
• oxygen-term-checker - Contains a terminology file with an example rule.
• publishing - Contains a DITA-OT project file and a publishing template.

https://github.com/oxygenxml/DITA-Startup-Project
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-ditaval-file.html
https://www.oxygenxml.com/doc/ug-editor/topics/terminology-checker-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html
https://www.oxygenxml.com/doc/ug-editor/topics/whr-publishing-template-2.html

Blog | 3 - DITA | 136

• reusables - Contains various reusable components. For example, in the "reusable_components.dita" topic, you can
add various DITA elements (such as notes, paragraphs, lists, and list items) that are reused in various places in the
project. See more about reusing DITA content.

• topics - Contains all the DITA topics in the project.

Settings Saved at Project Level

Most of the preference pages in Options > Preferences can be saved at project level. When the project is open in the Project
view, the following options are imposed:

• The Editor / Spell Check preferences page is saved at project level with automatic spell checking enabled.
• The Editor / Spell Check / Dictionaries preferences page is saved at project level and all learned words are saved in

the custom-settings/learned-words/en.tdi file.
• The Editor / Edit Modes / Author preferences page is saved at project level.
• The DITA / Maps preferences page is saved at project level.
• The Document Type Association preferences page disables certain framework configurations that are not useful (e.g.

DocBook 5).
• The Document Type Association / Locations preferences page references two custom framework configurations that

are described further.

Framework Customizations

The editing environment for DITA Maps and Topics can be customized by extending their current frameworks.

The framework extension for editing DITA Topics is defined in the custom-settings/frameworks/dita-
extension/dita-extension.exf framework script file. You can add your own custom actions to the toolbars, menus, or
contextual menus, and add, change, or remove transformation scenarios or validation scenarios.

• You can customize the existing DITA Topic file templates by making changes to the custom-settings/
frameworks/dita-extension/templates/ folder.

• The content completion configuration extension file custom-settings/frameworks/dita-extension/
resources/cc_config_ext.xml allows you to customize various aspects of the content completion feature.

• You can add custom Schematron validation rules (on page 178) in the custom-settings/frameworks/dita-
extension/resources/customRules.sch Schematron file.

• You can also customize the visual editing (on page 137) by modifying the CSS custom-settings/
frameworks/dita-extension/css/custom.css.

The framework extension for editing DITA Maps is defined in the custom-settings/frameworks/dita-map-
extension/dita-map-extension.exf framework script file and can me customized in a similar way. You can
customize the existing DITA Map file templates by making changes to the custom-settings/frameworks/dita-map-
extension/templates/ folder.

Renaming/Moving Topics and Other Resources

The project has a logical folder named Main Files with a reference to the main DITA map. This enables the Main Files support
in the project, allowing you to rename or move files while the references to those files are automatically updated.

Terminology Checking

For checking terminology, you can use the Oxygen Terminology Checker add-on. You can add terminology rules to the
oxygen-term-checker folder. For example, the Oxygen user manual uses a set of Vale rules to check for common
terminology problems.

https://www.oxygenxml.com/doc/ug-editor/topics/eppo-create-conref.html
https://www.oxygenxml.com/doc/ug-editor/topics/sharing-projects.html
https://www.oxygenxml.com/doc/ug-editor/topics/learned-words.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/customizing-templates.html
https://www.oxygenxml.com/doc/ug-editor/topics/rendering-elements-cc-author.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/customizing-templates.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/terminology-checker-addon.html?
https://github.com/oxygenxml/userguide/tree/master/DITA/oxygen-term-checker
https://github.com/oxygenxml/userguide/tree/master/DITA/oxygen-term-checker

Blog | 3 - DITA | 137

Publishing

You can publish the content of the project.ditamap in two ways:

• You can open the DITA-OT project file named publish-project.xml from the publishing subfolder and two
predefined publishing scenarios become available. You can read more about DITA-OT project files in the user manual.

• You can also open the project.ditamap file in the DITA Maps Manager view, invoke the "Configure
Transformation Scenario(s)" dialog box, and in the Project section, there are two predefined transformation scenarios
(one for WebHelp, the other for PDF) that use the publishing template archived in the zip file. This past webinar shows
more details about creating and customizing a publishing template.

Starting with Oxygen XML Editor version 24, the Startup DITA Project will be available as a new project template in the
Project > New Project dialog box. If you want to try it with Oxygen XML Editor version 23 you should download the project
template (.zxpr file) from the project releases page and set it as a new document template.

Customizing the DITA Visual Editing Experience

The Author visual editing experience in Oxygen is CSS driven. Let's say I have a team of writers using Oxygen and they want to
visually edit DITA dl elements in a table-like layout.

All the validation, editing and publishing support Oxygen has for a specific XML vocabulary is defined in a framework
configuration (on page 272).

Instead of copying an entire framework configuration folder (such as DITA or Docbook), modify and distribute it, you can
choose to extend that framework and distribute the extension. This way, you will benefit from new functionality added to the
base framework by newer Oxygen versions and still use your customizations.

The steps below describe how an extension of the DITA framework that removes certain elements from the content completion
list can be constructed and shared:

1. Somewhere on your disk, in a place where you have full write access, create a folder structure like:
custom_frameworks/dita-extension.

2. In that folder, create a new CSS stylesheet (for example custom.css) that will contain your custom CSS styles:

dl{
 display:table !important;
}
dlentry{
 display:table-row !important;
}
dt, dd {
 display:table-cell !important;
 border: 1px solid black;
 padding: 2px;
}

3. In the Document Type Association / Locations preferences page, add the path to your custom_frameworks folder in
the Additional frameworks directories list. Then click Apply in the Preferences dialog box.

4. In the Document Type Association preferences page, select the DITA document type configuration and use the Extend
button to create an extension for it.

5. Give a custom name to the extension (for example DITA - Custom), then change its Storage to external, and save it to
a path like: path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

6. Make whatever changes are necessary to the framework configuration, and in the Author tab click the CSS tab and add
a reference to your custom CSS. Do not set a title for the CSS and also do not check the Alternate checkbox as you want
your CSS to be applied by default.

7. Click OK to close the dialog box and then either OK or Apply to save the changes to the preferences.

After you perform these steps, you will have a fully functioning framework in the dita-extension folder that can be shared with
others: Document Type Extension Sharing (on page 261).

To check that your framework extension works, you can create a new DITA topic and insert a dl element inside it. It should now
be presented in a table-like layout.

https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html
https://www.oxygenxml.com/events/2018/webinar_creating_custom_publishing_templates_for_webhelp_and_pdf_output.html
https://github.com/oxygenxml/DITA-Startup-Project/releases
https://www.oxygenxml.com/doc/ug-editor/topics/create-your-own-templates.html#create-your-own-templates

Blog | 3 - DITA | 138

In order to know which CSS styles to override for a specific DITA element, you can right click inside that element in the Author
visual editing mode and use the Inspect Styles action to see all CSS styles defined for it by default. You can also define alternate
CSS styles that are applied manually by the writer by using the Author toolbar Styles drop-down menu.

Customizing the DITA Framework Using a Framework Extension Script

How to customize an existing framework (e.g. DITA) using a framework extension script.

All the validation, editing, and publishing support Oxygen has for a specific XML vocabulary is defined in a framework
configuration (on page 272). Oxygen comes bundled with such frameworks for popular XML vocabularies, such as DITA. A
common use case is to make changes to these built-in frameworks, to tailor them according to specific requirements.

A framework extension script is an XML file that defines the changes to perform on a base framework. Suppose that you want to
make the following changes to the DITA framework:

1. Customize the new document templates.
2. Change the Author mode rendering with a new CSS file.
3. Remove the Bold, Italic, Underline actions from the Author mode.
4. Add the Insert Note action to the toolbar.

Creating the Framework Extension Script

The easiest way to create such a script is to use the New document wizard and choose the Extend Framework Script or Create
Framework Script template. Define it as an extension of the DITA framework through the @base attribute. Also, set a high
priority, through the <priority> element, to make sure the framework will be picked in favor of the DITA one.

<script xmlns="http://www.oxygenxml.com/ns/framework/extend"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oxygenxml.com/ns/framework/extend
 http://www.oxygenxml.com/ns/framework/extend/frameworkExtensionScript.xsd"
 base="DITA">
 <name>Custom DITA</name>
 <description>A custom DITA framework.</description>
 <priority>High</priority>
</script>

You need to save the script inside a framework directory (the same place as the *.framework file). For example, if you save
it inside .../custom-frameworks/custom-dita/dita-script.exf, then you need to add .../custom-
frameworks to the Additional frameworks directories list.

Note: Oxygen 23.1 or later will automatically detect the script and load the framework. If you want to use the
framework in an older Oxygen XML Editor version that does not have support for these scripts, you can compile the
script to obtain the *.framework file by using the Compile Framework Extension script action from the contextual
menu or by running the scripts/compileFrameworkScript.bat external tool (available in the All Platforms
distribution only).

Customizing the New Document Templates

The document templates appear when the user invokes the New... action. To add a new template, you need to do the following:

• In the directory where the script is saved, create a new file (e.g. templates/My custom topic.dita). The
content of the file represents the template's content.

• In the script, specify the new template locations by adding this fragment inside the <script> element.

 <documentTemplates inherit="none">
 <addEntry path="${framework}/templates"/>
 </documentTemplates>

https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/new-dialog-sa.html
https://www.oxygenxml.com/doc/ug-editor/topics/new-dialog-sa.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-location.html
https://www.oxygenxml.com/doc/ug-editor/topics/customizing-templates.html?hl=document%2Ctemplates

Blog | 3 - DITA | 139

Note: In the example snippet above, the @inherit attribute is set to not inherit any of the document templates defined in
the base framework.

Changing the Author Mode Rendering With a New CSS File

The author mode is driven by CSS rules. To add new rules, you need to:

• Create a new CSS file in the directory where the script is saved. Give it a name (e.g. css/custom.css) and, for
example, a rule to make titles red:

title {
 color:red;
}

• In the script, specify the path to the new CSS by adding this fragment inside the <script> element.

 <author>
 <css>
 <addCss path="${framework}/css/custom.css"/>
 </css>
 </author>

Removing the Bold, Italic, Underline Actions From the Author Mode

An author action is just a configuration that describes which operation to use depending on the context. Each action has a unique
ID. Suppose that you do not want Bold, Italic, and Underline actions from the built-in DITA framework because their markup is
not semantic. After you inspect the actions preferences and we find out their IDs, you can filter them from all toolbars and menus
by adding this fragment inside the <script> element.

<author>
 <authorActions>
 <removeAction id="bold"/>
 <removeAction id="italic"/>
 <removeAction id="underline"/>
 </authorActions>
 </author>

Adding the Insert Note Action to the Toolbar

The Insert Node action is already defined in the DITA framework, but it is not present on the toolbar. To add it to the toolbar,
you need to:

• Go to Options->Preferences, edit the DITA framework, and search in the Actions tab for the Insert Node action. Make
note of its ID.

• Edit the framework extension script and put the action in the toolbar by adding this fragment inside the <script>
element.

 <author>
 <toolbars>
 <toolbar>
 <addAction id="insert.note" anchor="paragraph"/>
 </toolbar>
 </toolbars>
 </author>

Note: In this example, an action is used that is already present on the toolbar as an anchor. The new action is added to
the toolbar after the action that inserts a paragraph.

Related information
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

https://www.oxygenxml.com/doc/ug-editor/topics/the-action-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-action-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-actions-sub-tab.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

Blog | 3 - DITA | 140

Controlled Attribute Values for your DITA Project

Frequently when editing DITA content you will feel the need to enforce a controlled set of values when editing certain attributes.
For example you may want to impose that the values for the @outputclass attribute on the element codeblock are either
language-xml or language-css. This is useful in order to remind writers that any other value will not be interpreted by the build
process in a significant manner.

Oxygen has a couple of easy ways in which controlled values can be imposed for certain attributes:

1. You can edit the XML configuration file OXYGEN_INSTALL_DIR/frameworks/dita/resources/
cc_value_config.xml and provide additional entries. In the case of our small example for providing controlled values for
the @attribute the configuration file should contain an additional entry:

<match elementName="codeblock" attributeName="outputclass">
 <items action="addIfEmpty">
 <item value="language-xml" annotation="XML Syntax Highlight"/>
 <item value="language-css" annotation="CSS Syntax Highlight"/>
 </items>
</match>

Besides providing a hard-coded list of values the content completion configuration file is flexible enough to allow
calling an XSLT stylesheet which could retrieve those values from other sources (for example via HTTP from an Exist
database).

2. Provide those controlled values via a Subject Scheme Map (my favorite). Coming back to our example, you can create a
small Subject Scheme map with the file name controlledValues.ditamap and the content:

<!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN""map.dtd">
<subjectScheme>
 <subjectHead>
 <subjectHeadMeta>
 <navtitle>Provide controlled attributes</navtitle>
 </subjectHeadMeta>
 </subjectHead>
 <hasInstance>
 <subjectdef keys="languageTypeKey">
 <subjectdef keys="language-xml">
 <topicmeta>
 <navtitle>XML Syntax Highlight</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="language-css">
 <topicmeta>
 <navtitle>CSS Syntax Highlight</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 </hasInstance>
 <enumerationdef>
 <elementdef name="codeblock"/>
 <attributedef name="outputclass"/>
 <subjectdef keyref="languageTypeKey"/>
 </enumerationdef>
</subjectScheme>

then you can refer to it from your main DITA Map like:

<topicref href="controlledValues.ditamap" format="ditamap" type="subjectScheme"/>

3. If the attributes on which you want to impose certain values are DITA profiling attributes, you can go to the Oxygen
Preferences->Editor / Edit modes / Author / Profiling/Conditional Text page and define the set of allowed values for
them.

The only problem with the first approach is the fact that validation will not impose those values and writers will not receive
validation error messages if they set another value for the specific attribute. So you will probably need to add a Schematron check
in order to signal errors when a certain attribute's value does not match the list of controlled attribute values. For both the second
and third approaches, validation will warn the writers if certain attribute values do not match values in the controller values list.

https://www.oxygenxml.com/doc/ug-editor/#topics/configuring-content-completion-proposals.html
https://www.oxygenxml.com/doc/ug-editor/#topics/subject-scheme-map.html
http://docs.oasis-open.org/dita/v1.2/os/spec/archSpec/condproc.html#condproc

Blog | 3 - DITA | 141

Controlled Attribute Values (Part 2 - Advanced)

As already presented in Controlled Attribute Values for your DITA Project (on page 140), Oxygen allows you to add or
replace possible values for attributes or elements based on a simple configuration file. A more complex scenario is one in which
in order to decide which values to provide, you need more context information. Let's take this DITA fragment:

<metadata>
 <othermeta name="name" content="value"/>
</metadata>

What we want is to offer proposals for @@content but the possible values for @@content depend on the value of @@name. We will
see how we can solve this dependency.

Note: Starting with Oxygen 17.1 there is a simpler way to achieve the use case presented in this post. The
contextElementXPathExpression parameter will be bound to an XPath expression that identifies the element in the context of
which the content completion was invoked.

The configuration file

The configuration file (cc_value_config.xml) allows calling an XSLT stylesheet and that's just what we will do:

<match elementName="othermeta" attributeName="content">
 <xslt href="meta.xsl" useCache="false"/>
</match>

As you can see, we can't express the dependency between @@content and @@name inside the configuration file . I also want to
mention that because the values for @@content are dynamic, we want the XSLT script to execute every time the values are
requested (we shouldn't cache the results). We enforce this by setting @@useCache to false.

The XSLT script

The XSLT script has access to the XML document (through the documentSystemID parameter) but it lacks any context
information, we can't really tell for which <othermeta> element was the script invoked. To counter this limitation, we will use
Java extension functions and we will call Oxygen's Java-based API from the XSLT. Here how it looks:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xd="http://www.oxygenxml.com/ns/doc/xsl"
 xmlns:tei="http://www.oxygenxml.com/ns/doc/xsl"
 xmlns:prov="java:ro.sync.exml.workspace.api.PluginWorkspaceProvider"
 xmlns:work="java:ro.sync.exml.workspace.api.PluginWorkspace"
 xmlns:editorAccess="java:ro.sync.exml.workspace.api.editor.WSEditor"
 xmlns:saxon="http://saxon.sf.net/"
 xmlns:textpage="java:ro.sync.exml.workspace.api.editor.page.text.xml.WSXMLTextEditorPage"
 xmlns:authorPage="java:ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPage"
 xmlns:ctrl="java:ro.sync.ecss.extensions.api.AuthorDocumentController"
 exclude-result-prefixes="xs xd"
 version="2.0">
 <xsl:param name="documentSystemID" as="xs:string"/>
 <xsl:template name="start">
 <xsl:variable name="workspace" select="prov:getPluginWorkspace()"/>
 <xsl:variable name="editorAccess" select="work:getEditorAccess($workspace, xs:anyURI($documentSystemID),
 0)"/>
 <xsl:variable name="pageID" as="xs:string" select="editorAccess:getCurrentPageID($editorAccess)"/>
 <xsl:variable name="name" as="xs:string">
 <xsl:choose>
 <xsl:when test="$pageID='Text'">
 <xsl:variable name="textpage" select="editorAccess:getCurrentPage($editorAccess)"/>
 <!-- In the text page, the context is the @content attribute -->
 <xsl:value-of select="textpage:evaluateXPath($textpage, 'xs:string(./parent::node()/@name)')"/>
 </xsl:when>
 <xsl:when test="$pageID='Author'">
 <xsl:variable name="authorPage" select="editorAccess:getCurrentPage($editorAccess)"/>
 <xsl:variable name="caretOffset" select="authorPage:getCaretOffset($authorPage)"/>
 <xsl:variable name="ctrl" select="authorPage:getDocumentController($authorPage)"/>
 <xsl:variable name="contextNode" select="ctrl:getNodeAtOffset($ctrl, $caretOffset)"/>
 <!-- In the author page, the context is the "othermeta" element -->

https://www.oxygenxml.com/doc/ug-editor/topics/configuring-content-completion-proposals.html#configuring-content-completion-proposals__configuring_proposed_values_in_context
https://www.oxygenxml.com/doc/ug-editor/#topics/configuring-content-completion-proposals.html

Blog | 3 - DITA | 142

 <xsl:value-of select="ctrl:evaluateXPath($ctrl, 'xs:string(@name)', $contextNode, false(), false(),
 false(), false())[1]"/>
 </xsl:when>
 </xsl:choose>
 </xsl:variable>
 <items>
 <xsl:choose>
 <xsl:when test="$name = 'temperatureScale'">
 <item value="Celsius" annotation="(symbol C)"/>
 <item value="Fahrenheit" annotation="(symbol F)"/>
 </xsl:when>
 <xsl:when test="$name = 'measurement'">
 <item value="Metric" annotation="Metric system"/>
 <item value="Imperial" annotation="Also known as British Imperial"/>
 </xsl:when>
 </xsl:choose>
 </items>
 </xsl:template>
</xsl:stylesheet>

Converting Subject Scheme Map Values to a DITAVAL

Suppose you already have a Subject Scheme Map in your project and you use it to control attribute values: Controlled Attribute
Values for your DITA Project (on page 140).

In the Oxygen Colors and Styles preferences page, you can also assign various colors and styles to each profiling attribute
(name, value) combination. One option for this is to manually re-add attributes and values in that list. Another option would
be to create an XSLT stylesheet to gather all profiling attribute names and values from the Subject Scheme Map and create a
DITAVAL file. The stylesheet would look like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:output indent="yes"/>
 <xsl:template match="/">
 <val>
 <xsl:for-each select="subjectScheme/enumerationdef">
 <!-- For each attribute name -->
 <xsl:if test="subjectdef/@keyref and attributedef/@name">
 <xsl:variable name="attrName" select="attributedef/@name"/>
 <xsl:variable name="keyref" select="subjectdef/@keyref"/>
 <!-- For each key value -->
 <xsl:for-each select="//*[@keys=$keyref]/*//@keys">
 <xsl:variable name="attributeValue" select="."/>
 <prop action="flag" att="{$attrName}" val="{$attributeValue}"/>
 </xsl:for-each>
 </xsl:if>
 </xsl:for-each>
 </val>
 </xsl:template>
</xsl:stylesheet>

After you obtain the DITAVAL file, you can import it directly in the Colors and Styles preferences page. If the DITAVAL file
has flagging information, that information will be used directly to style each attribute value.

A possibility to enhance this workaround is to specify profiling styles for each attribute value directly in the Subject Scheme map
using the <data> element like:

<subjectdef keys="linux">
 <data name="color" value="yellow"/>
</subjectdef>

in this case the XSLT stylesheet would create the DITAVAL file by picking colors directly from the Subject Scheme Map:

….….…....
<prop action="flag" att="{$attrName}" val="{$attributeValue}">
 <xsl:choose>
 <!-- Here you can also set flagging colors depending on the profiling attribute value -->
 <xsl:when test="data[@name='color']">
 <xsl:attribute name="color" select="data/@value"/>

Blog | 3 - DITA | 143

 </xsl:when>
 </xsl:choose>
</prop>
….….….….

In this way, your Subject Scheme Map will keep both the controlled attribute values and various colors and styles, which can
later be used to create a DITAVAL file and either publish with those styles or import the DITAVAL file in Oxygen to highlight
certain elements with various colors: https://www.oxygenxml.com/demo/Colors_and_Styles_for_Profiled_Content.html.

Converting .xpr Profiling Conditions to Standard DITA Files

Profiling Conditions in the Oxygen .xpr Project File

When we first started using Oxygen and DITA, we defined our profiling conditions in the Oxygen .xpr project file:

• Attribute values were defined in Profiling/Conditional Text > Attributes and Condition Sets > Profiling Attributes:

• Colors were defined in Profiling/Conditional Text > Attributes and Condition Sets > Colors and Styles:

We organized our DITA content into three different Git repositories. The DITA content in each Git repository used different
profiling conditions. But we wanted to share a single .xpr file across all three repositories, so we defined all profiling
conditions in that file.

Storing profiling conditions in a shared .xpr file caused some issues:

• Writers were shown profiling conditions from other repositories that were not relevant to them.

This was okay in the beginning because we did not have many profiling conditions. But over time, the number of
profiling conditions increased as we increased content reuse and converted more content to DITA.

• It was time-consuming to add or update profiling conditions.

https://www.oxygenxml.com/demo/Colors_and_Styles_for_Profiled_Content.html

Blog | 3 - DITA | 144

Writers are not permitted to modify our .xpr file, so I needed to understand and implement each new condition. Then I
had to roll out the updated .xpr file to all three Git repositories (and sometimes to multiple branches in a repository).

• Color definitions could become desynchronized.

Colors were defined in two places—in the .xpr file for the Oxygen UI and in DITAVAL files for transformations—and
I needed to remember to update the colors in both places.

Oxygen supports DITA subject scheme files for defining profiling condition attribute values in a DITA-standard way, so we
started using them. This allowed writers to add or update attribute values, which was a step in the right direction. But I still
needed to update and distribute the corresponding colors in the .xpr file.

When we decided to add a fourth Git repository that required many new profiling conditions, we decided we needed a better
approach. And fortunately the Oxygen v26.0 release saved the day with a solution.

Profiling Conditions in Standard DITA Files

The Oxygen v26.0 release provides a new feature that allows profiling condition colors to be loaded dynamically from
DITAVAL files:

In previous versions, Oxygen could statically import colors from DITAVAL files into the .xpr file, but that did not resolve the
fundamental challenges with a shared .xpr files described above.

With this new feature, Oxygen loads the color definitions directly from the DITAVAL files in the Main Files list when you open
a DITA map or topic.

Now we can define profiling conditions entirely with standard DITA files, with no product-specific information needed in the
.xpr file:

• Attribute values are defined by DITA subject scheme files

• Attribute colors are defined by DITAVAL files, for both editing and publishing

Finally, profiling condition updates are completely self-service for writers! They can freely add or update profiling condition
values or colors as they want.

What Are DITA Subject Scheme Files?

A DITA subject scheme file is a specialized type of DITA map file that can constrain attributes and elements to particular defined
values. It is included as a submap in a DITA content map. In this case, we can use it to constrain profiling attributes.

Subject scheme maps accomplish this task in two steps:

https://www.oxygenxml.com/dita/1.3/specs/archSpec/base/controlled-values-for-attributes.html

Blog | 3 - DITA | 145

• A <subjectdef> element defines a set of values for a subject.

◦ For example, a subject could be a product family, and its values are variants within that product family.

• An <enumerationdef> element binds the values for one or more subjects (products) to the attribute specified by
<attributedef>.

In our environment, we keep a centralized set of value definition files in a "warehouse" folder:

Blog | 3 - DITA | 146

<subjectScheme>

<!-- this is a map-specific <enumerationdef> file that constrains profiling
 conditions to the values defined in one or more <subjectdef> files -->

<schemeref href="../warehouse/subjectdefs-audience.ditamap"/>
<schemeref href="../warehouse/subjectdefs-product.ditamap"/>

<enumerationdef>
<attributedef name="audience"/>
<subjectdef keyref="subjectdefs-audience"/>

</enumerationdef>

<enumerationdef>
<attributedef name="product"/>
<subjectdef keyref="subjectdefs-product"/>

</enumerationdef>

</subjectScheme>

my-map/profiling.ditamap

<subjectScheme>
<subjectdef keys="subjectdefs-audience">

<topicmeta>
<navtitle>@audience values</navtitle>

</topicmeta>

<subjectdef keys="novice">
<topicmeta>

<navtitle>Novice users</navtitle>
</topicmeta>

</subjectdef>

<subjectdef keys="expert">
<topicmeta>

<navtitle>Expert users</navtitle>
</topicmeta>

</subjectdef>

</subjectdef>
</subjectScheme>

warehouse/subjectdefs-audience.ditamap

<map>
...
<mapref href="my-map/profiling.ditamap"/>
...

</map>

my-map.ditamap

<subjectScheme>
<subjectdef keys="subjectdefs-product">

<topicmeta>
<navtitle>@product values</navtitle>

</topicmeta>

<subjectdef keys="A">
<topicmeta>

<navtitle>Product A</navtitle>
</topicmeta>

</subjectdef>

<subjectdef keys="B">
<topicmeta>

<navtitle>Product B</navtitle>
</topicmeta>

</subjectdef>

</subjectdef>
</subjectScheme>

warehouse/subjectdefs-product.ditamap

Reference subject scheme submap

Bind values to attributes
using <enumerationdef>

and <attributedef>

Define values
using <subjectdef>

Define values
using <subjectdef>

Blog | 3 - DITA | 147

DITA subject scheme structures might seem intimidating at first. However, they can be easier to understand when populated with
attributes and values that are familiar to you.

Converting .xpr Profiling Conditions With Refactoring

To make it easier to move from .xpr-defined profiling conditions to standard DITA profiling conditions, I created a refactoring
operation that processes an input .xpr file as follows:

• Converts profiling condition value definitions to DITA subject scheme files

A profiling.ditamap file is created that can be referenced by DITA content maps.

• Converts profiling condition color definitions to a single all_colors.ditaval file

This file can be added to the Main Files list defined in the Oxygen .xpr project file. Although the color definitions
might change over time, the file location does not, and so no changes are needed to the .xpr file.

• Removes the converted value and color definitions from the input .xpr file

You can use the following test case to experiment with this refactoring operation:

converting_xpr_profiling.zip

The oxygen.xpr file in the test case contains profiling conditions that you can convert to DITAVAL and DITA subject
scheme files:

topics/converting_xpr_profiling/converting_xpr_profiling.zip

Blog | 3 - DITA | 148

To try the refactoring operation,

1. (Optional) Create a backup copy of the .xpr file.

The refactoring operation removes converted profiling conditions from the input .xpr file, so you might want to save a
copy of the original file.

2. Open the .xpr file in an Oxygen editing window.

Locate the .xpr file in the Project view, then right-click it and choose Open with > Internal editor. When prompted
for the format, accept the default of XML Document.

3. Run the refactoring operation on the file.

In the editing window, right-click and choose Refactoring > Profiling conditions > Convert .xpr profiling conditions.

4. In the configuration dialog, specify how to perform the conversion:

Blog | 3 - DITA | 149

◦ For Attributes to convert, specify the space-separated list of profiling attributes to convert.

◦ For When writing <subjectScheme> files, specify how to distribute the value definitions (<subjectdef>) and
attribute bindings (<enumerationdef>) across one or more subject scheme files.

For example, if you are using profiling attribute groups (the testcase uses groups for the @product attribute),
having each group defined in its own <subjectdef> file can help different writers track their own changes over
time in Git.

5. Click the Preview button to preview the operation, then complete the refactoring operation.

6. Add the oxygen.xpr-profiling/ folder to the Main Files list.

Right-click the folder in the Project view, then choose Add to Main Files.

7. Configure Oxygen to dynamically load colors from the newly created DITAVAL file.

In Profiling/Conditional Text > Attributes and Condition Sets > Colors and Styles, enable the Automatically apply
colors and styles... checkbox.

The newly created profiling.ditamap file defines all profiling condition values. If a particular DITA map needs only some
conditions, you can create a map-specific copy of the profiling.ditamap file that binds only the values of interest. In our
environment, we use the convention of mapdir/profiling.ditamap, keeping the same "profiling.ditamap" file
name but placing it inside the relevant map content folder.

To create a map-specific copy of profiling.ditamap in the test case,

1. Perform the conversion as described above.

2. Copy the profiling.ditamap file from the oxygen.xpr-profiling/ folder to the my-map/ folder.

3. Open the newly copied my-map/profiling.ditamap file and fix any <schemeref> references to *-
subjectdefs.ditamap files.

This step is only necessary if you configured the refactoring operation to create "two" or "many" <subjectScheme> files.

4. Add a map reference to the map-specific profiling file.

Open the my-map.ditamap file in the DITA Maps Manager, then add a map reference to the my-map/
profiling.ditamap file.

Related information
Controlled Attribute Values for your DITA Project (on page 140)

https://www.oxygenxml.com/doc/ug-editor/topics/dita-profiling-attribute-groups.html

Blog | 3 - DITA | 150

Other

DITA For Small Technical Documentation Teams

There are many cases in which a handful of technical writers in a company need to collaborate on a DITA project and they may
not have the resources to invest in an open source content management system. So this blog post is about setting up a viable, cost
efficient DITA documentation editing and publishing solution which can scale up (both in number of writers and content) using
Oxygen XML Author and Github. As a showcase for the proposed solution we will have the Oxygen XML Blog (on page 5).

Overview of Tools Proposed for the Solution

The following list of tools and application will be used in our solution:

Content Management and Workflow

Github for storing the DITA content.

Github for creating and managing issues.

Editing

Oxygen XML Author for editing the DITA content and for offline publishing.

[Optional] Oxygen Web Author for online editing/reviewing of DITA content.

Review

[Optional] Oxygen Content Fusion for creating review tasks for subject matter experts.

Publishing

Oxygen XML Author for publishing from inside the application.

[Optional] Oxygen Publishing Engine for publishing to PDF and WebHelp DITA content on an integration server.

[Optional] Oxygen WebHelp Feedback engine for embedding feedback forms in the HTML pages.

[Optional] Gradle to script the publishing in preparation for an integration server.

[Optional] Netlify to build and host a web site for the DITA content.

[Optional] Oxygen Validate and Check for Completeness used with a scripting license to check for validation
problems on an integration server.

The same set of tools has been used for editing and publishing the Oxygen XML Blog: Welcome! (on page 5).

Learning DITA

There are various online resources for learning DITA, there are also learning DITA courses held by consulting companies. This
older blog post has some useful links: Resources for learning DITA with Oxygen (on page 8).

Project Storage - Using GitHub

You need a system to:

• Store your DITA content.
• Collaborate with your colleagues on writing content in the same project.
• Allow for reviewers to propose changes without having the right to commit changes.
• Have a history of changes on each DITA resource, being able to revert to previous versions of topics.
• See who changed what content in each DITA topic and map.
• Be able to tag releases so you can build manuals for older releases with some changes applied to them.
• Maintain a list of issues which are closed as your work progresses.

https://github.com/
https://github.com/
https://github.com/
https://www.oxygenxml.com/xml_author.html
https://www.oxygenxml.com/xml_web_author.html
https://www.oxygenxml.com/content_fusion.html
https://www.oxygenxml.com/xml_author.html
https://www.oxygenxml.com/publishing_engine.html
https://www.oxygenxml.com/oxygen_feedback.html
https://gradle.org/
https://www.netlify.com/
https://www.oxygenxml.com/oxygen_scripting.html

Blog | 3 - DITA | 151

Some small teams instead of using a version control system resort to shared network drives. Shared network drives do not
address all the features above and they are dangerous in the fact that you can overwrite other people's work and there is no way to
revert changes.

A free Github account can cover all these use cases listed above. GitHub exposes through a web interface access to a Git
repository. This blog post is not about learning Git, it's about having minimum Git skills to get you started. There is a good book
about learning Git Here: https://www.manning.com/books/learn-git-in-a-month-of-lunches.

We'll outline below some steps to get you started with a GitHub project:

1. Create a GitHub account: https://github.com/join.
2. Create a new public or private repository in the organization for your project.
3. Create an organization: https://github.com/settings/organizations. The organization will be useful to group work-related

projects. For adding private repositories in an organization you will need to switch to a paid plan.
4. Add your team members to the organization. Using the team member GitHub user names you can send them invitations

to be contributors to the project.

Creating and Modifying Content in the Repository

You can create and edit DITA topics in a number of ways:

• Edit topics offline and use GitHub's user interface to upload them, or modify existing topics using GitHub's web
interface.

• Use the Oxygen Web Author to connect to the Git Repository and create a new topic or modify an existing one.
• Clone the repository to the local file system using Oxygen XML Author with the Git Add-on installed.

Using Oxygen XML Author to Create/Modify Content in the Repository

• Install the Git Add-on in Oxygen XML Author.
• Open the Git Staging view and use the + toolbar button to paste the reference to the reference to your project, for

example https://github.com/oxygenxml/blog.
• Choose a location on the local drive where the project will be cloned.
• The Git Staging view does not show all existing resources in the project, it will just show the modified resources, so go

to the Project menu and create a new Oxygen project in the folder where the project was cloned.
• In the Git Staging view the newly created project.xpr should now appear. Select it, use the Stage Selected button

to stage it, then write a commit message and use the Commit message to commit it. Now the file is committed in your
local repository. You can use the toolbar Push button to push it to the GitHub account.

• Create a DITA Map and a couple of topics using Oxygen's Project view.
• Using the same Git Staging view you can see the newly added files, stage, commit and push them to the remote GitHub

repository. You can check on the remote GitHub repository that the files were updated.
• If changes are made by someone else using the same technique or if changes to maps and topics are made directly from

the GitHub web interface or from the Oxygen WebAuthor, the Git Staging view has a Pull toolbar button allowing you
to obtain those changes locally.

• On resources which have been modified a number of times you can right click in the staging area and choose Show
in history to see a history of changes. You can also choose Show blame to see who modified each of the lines in the
document.

Here's a simplified overview of how you could work with Oxygen and Git:

• Every time you start Oxygen or every time before you commit use the Pull toolbar button from the Git Staging view to
get changes locally.

• Stage and commit your changes, then push them to the remote repository.
• If you attempt to pull changes including a file which is already modified locally by you, the pull operation will not

succeed. You will need to copy that file separately, pull the content from the server and then compare your changes to
the ones coming from the server and merge your changes.

https://github.com/
https://www.manning.com/books/learn-git-in-a-month-of-lunches
https://github.com/join
https://github.com/settings/organizations
https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html
https://github.com/oxygenxml/Oxygen-Git-Plugin
https://github.com/oxygenxml/Oxygen-Git-Plugin
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic-2.html

Blog | 3 - DITA | 152

• If you have already committed to your local repository a resource modified also on the remote repository, you have a
conflict, the Git Staging view allows you to edit the conflict, merge the changes locally and then commit to the local
repository and push changes to the server.

• You do not have to pull and push changes from and to the remote repository very often, you can continue working with
your local repository for days and push all changes at the end but not pulling changes from the server often might result
in various conflicts if the same resources are modified both on the server and in your local repository.

Organizing Your Project Structure using the Master Files Support

You can now start to organize your content. The Oxygen user's manual contains a Getting Started guide for DITA editing.

You can right click the Project root and enable main files, then in the Main Files folder add a reference to the main DITA map
(or maps). All refactoring operations (move resources to subfolders, rename topics or resources) will properly update references
in the entire DITA project hierarchy. A minimal DITA project would probably contain:

• One or more main DITA Maps.
• One or more DITA submaps, defining keys for reusable content.
• One or more folders containing reusable DITA elements.
• A folder containing one or more DITAVAL filter files.
• A folder containing images or binary resources.

Overall management of the DITA project

• The Search References contextual menu actions from the DITA Maps Manager and from the main editor allow you to
check where a topic, map or image is being used.

• The Remove from disk action in the DITA Maps Manager view will warn if the removed topic is used in multiple
places.

• Validation errors are issued for references to missing topics or images.
• Move/Rename actions located both in the Oxygen Project and DITA Maps Manager view allow you to move topics/

maps or images and have references to them automatically updated.
• Search for references to IDs or rename IDs in the entire project.
• The Find unreferenced resources contextual menu action in the DITA Maps Manager allows you to find orphan topics

or other resources (images, etc).
• You can define profiling condition sets and use them to see in the editing area what content is filtered, then use the same

profiling condition sets for publishing.
• The Open/Find Resource side view allows you to locate files by content.
• The change tracking support in Oxygen allows you to make changes with change tracking or to add or reply to existing

comments.

You can find out more DITA editing tips in the DITA Editing Tips And Tricks blog (on page 171).

Sharing Common Settings using the Project

The Oxygen project configuration can save various sets of global options at project level. As an example:

• Go to the Oxygen Preferences->Editor / Spell Check page and change the radio button at the bottom to Project
Options. Then check the Automatic spell check checkbox.

• The Git Staging view should have a modified version of the XPR showing as modified, stage, commit and push it.
• Now everybody using the same project.xpr project file loaded in Oxygen will have spell check enabled.

Other useful settings you could switch to Project Options:

• The Project Level Settings preferences dialog allows you to control if various settings are saved at project or global
level. For example you can save the Validate and check for completeness settings at project level and share them with
others.

• The Editor / Spell Check / Dictionaries preferences page can contain your own set of dictionary terms.

https://github.com/oxygenxml/dita-project-best-practices
https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/spell-dictionary-Hunspell.html

Blog | 3 - DITA | 153

• The Document Templates preferences page allows you to use your own custom new file templates.
• In the Editor / Save preferences you can save at project level various save options.
• Switching the Menu Shortcut Keys preferences page to project level allows you to share with others custom menu

shortcut keys.

You can use the ${pd} editor variable to refer to resources located in the current project folder. You can read more about editor
variables here (on page 292).

Manual Publishing

You can open DITA Maps in the application DITA Maps Manager view and publish them to various outputs using the
Configure Transformation Scenarios toolbar button. A transformation scenario can also specify a DITAVAL filter, parameters
and can be saved at project level. The published content can be later uploaded to a web server.

For WebHelp output you can create a publishing template containing custom CSSs, headers, footers and logos. The publishing
template can be saved in the project and referenced from the transformation scenario.

For the PDF output the same publishing template can be used. To build your custom CSS you can use the Oxygen Styles Basket
online CSS-builder.

If you are publishing multiple DITA Maps or you have multiple filters or multiple deliverable formats you may want to create
a DITA Open Toolkit project file: https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html. A sample
DITA OT project file can be found in the Oxygen XML Blog project on GitHub.

Working with Branches

You may need to mark releases of your product and also to be able to contribute small fixes to those releases. So here's how you
work with branches:

• The default branch in the project is called master and this is the branch we've been working until now.
• Using GitHub's web interface you can create your own branch.
• Check out again in the Git Staging view the project, this time with the separate branch in a separate folder.
• Open the project.xpr from that branch's checkout, make changes to the content there, stage, commit and push as

usual.

Establishing a Workflow

You can use the GitHub issues list for your project to create new issues. You can attach files to the issue, assign the issue,
discuss with other participants, register to watch particular issues. Once a commit is made with a particular #issue_number, the
issue will get an automatic link pointing to the commit.

Inside an organization or inside a repository you can create project boards. A project board can define states for your issues.
When an issue is opened it can be assigned to a certain project board. It can also be assigned various labels. Issues can also be
assigned to various people in your team.

Oxygen's change tracking support allows you to insert or delete content with change tracking or to make comments on content.
The Web Author online editing tool allows you to also make changes with change tracking.

The Oxygen Content Fusion add-on allows you to create review tasks and to allow subject matter experts to give you feedback on
DITA content directly from a web browser.

Adding Custom Validation Checks to the Project

There are a couple of ways in which you can add custom validation checks to your project:

https://www.oxygenxml.com/doc/ug-editor/topics/whr-create-publishing-template-x.html
https://styles.oxygenxml.com/
https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html
https://github.com/oxygenxml/blog/blob/master/blog-project.xml
https://help.github.com/en/github/managing-your-work-on-github/about-project-boards
https://www.oxygenxml.com/doc/ug-editor/topics/author-managing-changes.html
https://www.oxygenxml.com/content_fusion.html

Blog | 3 - DITA | 154

• You can create a custom Schematron schema containing custom validation rules: Sharing Schematron Validation Rules
(on page 262).

• The Validate and Check For Completion action from the DITA Maps Manager view contains various settings which
can be saved at project level. In the Preferences->Project Level Settings page there is a Save DITA Map validate and
check for completeness settings at project level checkbox.

• You can also add terminology checking in the application: Checking Terminology with Oxygen XML Editor (on page
286).

• In GitHub projects you can configure custom actions and run validate and check for completeness with a special
scripting license on pull requests. An example for such a validation action is in the Oxygen XML Blog: https://
github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml. The validation runs on any opened pull
request: https://github.com/oxygenxml/blog/pull/25.

Adding Custom Actions

You can use a framework customization saved at project level to add custom actions which can be used in the Author visual
editing mode and can be mounted in the toolbar, menus and the content completion window: Implementing a Custom Author
Action to Split a Table (on page 267).

Dynamic Publishing using an Integration Server

Using a bit of scripting you can publish the modified content on the fly with either using free online services like Netlify or
Travis or using an internal Jenkins server. The Oxygen XML Blog (on page 5) is an example for this. It has a Gradle script which
is run as part of a Netlify account whenever changes are made to the topics.

Translating your content

The Oxygen Translation Package Builder add-on allows you to find the changed resources in a DITA project and then to pack
those changed resources and send them for translation. It also helps with integrating the received translation in the project. This
blog post (on page 176) has more details and useful links about translating DITA projects.

Related information
Webinar: Using DITA for Small Technical Documentation Teams

Using Git For Technical Writing

The Git version control system is a feasible solution for working and collaborating on technical documentation projects
regardless of their scale and number of resources.

In this blog post, we'll look into why technical writers should use Git and how various technical writing workflows can be
accomplished using the Git distributed version control system.

Definition of Git taken from Wikipedia:

"Git is a distributed version control system that tracks changes in any set of computer files, usually used for coordinating work
among programmers collaboratively developing source code during software development. Its goals include speed, data integrity,
and support for distributed, non-linear workflows (thousands of parallel branches running on different systems). (wiki)."

So, since Git was originally intended for developers, why did technical writers start using it and why is it a good idea for
technical writers to use it?

The following small articles cover various aspects of a technical documentation solution using Git:

• Advantages of Using Git (on page 155)
• Disadvantages of Using Git (on page 155)
• Useful Resources (on page 156)
• Applications for Working with Git (on page 156)
• Typical Editing Session (on page 157)
• Validation (on page 159)
• Common Workflows (on page 160)

https://www.oxygenxml.com/oxygen_scripting.html
https://www.oxygenxml.com/oxygen_scripting.html
https://github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml
https://github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml
https://github.com/oxygenxml/blog/pull/25
https://github.com/oxygenxml/oxygen-dita-translation-package-builder
https://www.oxygenxml.com/events/2020/webinar_using_dita_for_small_technical_documentation_teams.html

Blog | 3 - DITA | 155

• Propose Changes (on page 166)
• Handling Translations (on page 167)
• Sharing Common Settings (on page 167)
• Publishing Content From Git (on page 168)

Advantages of Using Git

• Git as a version control system is present in most software development companies. In my opinion, knowing Git is a nice
asset for any technical documentation writer to have in their resume.

• Free and stable system, used by many, with relatively few bugs, has available tutorials, documentation, easy access to
people who might help with Git-related questions.

• Version control:
◦ History of changes made to a project.
◦ Ability to revert to previous changes and to see who made certain changes.

• Collaborate on the same project with support to:
◦ Check out.
◦ Update.
◦ Commit/Revert changes.
◦ Resolve conflicts.

• Support for branching (branches used for versioning the documentation or for working on larger features) and for
merging between branches.

• Support for working on your own repository even without online access and then to merge changes in the remote
repository when the online connection is available.

• Collaborate with other teams in the same company on projects, either by having the documentation as part of the larger
Git repository of the product, or by allowing developers who know Git to contribute reviews.

• Support for creating pull requests for people who might not have write access or want to have their work reviewed.

Related information
https://www.atlassian.com/git/tutorials/why-git

Disadvantages of Using Git

• No built-in support for a ticketing system.

Tip: This support is added on the side either by using a commercial ticketing system (such as JIRA) or by using
Git-based servers (such as GitHub or GitLab), which have their own basic ways of adding and closing issues.

• No built-in support for publishing.

Tip: Publishing pipelines need to be built separately.

• No way to lock resources when editing to avoid conflicts.

Tip: However, there are ways to easily resolve most conflicts.

• Mistakes can be made when using Git.

Tip: Usually mistakes made that break the Git history or project structure can be reverted, or you can check out
the entire project again.

https://www.atlassian.com/git/tutorials/why-git

Blog | 3 - DITA | 156

• Some training is required to use and understand the branching and history models in Git. Ideally, you should have a Git
person who understands how to resolve conflicts, revert and cherry-pick commits, and in general, recover from any Git
issues or at least who is willing to invest some time in understanding the Git model.

Tip: Such training tutorials and courses are readily available.

• Native Git is inefficient when asked to store large binary files (videos) or large numbers of binary files (images, PDFs)
because every revision of every file is stored locally.

• No granular support for user roles. Users usually either have full read-write access to a repository or read-only access.

Tip: When using GitHub or GitLab, users with read-only access to a repository can still create pull requests
with the changes they want to incorporate into the main repository.

Related information
https://www.atlassian.com/git/tutorials/why-git

Useful Resources

Learning Git

• Git Basics tutorial by Atlassian.
• The Pro Git Book.
• Learn Git Braching Interactive Tutorial.
• Lots of courses about learning Git on Udemy.

Workflows and Collaboration

• DITA For Small Technical Documentation Teams (on page 150)
• Docs as Code:

◦ GitLab Docs As Code blog post
◦ Docs as Code blog post
◦ Write the Docs - Docs as code blog post

• Git Workflows
• Tactical Git - Micro Commits

Applications for Working with Git

Server-side solutions

• GitHub (either online or on-premise).
• GitLab (either online or on-premise).

Both of these solutions come with:

• Support for creating and managing private/public repositories.
• Basic support for creating and handling tickets/issues.
• Support for creating pull/merge requests.

Client-side applications

There are lots of free client-side applications that can be used to work with Git repositories:

https://www.atlassian.com/git/tutorials/why-git
https://www.atlassian.com/git
https://git-scm.com/book/en/v2
https://learngitbranching.js.org/
https://www.udemy.com/topic/git/
https://about.gitlab.com/blog/2022/10/12/five-fast-facts-about-docs-as-code-at-gitlab/
https://betterprogramming.pub/solution-architecture-docs-as-code-366a7b40f9e5
https://www.writethedocs.org/guide/docs-as-code/
https://www.atlassian.com/git/tutorials/comparing-workflows
https://stackoverflow.blog/2022/12/19/use-git-tactically/
https://github.com/
https://about.gitlab.com/

Blog | 3 - DITA | 157

• Git Fork
• Git Tower
• SourceTree
• GitHub Desktop
• Git console
• Git Client add-on in Oxygen XML Editor
• Web-based clients like Oxygen Web Author

Typical Editing Session

Usually, an editing session has the following stages that are repeated throughout the day:

• Clone/Checkout Branch From Remote Repository - Checkout a branch from the remote repository on which you want
to work. Usually done only once.

• Edit Content - The project is edited and modified in the current working copy.
• Commit Content - Commit the changes to the local working copy.
• Pull Content From Remote Repository - Obtain the latest content for the edited project branch.

https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.oxygenxml.com/xml_web_author.html

Blog | 3 - DITA | 158

• Push Content To Remote Repository - From time to time, push the commits to the remote repository so that others can
use them as well. You must always pull content from the repository before pushing to it, otherwise the pull will fail.

•

Commit Message

Each commit has a commit message. The commit message is in general a brief description of the changes. When using a ticketing
system, as a best practice the commit message contains the ID of the ticket.

Micro Commits

Commit often, whenever a small change in the documentation is beneficial and makes sense by itself. Useful links: https://
stackoverflow.blog/2022/12/19/use-git-tactically/

Handling Simple Conflicts

Conflicts are usually caused by trying to push changes made to resources that, in the meantime, have been modified by others on
the remote repository. Conflicts normally occur when working with Git, they can be resolved and they are not a sign that anyone
did anything wrong.

https://stackoverflow.blog/2022/12/19/use-git-tactically/
https://stackoverflow.blog/2022/12/19/use-git-tactically/

Blog | 3 - DITA | 159

• If changes are made to text files on different lines, the conflicts are automatically merged.

• If the conflicting changes are on the same lines, you can resolve the conflict.

The conflict can be resolved by keeping your version, or the version of the remote collaborator, or by manual merging:

Validation

DITA XML content needs to be validated against the DITA schemas and possibly with additional business rules (usually
implemented using Schematron checks). There are various ways to ensure the proposed content changes are valid:

• Validate the entire DITA project on the server side (on page 154). Examples:
◦ Run validation on an integration server like Jenkins.
◦ Run validation as a GitHub action.

Blog | 3 - DITA | 160

• Validate on the client side before committing or pushing changes. For example, the Oxygen Git Client add-on allows two
types of client side validation:

◦ Validate modified resources before committing.
◦ Validate the entire DITA project before pushing.

Common Workflows

Workflows are recipes for working and collaborating successfully on a Git project.

Common workflows for working with Git:

• Centralized Workflow (on page 160)
• Feature Branches (on page 161)
• Release Branches (on page 162)
• GitFlow (on page 166)

Centralized Workflow

We all work with the same project(s) on the main repository branch. We have separate branches which mark past releases.
Both for small bug fixes and for features which may take a longer time to implement, we work on the main branch. https://
www.atlassian.com/git/tutorials/comparing-workflows

Common workflow:

• Check in the project (one time operation).
• Pull to get changes from the main repository.
• Commit and push changes.
• Deal with possible conflicts which may appear.
• Request review either before commit or after the change was incorporated in the main branch.

Workflow for updating documentation for a past release:

• Switch to branch specific for that release.
• Pull to get changes from the main repository.
• Commit and push changes.
• Deal with possible conflicts which may appear.

https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html#git-addon__section_lvb_pqy_kpb
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows
https://www.atlassian.com/git/tutorials/comparing-workflows

Blog | 3 - DITA | 161

Cherry Pick

Pick a commit from another branch and incorporate it. Useful to take small fixes for a version branch and add them to the main
branch.

https://www.atlassian.com/git/tutorials/cherry-pick

Feature Branches

We work on the smaller fixes on the main branch, we create separate branches for larger features/fixes. We also create separate
branches for past released versions of the documentation in order to add small fixes and be able to re-publish documentation for
them.

• Create a branch on which you work on a larger feature either by yourself or with some other colleagues.
• You can also request review on the branch.
• When finished, merge the branch in the main repository branch or create a pull request to merge the branch.

Related information
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://betterprogramming.pub/solution-architecture-docs-as-code-366a7b40f9e5

Branches For All Changes

We create branches for any change, either for large features or small fixes. We also create branches for past released versions of
the documentation in order to be able to add small fixes and re-publish documentation for a specific past version.

https://www.atlassian.com/git/tutorials/cherry-pick
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://betterprogramming.pub/solution-architecture-docs-as-code-366a7b40f9e5

Blog | 3 - DITA | 162

• Create a branch on which you work to fix small problems or to work on a larger feature either by yourself or with some
other colleagues.

• You can also request review on the branch.
• When finished, merge the branch in the main repository branch or create a pull request to merge the branch.

Release Branches

My name is Chris Papademetrious and I work for Synopsys Inc., a semicoductor design automation software company. I am an
occasional guest contributor to the Oxygen XML blog, and I wanted to share how we use Git.

Our team writes documentation for many different products. And for the most part, all products follow a common software and
documentation release schedule (every three months). Our technical writers are knowledgeable on the products they write for, but
they tend to be novices with Git.

Our Attempt at the Centralized Workflow

When we first adopted DITA and Git, we used the centralized workflow. However, we ran into issues when a particular product
group needed to delay their release schedule. When the rest of the group began working on the next release in the main branch,
the delayed group could not stay in the main branch because then "last-release" and "next-release" content would get mixed and
there was no single point where the main branch represented the final release state. And so in these cases, we had to fork a release
branch off the main branch and move the delayed product writers there. (And sometimes writers would keep working in the main
branch out of inertia, and so the main branch content would get mixed up anyway...)

Blog | 3 - DITA | 163

We considered using the feature branch workflow. However, this would require writers to be responsible for branch actions
(forking feature branches and submitting pull requests), which they had never done before. Many products have multiple writers,
which would require those feature branches to be synchronized on the server for collaboration. Some products have 40+ features
in a release cycle, and our past experiences told us that writers could sometimes forget to switch branches. And so we decided not
to use this workflow.

We needed a workflow in which a writer could simply continue to write for a release and not worry about switching branches
until the release was done—regardless of whether their product finished its release early or late. So, we moved to a release
branch workflow.

The Release Branch Workflow

In our release branch workflow, we create a branch for each release, named by the scheduled release date. A writer can work in
a release branch as long as they like, and they can move to the next release branch whenever they are ready. If a feature requires
collaboration by multiple writers, they can collaborate in that release branch.

The key feature of our release branch workflow is the cascaded release merge. Each week, we merge new commit activity
forward from earlier release branches to later release branches. If a branch has no new commit activity since the last merge, no
merge is performed from it.

In the preceding diagram, the release1 branch is completed and quiet. Product writers are finishing work in the release2 branch
and moving to the release3 branch. Their work in the release2 branch is automatically propagated to release3. At some point, a
product team finds that a retroactive documentation fix is needed for a feature in the release1 branch. This fix is automatically
propagated forward into the release2 and release3 branches.

In this workflow, the writer must remember only to check out the next release branch after they complete their current release.
And this is a notable enough accomplishment that they tend to remember to do this.

Blog | 3 - DITA | 164

However, writers can work in multiple release branches if they want to. Most products have major releases on every third release
interval. In this case, writers can make minor typo fixes and rewordings in the next minor release branch, but get an early start
on feature documentation in the next major release branch. (Although in this case, the writers must be diligent again about
remembering to switch branches!)

For the most part, writers don't need to worry about the logistics of the release merges. However, there are some cases in which
they do need to be aware of them. For example,

• If a writer writes content for one release and wants to incrementally modify that content for the next release, they must
wait for the merge to propagate the work forward to the next branch to be able to continue work on it.

• If a writer wants to add content that should not propagate forward to subsequent releases (such as a temporary bug or
limitation that is fixed in the next release), then they add content to the earlier release, wait for a merge, then remove it in
the next release.

In these cases, the writers can ask me to run a merge manually so they do not have to wait.

The Branch-Merging Perl Script

The release branch merge is performed by a perl script called merge_repo.pl. The usage is as follows:

$ merge_repo.pl --help
Usage:
 --dry-run
 Do not actually commit any changes
 --starting-at branch_name
 Start merging at this branching (merging from previous branch)

The script uses the command-line git client to perform its work. One notable requirement is that the script needs a local
repository to perform its merging work in. The script automatically fetches and pulls all remote updates, creating new local
branches and deleting local branches that no longer have matching remote branches as needed.

The script obtains the chronological list of release branches by querying and sorting all branches that match release/* - there is
no need to update any branch list text files or databases as new release branches are created.

Here is an example of its output:

$ merge_repo.pl
Checking for commits to merge from 'release/2022.09' to 'release/2022.12'...
Merging 1 commits from 'release/2022.09' to 'release/2022.12'...
Pushing merge to 'release/2022.12' upstream...
Merge from 'release/2022.09' to 'release/2022.12' succeeded.

Checking for commits to merge from 'release/2022.12' to 'release/2023.03'...
Merging 4 commits from 'release/2022.12' to 'release/2023.03'...
Pushing merge to 'release/2023.03' upstream...
Merge from 'release/2022.12' to 'release/2023.03' succeeded.

Checking for commits to merge from 'release/2023.03' to 'release/2023.06'...
Merging 8 commits from 'release/2023.03' to 'release/2023.06'...
Pushing merge to 'release/2023.06' upstream...
Merge from 'release/2023.03' to 'release/2023.06' succeeded.

Here is the resulting commit graph as shown on the Gitlab server web page, from the previous merge to the just-completed
merge:

Blog | 3 - DITA | 165

As mentioned earlier, no matter how many "earlier" branches exist, no forward merge is performed from a branch unless it
contains new activity since the last merge.

If a release merge result cannot be pushed (perhaps because a writer just pushed something new to the server), the script abort its
current merge, updates its local repository, and retries the merge.

If the script encounters a merge conflict, it prints information to STDERR about how to manually reproduce and resolve the
conflict, then continue the merge:

$ merge_repo.pl
Checking for commits to merge from 'release/2022.09' to 'release/2022.12'...
Merging 1 commits from 'release/2022.09' to 'release/2022.12'...
Pushing merge to 'release/2022.12' upstream...
Merge from 'release/2022.09' to 'release/2022.12' succeeded.

Checking for commits to merge from 'release/2022.12' to 'release/2023.03'...
Merging 4 commits from 'release/2022.12' to 'release/2023.03'...
Merge from 'release/2022.12' to 'release/2023.03' failed:
Auto-merging some_topic.dita
CONFLICT (content): Merge conflict in some_topic.dita
Automatic merge failed; fix conflicts and then commit the result.
some_topic.dita:21: leftover conflict marker
some_topic.dita:24: leftover conflict marker
some_topic.dita:25: leftover conflict marker
some_topic.dita:27: leftover conflict marker

Perform the following commands manually:

git checkout release/2023.03
git merge release/2022.12
...resolve conflict...
git push
merge_repo.pl --starting-at release/2023.06

Blog | 3 - DITA | 166

The script runs every Wednesday as a cron job. For conflicts or other errors (like server downtime), the resulting output to
STDERR causes cron to email the command output to the script owner (in this case, me). Thanks to this behavior of cron, the
script operates quietly unless attention is needed.

GitFlow

Gitflow is a legacy Git workflow that was originally a disruptive and novel strategy for managing Git branches.

The main branch holds the official content which will be released, we mostly commit small fixes on a development branch and
use feature branches based on it.

Related information
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Propose Changes

Besides the team of technical writers who have full write access to the documentation repositories, there may be other
collaborators (e.g. subject matter experts) who have read access to the repository and sometimes want to propose changes.

The workflow for proposing changes to a repository usually works like this:

• The collaborator creates a branch of the project on which they make changes and add comments.
• The branch is integrated back into the main project branch by the technical writer.

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

Blog | 3 - DITA | 167

Git Servers like GitHub or GitLab may add some extra functionality to help technical writers review and accept changes.

Related information
Pull Requests

Handling Translations

Some useful advice for translating a DITA XML-based project can be found here: Translating your DITA Project (on page
176).

The translated DITA content can also be stored on Git:

• Keep the translation for each language in a separate folder in the same Git project. As a benefit, binary resources can be
shared between projects.

• Keep a separate parallel project with all the translations.

Sharing Common Settings

It makes sense to share various common editing settings when working on a common Git project:

• Spell check dictionaries and learned words.
• Checking Terminology (on page 286).
• Actions and behaviors for editing content (on page 269).
• Custom validation and quick fixes (on page 178).
• Publishing templates.

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-pull-requests

Blog | 3 - DITA | 168

There are various ways to share these custom editing settings between the people who collaborate on the same Git projects:

• Use a web editing tool to edit the Git content directly in a web browser with all settings being common in the tool.
Example: Oxygen XML Web Author Git connector.

• Manually share a common set of settings.
• Share the common settings directly in the Git project. Example: DITA Startup Project. When an Oxygen project that

contains settings is distributed in a Git project, writers automatically get the latest updates to the Oxygen environment
without any work on their part.

Publishing Content From Git

There are two main ways to publish:

• Publish on the client side using the local Git repository and then manually upload the published content to a web server.
• Publish by connecting an integration server to the Git project. For example, for publishing DITA XML content to PDF,

you can create a Jenkins or Travis job or run it from a command line. For each version branch, a separate server-side job
could be created to run when the content is modified on that branch.

Supporting the DITA OT Project as a Commercial Company

Overview

This small article is about the relationship between our company, Syncro Soft (which produces the Oxygen XML tools), and the
open source DITA Open Toolkit project.

As a commercial company using the DITA Open Toolkit in multiple projects, we try to base this relationship on:

• Give and take
• Respect
• Growth

but as in any relationship, there is probably always room for improvement.

History and Context

We started integrating the DITA Open Toolkit into Oxygen about 14 years ago, some time around 2008 in Oxygen XML Editor
version 10. The DITA Open Toolkit remains a very important part of the DITA XML editing and publishing solution provided by
us.

Currently, we are using the DITA Open Toolkit as a publishing component in our Oxygen Publishing Engine in multiple
projects:

• Oxygen Publishing Engine (based on the DITA OT)
• Oxygen XML Editor
• Oxygen XML Author
• Oxygen XML Developer

and there will probably be more to come in the future.

Implementing Plugins for the DITA Open Toolkit

During these years, we've implemented a number of commercial plugins for the DITA Open Toolkit, plugins bundled in the
Oxygen Publishing Engine:

• DITA to WebHelp Responsive
• DITA to PDF (using CSS for styling)

https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html
https://github.com/oxygenxml/DITA-Startup-Project
https://www.oxygenxml.com/doc/ug-editor/topics/dcpp_generating_pdf_output.html
https://www.dita-ot.org/
https://www.oxygenxml.com/publishing_engine.html

Blog | 3 - DITA | 169

• DITA to Zendesk
• CodeBlock Syntax Highlight

We also created a considerable number of open-source DITA Open Toolkit plugins (about 23) available on the Oxygen GitHub
organization, with some of the most popular ones being:

• DITA Metrics Report
• Export DITA Map
• DITA Media Support
• DITA PDF Track Changes
• Embed PlantUML and Mermaid diagrams
• Embed Latex Equations

These open-source plugins are useful both for their original purpose but also as sample plugins for people wanting to implement
something similar. We try to maintain the open-source plugins (as time allows) and answer any questions related to them.

Helping with Publishing-related Questions

There are various channels where people ask questions about DITA OT publishing:

• DITA Users List (about 1000 answers and replies so far)
• DITA OT Users Google Group
• DITA OT Discussions List
• DITA OT Slack Channel
• Stack Overflow (about 80 answers so far)

There are also Oxygen-specific channels:

• Oxygen XML Forum (2328 DITA editing/publishing related topics so far)
• Oxygen Users List

As time allows, we try to help people with DITA Open Toolkit-related questions on these channels.

DITA Open Toolkit Publishing-related Articles

The Oxygen XML Blog has more than 20 DITA Open Toolkit publishing related articles.

Registering and Analyzing Issues, Opening Pull Requests

Our general procedure when encountering DITA Open Toolkit bugs is to:

• Open issues for them on the DITA Open Toolkit list.
• If possible find time to analyse the issues.
• Propose workarounds or fixes.

We are possibly the biggest contributor of bug and improvement requests to the DITA Open Toolkit. Most of these bugs and
improvements are discovered by our end users and added by us on the DITA OT issues list. During these years we've opened
more than 400 issues on the DITA Open Toolkit project.

In the last few years, we became a major contributor of pull requests that contain bug fixes (more than 70 contributed pull
requests so far).

Contributing with Improvement Ideas to the DITA Open Toolkit Project

During these years, we contributed improvement ideas to the DITA Open Toolkit and were involved in the process where they
were implemented. Here are some improvement ideas in which we were involved:

https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://github.com/search?q=topic%3Adita-ot-plugin+org%3Aoxygenxml&type=Repositories
https://www.dita-ot.org/contributing
https://dita-users.groups.io/g/main
https://groups.google.com/g/dita-ot-users
https://github.com/dita-ot/dita-ot/discussions
http://slack.dita-ot.org/
https://stackoverflow.com/questions/tagged/dita-ot
https://www.oxygenxml.com/forum/dita-editing-and-publishing-dita-content/
https://www.oxygenxml.com/mailinglists.html
https://blog.oxygenxml.com
https://blog.oxygenxml.com/search.html?searchQuery=label_DITA_Publishing_Customization
https://github.com/dita-ot/dita-ot/issues/created_by/raducoravu
https://github.com/dita-ot/dita-ot/pulls?q=is%3Apr+is%3Aclosed+author%3Araducoravu
https://github.com/dita-ot/dita-ot/pulls?q=is%3Apr+is%3Aclosed+author%3Araducoravu

Blog | 3 - DITA | 170

• The DITA Open Toolkit Project file.
• Metadata to specify parameter names, descriptions, and default values in the plugin descriptor files.
• Processing RelaxNG-based DITA Maps and topics.

Contributions to the DITA Open Toolkit Documentation

The DITA Open Toolkit documentation has relevant content for people who want to get started using and customizing the DITA
Open Toolkit. We frequently help our users by giving them links to the DITA OT documentation.

When necessary, we contribute issues on the DITA Open Toolkit documentation issues list: https://github.com/dita-ot/docs. I
contributed to the DITA OT Docs project about 20 issues so far.

The DITA Open Toolkit Day

We started hosting and sponsoring the DITA Open Toolkit Day about 8 years ago, back in 2014, as a way to bring the
community of plugin/customization developers together with the main contributors to the DITA OT project. The DITA OT Day
is also a means to celebrate the work of the main DITA OT contributors. Recordings for all videos from past DITA OT Day
events can be found here: https://www.dita-ot.org/dev/topics/dita-ot-day-videos.html.

DITA Map Metrics Evolution

The DITA Map Metrics Report transformation scenario available in Oxygen can be applied on a DITA Map and produce all
kinds of interesting metrics for your DITA project:

• The number of processed maps and topics.
• Content reuse percentage.
• Number of elements, attributes, words, and characters used in the entire DITAmap structure.
• DITA conditional processing attributes used in the DITA maps.
• Processing instructions.
• External links.
• All @outputclass attribute values gathered from the DITA project.

There is also an open source DITA Open Toolkit plugin on the Oxygen XML GitHub organization which can be used to generate
a metrics report either in HTML or XML format.

If you generate metrics for various stages in the history of your DITA project (for example for various releases) you can combine
those metrics and generate graphs which can show various indicators like:

• Fluctuations in number of topics and maps.
• Fluctuations in content reuse.

Metrics reports and metrics evolution reports are useful to get an overview of a DITA-based documentation project and to discuss
its future directions. They are also useful indicators to discuss with management.

Here are some steps to generate a metrics evolution report for a DITA project hosted on a Git server:

1. Install this DITA Open Toolkit plugin which can publish DITA tables as SVG graphs: https://github.com/oxygenxml/
dita-table-svg.

2. Install the DITA Metrics report plugin in your DITA Open Toolkit installation (if not yet installed): https://github.com/
oxygenxml/dita-ot-metrics.

3. Switch your Git project to various tagged versions, after each switch apply the metrics-report-xml transformation type
on the DITA Map and generate an XML file representing the metrics for that particular version. As an example I created
4 metrics reports for 4 previous Oxygen XML User's Guide versions: https://github.com/oxygenxml/dita-ot-metrics/tree/
master/evolution/samples.

https://www.dita-ot.org/dev/
https://github.com/dita-ot/docs
https://github.com/dita-ot/docs/issues/created_by/raducoravu
https://www.dita-ot.org/dev/topics/dita-ot-day-videos.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-dita-map-transformation-scenarios.html
https://github.com/oxygenxml/dita-ot-metrics
https://github.com/oxygenxml/dita-table-svg
https://github.com/oxygenxml/dita-table-svg
https://github.com/oxygenxml/dita-ot-metrics
https://github.com/oxygenxml/dita-ot-metrics
https://github.com/oxygenxml/dita-ot-metrics/tree/master/evolution/samples
https://github.com/oxygenxml/dita-ot-metrics/tree/master/evolution/samples

Blog | 3 - DITA | 171

4. Apply the provided XSLT stylesheet to generate a DITA topic containing tables which show how various indicators
change between versions.

5. Apply the DITA to HTML5 transformation on the topic to create an HTML document showing the evolution of
different indicators as a graph.

Oxygen XML Editor DITA Editing solution strong points.

We are sometimes asked which are the differentiating features between Oxygen XML Editor and its competitors when it comes
to DITA Editing. So below I tried to list some differentiating features (strong points) that Oxygen has:

• User based license which allows somebody to install Oxygen on multiple computers (work computer, home computer) as
long as they are the only ones using it: https://www.oxygenxml.com/eula.html.

• Transparent pricing, prices are available on the web site: https://www.oxygenxml.com/buy.html.
• Great technical support. You can ask us questions via email or via the forum.
• Cross platform availability. Being able to run Oxygen on Windows, Mac or Linux.
• Complete DITA Editing support: (on page 56)

◦ Lots of pre-defined actions to insert reusable content, images, links, videos.
◦ DITA-specific helper views (DITA Maps Manager, DITA Reusable Components)
◦ Support to customize the editing environment: add custom actions, remove current actions, customize content

completion items, create custom validation or transformation scenarios.
◦ Powerful publishing solution for producing responsive WebHelp and PDF using CSS to style the output.
◦ Publishing to output formats like Windows Help (CHM), Ms Word, EPUB, Eclipse Help included.
◦ Lots of commercial DITA CMSs have integrations with Oxygen.

• Support for change tracking and for adding comments in the editor along with a special Review view to review changes:
https://www.oxygenxml.com/doc/ug-editor/topics/author-managing-changes.html

• Support to add third party plugins and enhance Oxygen's functionality. And lots of free add-ons already available to add
support for Git integration, DITA translations and Batch conversions from various formats to DITA.

• Support to add custom validation rules based on your internal style guide. The rules can be implemented using the
Schematron standard and you can also add quick fixes for them: Schematron Checks to help Technical Writing (on page
178).

• Support to send DITA content to reviewers using the Content Fusion add-on.

DITA Oriented Tips And Tricks

Oxygen XML Editor has about 18 years of development under its wings. During these years, we added lots of functionality and
many of our users usually do not know more than 20-30% of Oxygen's features. So this presentation is intended for technical
writers using Oxygen to write DITA content and who may want to find out more about their tool.

Add-ons

There are lots of free add-ons provided by the Oxygen team that can be installed in an Oxygen standalone version. I will
enumerate some of the most interesting one:

• Git add-on. This plugin adds a side view allowing you to do some common Git operations like pull, commit, push
(mostly 90% of what a regular Git user would do).

• Content Fusion Connector add-on. Collaborate with your peers by sending them links that allow them to give you
feedback on your work using a web browser without the need to pre-install anything on their side.

• Translation package builder. Small plugin that can be used to prepare a zip file containing only the topics that have
changed from one version to another.

• Batch convertor add-on. Converts multiple HTML, Markdown, Excel files to DITA.

Project-related Functionality:

The Oxygen Project view is the place where you can organize and apply batch changes to all your DITA resources:

https://github.com/oxygenxml/dita-ot-metrics/blob/master/evolution/generateDITATables.xsl
resources/generated-metrics-evolution.html
resources/generated-metrics-evolution.html
https://www.oxygenxml.com/eula.html
https://www.oxygenxml.com/buy.html
https://www.oxygenxml.com/technical_support.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-reusable-components-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/whr-html5-pages.html
https://www.oxygenxml.com/doc/ug-editor/topics/pdf-css-customization.html
https://www.oxygenxml.com/partners.html#cmssolutionpartners
https://www.oxygenxml.com/doc/ug-editor/topics/author-managing-changes.html
https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories
https://www.oxygenxml.com/content_fusion.html
https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories
https://github.com/oxygenxml/oxygen-git-plugin
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/translation-package-builder-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

Blog | 3 - DITA | 172

• Main files support. Enable main files support in the DITA project, add your top level DITA Maps as main files and any
structure changes, renaming or moving files will automatically update all links in the DITA Project. Also works for
renaming/moving image resources.

• Store options at project level. Almost all of Oxygen's preferences pages can be saved at project level. Once you do that,
you can share the project.xpr file with somebody else and when they open it, they will also get the settings set inside the
project.

• Compare files/folders.
• Refer to multiple folders.
• Batch operations: Select a folder in the project and use the "Transform", "Validate", "Format and Indent", "Find/Replace

in Files", or "Spell Check in Files". Or use the "XML Refactoring" action to apply a refactoring stylesheet over all the
selected files.

• Filter files. You can instruct the Project view to hide various file types.

Navigation:

Actions to find opened files, find files containing a certain content or navigate between files.

• In the main Window menu, you can find the Next/Previous Editor actions and their shortcuts. Together with the Switch
editor tab action, these help you navigate between opened XML documents.

• The Open/Find Resource view (main menu Window->Show View) allows you to search for file names, search in file
contents, or search for files containing comments or change tracking.

• Right-click the tab of an opened DITA document and use the Copy location action. Or use the Show in Explorer/
Finder action to locate the file.

• Use the main menu File->Reopen last closed editor action to re-open the last closed file.
• Open a DITA topic in the Text editing mode, right click, choose Go to definition to open the DTD, XML Schema or

RelaxNG Schema at the precise location where that DITA element is defined, something useful for debugging DITA
specializations.

• Use the Navigation toolbar to Go back/forward/last modification.

Find/Replace Functionality

The Find/Replace functionality is the bread and butter of any editing application and Oxygen has lots of functionality in this
regard:

• Find/Replace in Files.
◦ Restrict to XPath - If you want to make replacements only in certain parts of the XML document, the XPath

restriction can be used to focus only on certain attributes or element content.
◦ Ignore Whitespaces - You should usually check this checkbox as there is always there is a possibility what the

words you are searching for may be split on multiple lines in the XML content.
• The Find menu → Find Next/Previous actions allow you to find the next/previous occurrence of the current selected

word(s). Or you can use the Find All action to find and highlight all occurrences of a word or a sequence of words.
• The Find menu → Find all Elements action shows a dialog box allowing you to find elements or attributes containing a

sequence of words.
• The Find menu → Quick find toolbar is a compact toolbar giving you access to search functionality.
• The XPath allows you to use XPath expressions (i.e. //comment()[contains(., 'TODO')]) to search the current topic or

a set of topics for elements, attributes, or comments matching a set of conditions.

DITA Maps Manager

The DITA Maps Manager view's contextual menu gives you quite an impressive array of useful actions:

• Fast create new topics. Create a set of DITA topics by specifying only their titles.
• Add references to multiple topics.
• Create key definition with keyword.
• Edit Properties - You can even set profiling attributes on multiple selected topic references.
• Export DITA Map - Export your DITA Map to a zip archive ready for translation.

https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-storing.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/open-find-resource-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/find-and-replace-text-in-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/fast-create-topics.html

Blog | 3 - DITA | 173

• Find Unreferenced Resources - Find all resources which are no longer used in a DITA project.
• Refactoring menu

◦ Rename/Move topic - Renames a topic and all references to it.
◦ Rename key - Rename a DITA key and all its references in the entire project.
◦ Conversions between topics - Convert between topics, tasks, concepts, and references for multiple selected

DITA files.
◦ Convert nested sections to new topics - Convert all sections located inside a topic to new topics.
◦ Convert nested topics to new topic - Convert all nested topics to new topic files.
◦ Apply custom refactoring scripts - Create and apply your own XSLT or XQuery refactoring scripts.

• Find/Replace in Files.
• Spell Check in Files.
• Search References - Search all references to a particular referenced topic.
• Remove from Disk - Check in how many places a topic is referenced and then remove it from disk.
• Open with resolved topics - Open the DITA Map with all topic references expanded, useful if you want to have an

overview of the entire publication.
• Synchronized selection between DITA Maps manager and main editor area - Anytime a DITA topic is opened both in the

DITA Maps Manager and the main editing area, moving the selection in one instance will also move the selection to the
corresponding place in the other.

Editing in the Author Visual Editing Mode

• Maximize editor area - Double-click the opened editor's tab to hide all side views and maximize editing space, double
click again to show the side views.

• Increase/decrease editor font - Use Ctrl/CMD +/- to increase or decrease the font in the current edited document.
• Inserting elements - Pressing ENTER in the Author visual editing mode will show you a list with all possible elements

that can be inserted. If you choose an invalid element, Oxygen will find a place for it. You can also add custom actions or
code templates to the content completion list.

• Select content then press ENTER to surround the content in a new element.
• Select multiple intervals - Press the Ctrl/CMD button when selecting text to select multiple text intervals. Once you do

that, you can use toolbar actions like Bold, Italic, or Underline or you can use the Edit Profiling Attributes action to
set profiling attributes on all the selected items.

• In-place attributes editor - Instead of using the Attributes view, you can press Alt-Enter to edit attributes for the current
element in a small pop-up dialog box.

• Select an entire element - Triple-click inside an element's contents to select the entire element. After this, you can move
the element to a new place.

• Double-click to select by word, then drag the mouse to select the content word by word.
• Move elements (especially paragraphs, list items) up or down (ALT-UP/DOWN), indent or unindent list items (Tab,

Shift-Tab).
• Select content and then use the Toggle comment action (contextual menu Refactoring submenu) to quickly add an

XML comment around it.
• In the contextual menu the Text submenu contains useful actions to count the number of words in the entire document

(or in the selected text), convert the selection to upper, lowercase, or sentence case
• Bookmarks - Click the vertical left side bar in the editing area to add a bookmark. Navigate to that bookmark even after

the file has been closed using the Ctrl/CMD + number shortcut.
• Collapse other folds - Click a fold triangle in the Author visual editing mode and you can choose to close all other folds,

useful when working with multiple sections in the same file.

• Code templates - Define small fragments of XML content that can be inserted either by defining a shortcut key or by
pressing ENTER in the editing area.

• Editor variables - Certain Oxygen-specific macros can be automatically expanded. For example, a code template that
inserts the current author name can use this editor variable:

<author>${author.name}</author>

or a code template that surrounds the selection inside a <keyword> element:

<keyword>${selection}</keyword>

https://www.oxygenxml.com/doc/ug-editor/topics/find-unreferenced-resources.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-convert-topics.html
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-content-completion-tab.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-contextual-menu.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-navigate-document-content.html
https://www.oxygenxml.com/doc/ug-editor/topics/folding-author-mode.html
https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html
https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html

Blog | 3 - DITA | 174

or a code template that first asks the end user for their name and then inserts it in the document:

<author>${ask('Author Name', generic, 'John Doe')}</author>

Code templates can also be used when creating new file templates (on page 264).
• Outline Quick find filter - The Outline view contains a filter that can be used to reduce the number of elements displayed

in it (for example, display only the contained topics).

DITA-specific Editing in the Author Visual Editing Mode

• DITA Reusable Components view. You can use this side view to quickly search for and insert references to keys or to
reusable components.

• Inserting links to resources. Besides using the toolbar actions you can also:
◦ Drop a file from an outside location. Drag a DITA topic or other resource from the Explorer/Finder or from the

Oxygen Project and drop it inside an opened DITA topic to insert a reference to it.
◦ Paste a URL in the editing area to insert a reference to it.

• Links to images:
◦ Drop images from the Project view in the main editing area to insert references to them.
◦ Copy an image and then paste it in the editing area to insert a reference to it.
◦ Double-click broken image reference to modify attributes.

• Reuse content:
◦ Copy an element that has an ID set on it and then right-click elsewhere and use the "Paste Special → Paste as

content reference" to insert a content reference to the element.
• Select multiple sibling paragraphs and use the Insert list item toolbar item to convert them all to list items. Select

multiple list items and use the Insert table toolbar action to convert them to a table.
• Working with tables:

◦ You can right-click inside a table and use the Table Properties action to change lots of table-related settings.
◦ You can sort tables based on certain criteria.
◦ In the contextual menu Refactoring submenu you can find actions to convert between CALS and simple tables.
◦ You can select an entire table by clicking its left corner and select an entire row by clicking to the left of it.

• Add hotspots to images - You can right-click any image reference and use the Image Map Editor to configure target
links for various parts of the image.

• You can right-click inside an element and use the About Element contextual menu item to find out more about it.
• Pasting content from web browsers, Excel spreadsheets, or Word documents inside a DITA topic produces the equivalent

DITA content.
• The Styles drop-down toolbar menu allows you to choose between various CSS styles to apply while editing. The Hints

and Inline actions layers should be interesting for you to experiment with. Or you can add your own (on page 137).

Preferences:

Oxygen has a lot of global settings that can be configured, I will just list what I consider to be the most important ones:

Menu shortcut keys - You can use this preferences page to assign or to see the shortcut for any action available in Oxygen.

Fonts - This page allows you to change the default fonts used in the application.

Appearance - Change the default color theme in Oxygen (the Graphyte theme is quite popular).

Spell check - Customize the spell checker settings, use custom spell check dictionaries.

Save - Settings to automatically save or to check for errors before saving the file.

External tools - Define various command line tools that you can launch from Oxygen.

Annotations - Disable the tooltips which appear when hovering over various elements (useful if you have a small screen).

https://www.oxygenxml.com/doc/ug-editor/topics/dita-reusable-components-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/image-map-dita-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-menu-shortcut-keys.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-fonts.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-appearance.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-spell-check.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-save.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-external-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-content-completion-annotations.html

Blog | 3 - DITA | 175

Tools

The Tools main menu is worth exploring sometimes. You can invoke XML refactoring actions from it or open other small
applications like the SVG viewer.

Import

The File menu offers the possibility to import HTML, CSV, Excel files, or database content as XML.

Other Views and Toolbars:

You can right-click in the toolbar area and use the Configure Toolbars action to see what toolbars are available or what toolbars
can be removed.

The Symbols toolbar is quite interesting if you often want to insert symbols that are not on the current keyboard.

Other Small Tips:

The main Window menu has actions to tile all opened XML documents and also to enable synchronous scrolling in them (useful
if you want to look at similar XML documents and maybe to copy/paste between them).

Keeping in Touch

Oxygen's Help menu allows you to use the Report problem action to contact us directly. The Support Tools->Randomize
XML Content action allows you to randomize the content of an XML project before sending it to us for tests.

And there are a lot of other ways to get in touch with us or to find various videos or tutorials to read: https://
www.oxygenxml.com/technical_support.html.

DITA Project Enhancements

A DITA project file defines a set of deliverables. For each deliverable you have a context containing the published DITA Map
and filters. The deliverable also specifies one or more transtypes, for each transtype specifying a set of parameter names and
values. The file format of the DITA Project can be either XML or JSON. So what could we do with the DITA Project in Oxygen?

Publishing

In the future the DITA Open Toolkit (probably version 3.4 or 4.0) will allow publishing multiple deliverables by providing such a
DITA project from the command line.

Editing the DITA Project

We need a special framework containing a schema, custom CSS for editing the DITA project in the Oxygen Author visual editing
mode. We also need an ANT-based transformation scenario for publishing the DITA project.

Adding the DITA Project in the "Master Files" folder

Once such a DITA project is added to the "Master Files" folder Oxygen could parse it and obtain a list of (root map, filter) pairs.
We can use this list of root maps when renaming or moving content (topics, maps, resources) in the Project view. We can use
the (root map, filter) pairs to allow in the DITA Maps Manager selecting such a pair if somebody wants to edit a topic in such a
particular context.

Using the DITA Project information for editing

We have a specific drop-down "Filters" button both in the DITA Maps manager view and in the main editing area. The button
takes effect over all the files opened in the application. We also have a "Root map" combo box in the DITA Maps Manager.
Again, it takes effect over all the maps and topics opened in the application. The DITA Project would contribute (root map, filter)
pairs which could be contributed in the UI. Where could we contribute them? Maybe the "Root map" combo box could become
a "Contexts" combo box listing either DITAVAL files or (map, filter) pairs. If we want to allow for certain files people to use

https://www.oxygenxml.com/technical_support.html
https://www.oxygenxml.com/technical_support.html
https://github.com/dita-ot/dita-ot/blob/develop/src/test/resources/org/dita/dost/project/simple.xml
https://github.com/dita-ot/dita-ot/blob/develop/src/test/resources/org/dita/dost/project/simple.json

Blog | 3 - DITA | 176

certain editing contexts (thus avoiding to apply the editing context on a per-application wide basis) we have an architectural
problem, the DITA Keys resolver is more or less a singleton object, but you would need sometimes multiple such keys resolvers.

Using the DITA Project for the "Validate and check for completeness" action

Right now the "Validate and check for completeness" starts validation from a particular DITA Map and has a set of DITAVAL
filters which can be set. Maybe if a DITA Project is opened in the main editing area, we could have a special "Validation" button
for it on the toolbar, validating all the DITA Maps with all the filters specified inside it.

DITA Project extensibility

From what I discussed with Jarno, ideally in the DITA project file we could include our own XML tags from a specific
namespace. In this way, for a certain deliverable context we could for example also define the "reusable" content folders, the
"images" folders, information which could be used for information displayed in our "DITA Reusable Components" view.

Translating your DITA Project

Usually when working with a DITA-based project you can either store the project contents using a Content Management
System (CMS) or some open-source version control system like Git or SVN. CMSs usually come with their own translation
support so this blog post is mostly for end users who use Git or SVN to store and collaborate on their DITA project.

Choosing a Translation Agency

Ideally your translation agency should be able to handle DITA content directly, without you needing to convert the DITA to
some intermediary format. This means that you will have the full benefit of DITA reuse features to minimize translation costs.

As a very important rule, if you plan to translate your project you should get in touch with a DITA-aware translation agency
very early in your project's timeline. Reliable translation agencies that translate DITA content directly (for example WHP)
usually need to have a preliminary discussion with you about how the project is structured, what terms need to be skipped when
translating, how various measuring units are translated, content reuse, taxonomy, and the handling of screenshots that appear
in your DITA content. So the way that you write your DITA content will be influenced by your discussion with the translation
agency.

If your translation agency does not directly handle DITA content, there are commercial tools that can be used to convert DITA to
XLIFF: https://www.maxprograms.com/products/fluenta.html.

Optimizing Content for Translation

In general, there are three main principles to take into account when writing DITA content that will be translated at some point:

1. Use a controlled vocabulary (usually the Simplified Technical English vocabulary).
2. Avoid reusing inline elements other than product names. The following DITA Users List discussion describes the reasons

for this: https://lists.oasis-open.org/archives/dita/201301/msg00029.html.
3. Avoid profiling/filtering content at inline level. For the same reasons as (2).

General DITA Project Structure

Usually you need to keep a folder that contains all your DITA maps/topics in English and have separate folders for
other languages with equivalent DITA topics translated in that specific language. This article could be useful: https://
www.maxprograms.com/articles/organize_files.html.

General Translation Workflow when the Translation agency accept DITA documents

When translating DITA content, the most common process involves these steps:

1. You create your content in the primary language using a DITA authoring tool (Oxygen XML Editor).
2. Before each release, you gather all the DITA topics that have been changed and need to be translated. The Oxygen

Translation Package Builder plugin might be handy for this.

http://www.whp.net/en/dita-localization/
https://www.maxprograms.com/products/fluenta.html
https://en.wikipedia.org/wiki/Simplified_Technical_English
https://lists.oasis-open.org/archives/dita/201301/msg00029.html
https://www.maxprograms.com/articles/organize_files.html
https://www.maxprograms.com/articles/organize_files.html
https://github.com/oxygenxml/oxygen-dita-translation-package-builder

Blog | 3 - DITA | 177

3. Send a copy of the relevant DITA files to the translation agency (known also as "localisation service provider").
4. Receive translated DITA content back from the translation agency and integrate it in each language-specific project

folder.

Translation Workflow when the Translation agency accepts XLIFF files

XLIFF (XML Localization Interchange File Format) is an XML-based format created to standardize the way data are passed
between and among tools during a localization process. If your translation agency accepts this format, the translation workflow
usually has these steps:

1. At various milestones (for example, when a new version is released), you generate XLIFF files for each language you
translate to.

2. You send the XLIFF file to the translation service provider.
3. Once the XLIFF returns from translation, you generate a translated version of your map and topics from the XLIFF file.

Important: The Fluenta DITA Translation add-on can help with all of these steps.

Publishing your Translated Content

All your translated DITA maps and topics should have the xml:lang attribute set with the appropriate value on the root element.
Besides the actual translated content, the published output may contain various static text (such as the word Table followed
by the table number, Figure following by the number, or Note appearing before each DITA <note> content). The DITA Open
Toolkit includes support for various languages for HTML-based output and PDF-based output. You can also add support for
other languages: http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html#ariaid-title1. There is also a specific topic that
describes how to add a new language to the Oxygen-specific WebHelp Responsive output: https://www.oxygenxml.com/doc/ug-
editor/topics/localize-webhelp-responsive.html.

Liability

So who is responsible for a bad translation that may produce damage to a client following a set of mis-translated steps? From
my discussions with translation service providers, the translation agencies do not assume any liability for incorrectly translated
content. Usually a company that needs to translate their DITA content in multiple languages has regional headquarters in various
countries and somebody from the company's regional headquarters would be responsible to review and accept the translated
content as appropriate.

This concludes my DITA translation overview. As we do not translate the Oxygen User's Manual in various languages, our
internal knowledge of translating DITA content is quite limited so any feedback on this small article is welcomed.

DITA Map Validate and Check for Completeness Overview

The Validate and Check For Completeness is an action available on the DITA Maps Manager view toolbar and it can
be used to perform thorough checks on the entire DITA Map structure and set of referenced topics. We've made this action
available to you a couple of years ago and during these years, based on your direct feedback we kept adding additional checks
and functionality to it. We always took care to optimize the processing speed in order to allow for validating projects containing
thousands of resources in 10-15 seconds.

In this blog post I will try to make a list of all the checks that the action does in order to ensure you that your DITA content is
valid and proper:

• Validate each DITA resource directly or indirectly referenced from your DITA Map with its associated DTD or XML
Schema and report any errors which may arise.

• Validate each DITA resource with an additional Schematron resource which you can provide. Schematron is quite
handy when it comes to enforcing internal rules on the DITA content and we use it quite a lot for checking our user's
manual (on page 178).

• Batch validate referenced DITA resources. This setting validates each DITA resource according to the validation
scenario associated with it in Oxygen. This will decrease the validation speed quite a bit but if you have DITA 1.3

https://www.oxygenxml.com/doc/ug-editor/topics/fluenta-dita-translation-add-on.html
http://www.dita-ot.org/2.0/readme/DITA-globalization-xhtml.html
http://www.dita-ot.org/2.0/readme/DITA-globalization-pdf.html
http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html#ariaid-title1
https://www.oxygenxml.com/doc/ug-editor/topics/localize-webhelp-responsive.html
https://www.oxygenxml.com/doc/ug-editor/topics/localize-webhelp-responsive.html

Blog | 3 - DITA | 178

resources which are Relax NG based you should check it in order to validate each resource according to the Relax NG
Schema.

• Use specific DITAVAL or profiling condition filters when performing the validation. From a single published DITA
Map you may get multiple publications based on the profiling filters applied. Because these filters are used to remove
entire topics or parts of topics, you may have links and conrefs which become invalid when certain filters are applied
on the map. So it makes sense to validate your DITA project by applying all profiling filters you would apply when
publishing it in order to be aware of these potential broken references.

• Report profiling attributes or values which are not valid according to the Subject Scheme Map associated with your
project. You can read more about controlling profiling attributes and values here:Controlled Attribute Values for your
DITA Project (on page 140).

• Identify possible conflicts in profile attribute values. When the profiling attributes of a topic contain values that are not
found in parent topic profiling attributes, the content of the topic is overshadowed when generating profiled output.

• Check the existence of non-DITA referenced resources. You will get reports if links to local images or other resources
are broken. You can also decide to verify the existence of remote links. For example if you have links to various external
web sites, you might be interested in seeing if those remote servers are still there.

• Report links to topics not referenced in DITA maps. Checks that all referenced topics are linked in the DITA map.
Otherwise you may get working links to topics which are not included in the table of contents.

• Check for duplicate topic IDs within the DITA map context. By default the topic ID can be used in the WebHelp output
for context sensitive help. Also certain CMSs require that a certain topic ID would be unique in the entire DITA Map.

• Report elements with the same ID placed in the same DITA Topic according to the specification.
• Report missing domains attribute which may indicate an improper DITA specialization.
• Report invalid class attribute values according to the specification.
• Report invalid key names according to the specification.
• Report references to missing keys or links which refer to keys which have no target resource defined on them.
• Report problems when elements referenced using DITA content reference range are not siblings or are not properly

sequenced.
• Report links which have no target set on them either via href or keyref.
• Report non-portable absolute references to DITA resources.
• Report when links contain invalid encoded characters or Windows-like path separators.
• Report when resources are referenced with incorrect path capitalization.
• Report a mismatch between the referenced resource type and its format attribute.
• Report a mismatch between the referenced resource type and its type attribute.
• Report topic references in a DITA Map pointing to non-topic elements in the target topics.
• Report invalid content references and content key references, references to non-existing resources, to non-existing IDs,

report when the source element is not a specialization of the target element.

I think I covered most of the checks that this validation does.

Are there other checks you would like to see in a future version? Would you like to see this validation available as a separate
process which could be run on a server?

Schematron Checks to help Technical Writing

The Oxygen XML Editor User's Manual is written in DITA. In an older post I described in more detail (on page 290) how
we collaborate internally on our User's Guide Project. And we also made available a copy of our User's Manual as a project on
GitHub.

During these years on working on it, we progressively developed a set of simple rules which were originally kept in a plain
text document. The problem is that nobody can really remember all these rules when actually writing. So recently we started to
migrate these rules to Schematron and have them reported automatically has validation warnings and errors while editing the
topics. And we can also add quick fixes for each of these problems.

So below I will try to tell you what each rule imposes and what it's Schematron implementation looks like. If you want to quickly
test these rules on your side, you can add them to the Schematron file which is used by default to validate DITA topics located in:
OXYGEN_INSTALL_DIR/frameworks/dita/resources/dita-1.2-for-xslt2-mandatory.sch.

https://www.oxygenxml.com/doc/ug-editor/index.html#topics/context-sensitive-help-system.html
https://github.com/oxygenxml/userguide
https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/doc/ug-oxygen/#topics/schematron-quick-fixes.html

Blog | 3 - DITA | 179

1. Try as much as possible to add at least an indexterm element in each topic. This is useful when the Index page is created
for the PDF output or the Index tab is created for the WebHelp output. As this is not a requirement, we wanted to report
this issue as an error. The end result looks like this:

And the Schematron pattern looks like this:

<pattern xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <rule context="/*">
 <assert test="prolog/metadata/keywords/indexterm" role="warn" sqf:fix="addFragment">
 It is recommended to add an 'indexterm' in the current '<name/>' element.
 </assert>
 <!-- Quick fix to add the indexterm element element and its parents -->
 <sqf:fix id="addFragment">
 <sqf:description>
 <sqf:title>Add the 'indexterm' element</sqf:title>
 </sqf:description>
 <sqf:add match="(title | titlealts | abstract |
 shortdesc)[last()]" position="after" use-when="not(prolog)">
 <xsl:text>
 </xsl:text><prolog xmlns=""><xsl:text>
 </xsl:text><metadata><xsl:text>
 </xsl:text><keywords><xsl:text>
 </xsl:text><indexterm><xsl:text> </xsl:text> </indexterm><xsl:text>
 </xsl:text></keywords><xsl:text>
 </xsl:text></metadata><xsl:text>
 </xsl:text></prolog>
 </sqf:add>
 </sqf:fix>
 </rule>
</pattern>

2. The ID of each topic must be equal to the file name (minus the extension). One of the outputs we produce (I think CHM)
had a limitation when building the context mapping between help IDs and actual HTML content so this was an important
rule for us, thus an error is reported on this. Also a quick fix is added to auto-correct the topic ID based on the file name.
The end result looks like this:

and the Schematron pattern is:

<!-- Topic ID must be equal to file name -->
<sch:pattern>
 <sch:rule context="/*[1][contains(@class, ' topic/topic ')]">
 <sch:let name="reqId" value="replace(tokenize(document-uri(/), '/')[last()], '.dita', '')"/>
 <sch:assert test="@id = $reqId" sqf:fix="setId">
 Topic ID must be equal to file name.
 </sch:assert>
 <sqf:fix id="setId">
 <sqf:description>
 <sqf:title>Set "<sch:value-of select="$reqId"/>" as a topic ID</sqf:title>
 <sqf:p>The topic ID must be equal to the file name.</sqf:p>
 </sqf:description>

Blog | 3 - DITA | 180

 <sqf:replace match="@id" node-type="attribute" target="id" select="$reqId"/>
 </sqf:fix>
 </sch:rule>
</sch:pattern>

3. Report when plain links or related links to web resources have the same text inside them as the value of the @href
attribute. We had cases in which writers would input web links like this:

<xref href="http://www.google.com" format="html" scope="external">http://www.google.com</xref>

which is redundant because when you set no text to the link, the publishing uses the @href attribute value as the link
text. So we wanted to report such cases as warnings and to have a quick fix which removes the link text:

The Schematron pattern looks like this:

<sch:pattern>
 <sch:rule context="*[contains(@class, ' topic/xref ') or contains(@class, ' topic/link ')]">
 <sch:report test="@scope='external' and @href=text()" sqf:fix="removeText">
 Link text is same as @href attribute value. Please remove.
 </sch:report>
 <sqf:fix id="removeText">
 <sqf:description>
 <sqf:title>Remove redundant link text, text is same as @href value.</sqf:title>
 </sqf:description>
 <sqf:delete match="text()"/>
 </sqf:fix>
 </sch:rule>
</sch:pattern>

4. Avoid using the @scale attribute on images. We wanted to smooth scale images in an external image editor so it was
prohibited to use the @scale attribute on images. The Schematron pattern for this:

<pattern>
 <rule context="*[contains(@class, ' topic/image ')]">
 <assert test="not(@scale)">
 Dynamically scaled images are not properly displayed, you
 should scale the image with an image tool and keep it within
 the recommended with and height limits.
 </assert>
 </rule>
</pattern>

We have an upcoming event dedicated to Schematron Quick Fixes if you want to become more familiar with the technology. And
we also have a GitHub project which tries to combine the notion of a style guide for writing documentation inside a company
with a very simple manner of defining checks which can be applied to impose the styleguide rules.

I would be interested in your feedback, especially if you have checks that you perform right now on your content and you
consider that they might benefit others.

Implementing your own Style Guide

Let's say you are a team of tech writers collaborating on a DITA-based project and doing things your way, maybe you have
various best practices about what elements to use and when to use them, maybe you want to impose a set of controlled values for
certain attributes. So at some point you gather on an internal server a set of HTML resources which explain how various DITA
elements should be used. This blog post will attempt to show you how these best practices can be shared with your team so that
they are readily available when editing DITA content in Oxygen.

https://www.oxygenxml.com/events/2015/webinar_oxygen_17_xml_quick_fixes.html
https://github.com/oxygenxml/dim

Blog | 3 - DITA | 181

Custom "Style Guide" toolbar button

As you have your style guide HTML resources on a server, you can add a custom toolbar button which will appear on the DITA
toolbar when editing DITA topics in the Author editing mode. When you press that toolbar button, a web browser opens up and
shows you the style guide main page. Here are some steps about how to do this:

1. In the Oxygen Preferences->Document Type Association page edit the DITA framework. Instead of editing the DITA
framework directly you may choose to extend it in order to share the extension more easily:Document Type Extension
Sharing (on page 261).

2. In the Author tab go to the Actions tab and there is an action with the ID styleguide. If you edit the action, it
invokes an operation with a parameter called resourcePath. You can edit that parameter to point to your internal
(or public) server where the WebHelp output is stored. You should also set an icon to it, you can use /images/
BrowseReferenceManual16.png (it's a default icon which comes with Oxygen). Save your changes in that dialog.

3. In the Author tab there is a Toolbar sub-tab in which you can add the styleguide action to the toolbar in the place where
you want it. Press OK a couple of times in the dialogs and then action should become available on the toolbar for each
topic.

Link to Style Guide for each element in the content completion window

When you press the ENTER key in the Author editing mode, you get a list of available elements. For each element there is
documentation available, that documentation can be customized, for example you could add links for each element to a specific
section in your style guide. This topic should tell you more about how this can be achieved:https://www.oxygenxml.com/doc/ug-
editor/#tasks/author-styleguide-annotations.html

https://www.oxygenxml.com/doc/ug-editor/#tasks/author-styleguide-annotations.html
https://www.oxygenxml.com/doc/ug-editor/#tasks/author-styleguide-annotations.html

Blog | 3 - DITA | 182

Impose controlled attribute values

For certain attributes (for example profiling attributes, @outputclass attributes) you may want to impose a set of controlled
attribute values. This blog post will tell you how: Controlled Attribute Values for your DITA Project (on page 140).

Show validation errors or warning when guidelines are breached

If possible, some of your rules can be converted to Schematron, allowing the application to signal to the writer when a rule is not
obeyed. You can also add quick fixes to show writers various ways to rectify the problem. This blog post should give you more
details about this:Schematron Checks to help Technical Writing (on page 178).

Bringing all of this together

There is an Oxygen XML GitHub project called DIM which attempts to approach most of these aspects in an unified manner:
https://github.com/oxygenxml/dim.

Preprocessing DITA-OT Project Files

Project files were introduced in the DITA-OT 3.4 release. They provide a standardized XML way to define how input DITA files
should be published to output content files, including details such as filtering, transformation parameters, and output directory
locations.

Our basic publishing requirements are as follows:

• We publish some books multiple times in multiple DITAVAL filtering conditions.

• We publish to both PDF (using PDF Chemistry) and online help (using Oxygen WebHelp).

◦ PDFs are published individually per-book.

◦ WebHelp is published as a collection of books, with in-help links to the PDF files.

• We have "review" and "final" versions of our output.

◦ These versions use different DITA-OT parameters and different DITAVAL flagging files.

As I attempted to create a DITA-OT project file to produce our deliverables, I encountered some limitations. This blog post
describes how I created an XSLT-based preprocessing approach to work around these limitations.

Quick Overview of Project Files

A project file uses three primary building block elements:

• <content> - an input DITA map to process

◦ Can include one or more associated DITAVAL files

• <publication> - a transformation to apply

◦ Can include transformation parameters

• <deliverable> - output content to create, by transforming a <context> with a <publication>

◦ Can include an output subdirectory path (relative to the overall output directory)

In its simplest form, a <deliverable> can provide its own <context> and <publication> information within itself:

https://github.com/oxygenxml/dim

Blog | 3 - DITA | 183

<deliverable id="del-pdf-A">

<context>
<input href="dita/common_UG.ditamap"/>
<profile>

<ditaval href="filter_A.ditaval"/>
</profile>

</context>

<output href="olh-A/pdf">

<publication transtype="pdf2">
 <param name="..."/>
 <param name="..."/>
</publication>

</deliverable>

For more complex output content situations, a <deliverable> can reference shared <context> and <publication> elements by
@idref references to @id values:

<context id="context-A">
<input href="dita/common_UG.ditamap"/>
<profile>

<ditaval href="filter_A.ditaval"/>
</profile>

</context>

<publication transtype="pdf2" id="pub-pdf">
 <param name="..."/>
 <param name="..."/>
</publication>

<deliverable id="del-pdf-A">
<context idref="context-A"/>
<output href="olh-A/pdf">
<publication idref="pub-pdf"/>

</deliverable>

This @idref mechanism allows many deliverables to share common context and publication definitions. If there is a change to a
<context> (perhaps a different map or new DITAVAL condition) or a <publication> (perhaps an updated DITA-OT parameter),
then all relevant deliverables inherit the change automatically.

In addition, DITA-OT project files can use <include> statements to structure their information across multiple files. This
allows contexts to be organized by product writer teams, publications to be placed in files maintained by a DITA environment
maintainer, and so on.

Limitation – Specify Per-Deliverable PDF File Names (#3682)

When I publish multiple PDFs from the same map using DITAVAL conditions, I needed to define the outputFile.base
parameter on a per-<deliverable> basis to control the output PDF file name:

<context id="context-A">
<input href="dita/common_UG.ditamap"/>
<profile>

<ditaval href="filter_A.ditaval"/>
</profile>

</context>

<publication transtype="pdf2" id="pub-pdf">
 <param name="..."/>
 <param name="..."/>
</publication>

<deliverable id="del-pdf-A">
<context idref="context-A"/>
<output href="olh-A/pdf">
<publication idref="pub-pdf">

<param name="outputFile.base" value="userguide_A"/>
</publication>

</deliverable>

userguide_A.pdf

Blog | 3 - DITA | 184

DITA-OT versions before 4.0 do not allow <param> elements to be controlled from a <publication> reference in a
<deliverable>. I filed the following DITA-OT enhancement request for this:

#3682: In DITA-OT project files, allow a PDF <deliverable> to specify its output file name

It was implemented for DITA-OT 4.0 in the following pull request:

#3907: Support param in publication reference

Limitation – Consider DITAVAL in Both <context> and <publication> (#3690)

I needed to apply DITAVAL from both <context> (for @product filtering) and <publication> (for
@audience/@deliveryTarget/@rev filtering/flagging of "review" and "final" deliverables):

<context id="context-A">
<input href="dita/common_UG.ditamap"/>
<profile>

<ditaval href="filter_A.ditaval"/>
</profile>

</context>

<publication transtype="pdf2" id="pub-pdf-review">
<profile>

<ditaval href="filter_audience.ditaval"/>
<ditaval href="filter_deliveryTarget.ditaval"/>
<ditaval href="flag_rev.ditaval"/>

</profile>
 <param name="..."/>
 <param name="..."/>
</publication>

<deliverable id="del-pdf-A">
<context idref="context-A"/>
<output href="olh-A/pdf">
<publication idref="pub-pdf-review">

<param name="outputFile.base" value="userguide_A"/>
</publication>

</deliverable>

review/
userguide_A.pdf

DITA-OT versions before 4.0 do not properly combine <context> and <publication> DITAVAL filtering. I filed the following
DITA-OT issue for this:

#3690: In DITA-OT project files, apply both <context> and <publication> DITAVAL filtering

It was implemented for DITA-OT 4.0 in the following pull request:

#3907: Add profiles to publication project file

Using Preprocessing to Work Around the Limitations

To work around these limitations in earlier DITA-OT versions before 4.0 is released, I created an XSLT file to do the following:

• Read the input DITA-OT project file

◦ Resolve <include> statements to pull all content into a single file

• Convert all DITAVAL file references to absolute paths (to work around #3873)

• In <deliverable> elements, replace all @idref'ed <context> and <publication> elements with copies of the referenced
elements (so we can modify them per-<deliverable>)

• Find <param> elements in <deliverable>, move them to <publication> instead (to work around #3682)

• Find <ditaval> elements in <publication>, move them to <context> instead (to work around #3690)

I then applied this XSLT file as a preprocessing step to translate the unsupported project file constructs into supported constructs
in a temporary preprocessed project file, then ran DITA-OT publishing using that temporary file. For example,

#!/bin/bash
rm -rf ./out

export DITAOT=$(dirname $(dirname $(which dita)))
export SAXON_JAR=~/saxon/saxon-he-10.6.jar

https://github.com/dita-ot/dita-ot/issues/3682
https://github.com/dita-ot/dita-ot/pull/3907
https://github.com/dita-ot/dita-ot/issues/3690
https://github.com/dita-ot/dita-ot/pull/3895

Blog | 3 - DITA | 185

echo "Creating preprocessed DITA-OT project file..."
java \
 -jar ${SAXON_JAR} \
 -xsl:frameworks/dita/preprocess_project_file.xsl \
 -s:project.xml \
 -o:project.xml-preprocessed.xml

echo "Publishing preprocessed DITA-OT project file..."
${DITAOT}/bin/dita --project project.xml-preprocessed.xml -t temp --verbose

rm project.xml-preprocessed.xml

This worked well from a linux command line, but we also needed our writers to be able to run it from Oxygen. To do this, I
created a copy of Oxygen's project file build script at

<OXYGEN_INSTALL>/frameworks/dita/dita_project/build_dita_project.xml

and added similar XSLT preprocessing to it using Ant commands, then placed the modified version at

frameworks/dita/build_dita_project_preprocessed.xml

in our Oxygen project directory. Then I extended the DITA-OT project file framework and created an extended DITA-OT project
file transformation pointing to the modified build script:

Blog | 3 - DITA | 186

This new transformation allowed Oxygen to publish project files that used the preprocessing workaround. The unsupported
constructs still result in schema violations when the original (non-preprocessed) project files are opened for editing in Oxygen,
but at least the publishing aspect works.

Note:

The preprocessing XSLT stylesheet requires Saxon to run. To support, this, the preprocessing-based DITA-OT project
transformations specify a list of additional .jar libraries to use. To see these libraries, click the Libraries button in the
dialog box shown above.

The following Oxygen project demonstrates this preprocessing approach:

preprocessed_ditaot_project_files.zip

To run it,

1. Extract the archive and open OPENME.xpr in Oxygen.

2. In the Project view, expand the Main Files list, right click on deliverables-all.xml and choose Transform > Transform
With, and choose the Publish Preprocessed DITA-OT Project (all deliverables) transformation.

This will build "review" and "final" versions of both the "Product A" and "Product B" online help collections in the
out/ directory, complete with correctly-named PDF files integrated into each online help collection.

There are other deliverable files for specific subsets of deliverables, organized into logical folders in the Main Files list.

To view the XSLT stylesheet without downloading the archive, click on the following link:

preprocess_project_file.xsl

There are comments in the code to explain how it works.

Exploring How the XSLT Transformation Works

To help you explore how the XSLT transformation works, the Oxygen project also makes it available as a refactoring operation
that you can manually preview on project files.

To do this,

1. In the Project view in the Main Files list in the project_files/ directory, right-click one of the
deliverable*.xml files, then choose Refactoring > XML refactoring.

2. In the refactoring operation list, choose Synopsys > Preprocess DITA-OT project file refactoring operation.

3. Click the Preview button to see what the XSLT transformation would do.

For example,

topics/preprocessing_ditaot_project_files/preprocessed_ditaot_project_files.zip
topics/preprocessing_ditaot_project_files/preprocess_project_file.xsl

Blog | 3 - DITA | 187

Be sure not to actually apply the refactoring operation to the file. Otherwise, you will need to re-extract the archive to restore the
original project file.

Re: 10 reasons for moving away from DITA

I'm following Tom Johnson @tomjohnson on Twitter and so should you for the very interesting articles related to technical
documentation. One of his recent posts reminded us about the 10 reasons for moving away from DITA article he wrote about 7
years ago so I re-visited the article and I wanted to reply to each of the points he makes in the 10 reasons to move away from
DITA section, 7 years after his original post:

1. DITA doesn't easily integrate into existing web frameworks.

I think the DITA to Markdown transformation developed by Jarno Elovirta (which is freely available in the
DITA Open Toolkit) has opened the possibility of using static web site generators. Here is an article I wrote where
I investigated using the MKDocs static site generator:

Publishing DITA Content Using the MKDocs Web Site Generator (on page 122).

2. DITA doesn't easily integrate with JavaScript libraries.

Again, once you can publish DITA to Markdown, you can use the existing static web site generator infrastructure.

https://twitter.com/tomjohnson/status/1498782382412816384
https://idratherbewriting.com/2015/01/28/10-reasons-for-moving-away-from-dita/

Blog | 3 - DITA | 188

3. I never bought into DITA's information typing model.

I partially agreed, as most writers who are not externally constrained by the company or by some publishing
customization to use explicit topic types (me included) would use the base DITA topic type for all of their work.

4. Writing in XML is a chore.

For me, when writing in Markdown, adding paragraphs is easy, but when adding links, image references, or
tables, it is a chore. It depends on what you are comfortable with and what you use every day. If I were to write
Markdown every day, I would start to remember how I should encode a link and consider it a natural way of doing
things. But indeed, using a plain text editor to write in XML is more difficult, in general. With a visual editing
tool, it is much easier.

5. Open-source DITA solutions develop too slowly.

If we are discussing storage, DITA content (the content of this blog for example) can be stored in Git repositories
and used with regular Git client tools: DITA For Small Technical Documentation Teams (on page 150).

If we are discussing the publishing ecosystem, once you can publish DITA to plain HTML or Markdown using the
DITA Open Toolkit, you can benefit of all web based tools available for Markdown and plain HTML content.

6. You can't easily customize the output.

Again, it depends on what you are comfortable with. You can use Markdown content produced from DITA
XML content with static web site generators like MKDocs or Jekyll. Indeed, if you use (for example) DITA
to produce Oxygen WebHelp, although most of the customizations are made with CSS, you might still need to
use XSLT for more advanced customizations. But as someone who spent hours trying to understand why Hugo
does not properly follow links between articles, there is a learning curve for anything, and every static web site
generator out there has its own configuration capabilities that need to be learned and explored. Also, once you get
comfortable with a certain publishing process, you naturally consider that one easy and the others more difficult.

About publishing DITA to PDF, the default customization capabilities for the classic DITA to PDF publishing
require knowledge of both XSLT and XSL-FO. This is why we invested in the Oxygen Chemistry CSS-based PDF
processor, to be able to style the content using CSS and then use the CSS both for WebHelp and PDF publishing:
https://styles.oxygenxml.com/.

7. DITA doesn't integrate well with other non-DITA content.

DITA content integrates well with Markdown. We contacted Tom less than a year ago to again explore Oxygen's
capabilities with a docs-as-code approach and his well thought out and complete article about combining DITA
XML with Markdown is available here: https://idratherbewriting.com/learnapidoc/pubapis_oxygenxml.html.

In recent Oxygen versions, we also explored integrating other file types like Word or
HTML directly with DITA projects: https://www.oxygenxml.com/doc/ug-editor/topics/
dynamically_convert_word_excel_html_markdown_to_dita.html.

8. Everything I wanted to do with DITA, I can do with Markdown and Liquid on Jekyll.

I am not familiar with Liquid, but I agree there are indeed ways that you can also reuse content with Markdown,
not part of a standard but part of how a particular framework decided to support such extensions, making the
solution 100% not portable when switching between web-based frameworks. I do think there are more powerful
ways to check if the structure is correct with XML-based standards using Schematron. The Oxygen Validate and
check for completeness (on page 177) action also does a lot of consistency checks.

An article about thoughts on Markdown: https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/.

9. Innovation with DITA is too reliant on vendors.

Once you can obtain plain HTML and plain Markdown from DITA XML content, you can benefit from all
the tools created to process and display HTML and Markdown. The web tools publishing space is much more
dynamic than the DITA XML publishing space. For me, looking into the web tools space from the outside, it's in a
constant turmoil of innovation, which brings stress to any web developer who might want to choose a framework
since there are so many frameworks developed over night while re-inventing solutions for the same concepts in
different ways that you end up not knowing what to choose and with the Markdown content containing various
framework-specific extensions not being able to easily switch between them. It's like tearing down the entire
house and re-inventing it each day and sometimes forgetting about various problems that have been fixed in the

https://styles.oxygenxml.com/
https://idratherbewriting.com/learnapidoc/pubapis_oxygenxml.html
https://www.oxygenxml.com/doc/ug-editor/topics/dynamically_convert_word_excel_html_markdown_to_dita.html
https://www.oxygenxml.com/doc/ug-editor/topics/dynamically_convert_word_excel_html_markdown_to_dita.html
https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/

Blog | 3 - DITA | 189

previous iteration. While Markdown might now be the future winning format when it comes to web tools, some
innovators want to switch to JSON even for writing web content: https://www.smashingmagazine.com/2022/02/
thoughts-on-markdown/.

10. DITA is the wrong language for the API doc space.

I would like to further explore using DITA XML in the API docs space, that's for sure. Now days, I think by "API
Docs", most people would be referring to Swagger, OpenAPI documentation, mostly API documentation for web-
based end points. I experimented a bit using widdershins to generate documentation from API docs to Markdown
and then converting this Markdown content to DITA XML, converting the DITA content to WebHelp Responsive.
Also, I'm not sure if the API docs world is larger than web-based end points using REST, but there are other
programming languages as well but probably most API documentation is about accessing server end points now
days.

So these are my brief remarks on Tom's 10 reasons to move away from DITA article written some 7 years ago. Any feedback is
welcomed as usual.

DITA 2.0 Specification Support Cheat Sheet

You can use the Convert DITA 1.3 topics and maps to the DITA 2.0 standard XML refactoring action bundled with Oxygen
24 (or later) to convert DITA 1.3 content to the DITA 2.0 standard. The same XML refactoring action is also available as a
separate GitHub project: https://github.com/oxygenxml/dita_1_3_to_2_x_converter.

The DITA Open Toolkit publishing engine will support publishing a mix of DITA 1.3 and 2.0 topics and maps. The list of
supported DITA 2.0 features in the publishing engine is available here: https://www.dita-ot.org/dev/reference/dita-v2-0-
support.html.

Table 2. DITA 2.0 Support Cheat Sheet

Change Details Handled By Conversion
Supported in DITA

OT Publishing Engine

The DITA 2.0 topics/maps
have specific schema refer
ences.

References to DTD/XML
Schema/RNG schemas need
to be changed in all topics and
maps.

Yes Yes

Removed elements:

titlealts, itemgroup,
 topicset, topicsetref,
longquoteref, anchor,
 anchorref, hasInstance,
hasKind, hasNarrower,
 hasPart,
hasRelated,
 relatedSubjects,
 subjectRelTable,
subjectRelHeader,
 subjectRel,
 subjectRole

Removed some seldom used
elements.

Yes, automatically removes
the elements and shows mes
sages for each removed ele
ment.

-

Removed attributes:

@mapkeyref, link/@query,
 hazardsymbol/@longdescr
ef,
@xtrf, @xtrc,
@spectitle,@specentry

Removed some seldom used
attributes.

Yes, automatically removes
the attributes and shows mes
sages for each removed at
tribute.

-

Removal of @navtitle/@lock
title/@lockmeta attributes

Removed deprecated attribut
es, they can be replaced with
equivalents.

Yes, automatically converts
them to <topicmeta> equiva
lents.

Yes

Removal of @domains default
attribute.

This is a default attribute that
does not appear in the top

- Yes

https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/
https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/
https://github.com/oxygenxml/dita_1_3_to_2_x_converter
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html
https://www.dita-ot.org/dev/reference/dita-v2-0-support.html

Blog | 3 - DITA | 190

Table 2. DITA 2.0 Support Cheat Sheet (continued)

Change Details Handled By Conversion
Supported in DITA

OT Publishing Engine

ic and map instances. It was
used mostly for defining new
attribute specializations, and
all attribute specialization
schemas need to be re-written
to use the new @specializa
tions default attribute.

Removal of @copy-to at
tribute

Needs to be replaced with a
<resourceid> element.

Yes No

Removal of the @print at
tribute

Needs to be replaced with the
@deliveryTarget attribute.

Yes -

Removed <substep> and
<substeps> task elements

Needs to be replaced with the
<steps> and <step> elements.

Yes No

Removed <sectiondiv> ele
ment.

Needs to be replaced with the
<div> element.

Yes -

Added new <audio> and
<video> elements.

New elements were added to
refer to multimedia audio and
video content and to define
parameters.

- Partially

Added new and
 elements

New elements similar in style
to and <i> but with more
semantics.

- No

Added new <partno>, <hw
control>.

New elements for document
ing hardware.

- No

Added new <diagnostics>,
<diagnostics-general>, <di
agnostics-steps> elements.

New elements added to the
troubleshooting topic type.

- -

Added new <include> ele
ment.

Similar to <coderef>. - Yes

Titles, cell and row span at
tributes for <simpletable> el
ements.

Simple tables can have titles
and their cells can span rows
and columns.

- Yes

Style output using ditaval
@outputclass attribute.

Profiling attributes defined on
DITA elements can be con
verted to custom @class at
tribute values in the generated
HTML output by adding spe
cific @outputclass attributes
on the filters in the ditaval
filter file.

- Yes

Added new <keytext> ele
ment.

Used to simplify syntax for
defining a key pointing to a
small text fragment.

- No

New Bookmap <mapre
sources> element.

A wrapper for various ele
ments like <keydef>, <di
tavalref> which could not be

Blog | 3 - DITA | 191

Table 2. DITA 2.0 Support Cheat Sheet (continued)

Change Details Handled By Conversion
Supported in DITA

OT Publishing Engine

used on the first level of the
DITA Book Map.

Refactoring

Sorting Glossary Lists in a DITA Bookmap

The idea behind this DITA refactoring action started from this forum post: https://www.oxygenxml.com/forum/viewtopic.php?
f=2&t=15284&p=45137#p45137.

Suppose you have a DITA Bookmap that at some point references all of its glossary entries:

 <glossarylist>
 <topicref href="glossary/glossItem1.dita"/>
 <topicref href="glossary/glossItem2.dita"/>
 <topicref href="glossary/glossItem3.dita"/>
 <topicref href="glossary/glossItem4.dita"/>
 </glossarylist>

and you want to have all of these glossary topics sorted alphabetically by title as they appear in the PDF output.

One option for this is to create a PDF customization that automatically sorts the glossary entries no matter what order they were
originally specified in the DITA Map.

The other option is to create a custom Oxygen XML Refactoring operation that, when applied on the DITA Bookmap containing
the "glossarylist", will sort the glossentries in alphabetical order according to the title of each glossentry.

The following steps will help you achieve this:

1. Somewhere on disk, create a folder (for example, customRefactor) and add a reference to it in the Oxygen Preferences-
>"XML / XML Refactoring" page.

2. In that custom folder, create an XML file (for example, sortGlossentries.xml) that has the following content:

<refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="op_tck_rp1_hcb" name="Sort glossentries">
 <description>Sort glossentries.</description>
 <script type="XSLT" href="sortGlossentries.xsl"/>
</refactoringOperationDescriptor>

This particular descriptor file contains the name of the operation, its description, and points to an XSLT stylesheet that
will be applied to sort the entries in the DITA Bookmap.

3. In the same folder, create a file called sortGlossentries.xsl with the following content:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="glossarylist | topicgroup[@outputclass='glossarylist']">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>

 <xsl:variable name="closestXMLLang" select="ancestor-or-self::*[attribute::xml:lang][1]/@xml:lang"/>
 <xsl:choose>
 <xsl:when test="exists($closestXMLLang)">

https://www.oxygenxml.com/forum/viewtopic.php?f=2&t=15284&p=45137#p45137
https://www.oxygenxml.com/forum/viewtopic.php?f=2&t=15284&p=45137#p45137
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations.html

Blog | 3 - DITA | 192

 <xsl:for-each select="*" >

 <xsl:sort select="document(@href, .)/
*/glossterm/text()" lang="{$closestXMLLang}" case-order="lower-first"/>
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="*" >

 <xsl:sort select="document(@href, .)/*/glossterm/text()" case-order="lower-first"/>
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

This particular XSLT processing copies almost all the Bookmap content unchanged. However, the topicrefs in the
glossarylist are sorted according to the glossterm titles specified inside each of them.

4. Restart Oxygen.

5. Open the bookmap that contains the glossarylist in the Oxygen main editing area, right-click, choose Refactoring and in
the Other operations submenu you will find the new Sort glossentries refactoring action. Invoke the action and use the
Preview button to check if the sorting is properly done.

The XML Refactoring XML descriptor and XSLT stylesheet can also be found here: https://github.com/oxygenxml/dita-
refactoring-examples/tree/master/18.%20Sort%20Glossentries.

Replacing Direct Image References with Key References in a DITA Project.

Suppose that you have a large DITA project and all the image references in your topics are direct references, using the @href
attribute like this:

<image href="../../images/Iris_sanguinea.jpg" scale="50"/>

For better scalability and reuse possibilities, suppose you want to convert these direct references to DITA 1.2 key references:

<image keyref="Iris_sanguinea.jpg" scale="50"/>

Doing something like this manually means making replacements in hundreds of places and also manually building a DITA map
that maps the image file name to the image location.

This blog post will try to describe some steps that you will help you to automate this change in your project:

1. The first big step is to generate the DITA Map that maps each image file name (which will be used as a key) to the image
location. So, the generated DITA map will look like this:

<!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
….…....
<keydef href="Iris_sanguinea.jpg" keys="Iris_sanguinea.jpg"/>
…...
</map>

We will assume that all images are placed in an images folder and we can create an ANT build file that lists all the
images in a parameter and then calls an XSLT script to process the list of images further:

<project basedir="." name="Create Image Keys Definition Map">
 <fileset id="dist.contents" dir="images/" includes="*"/>
 <property name="prop.dist.contents" refid="dist.contents"/>

 <xslt in="createKeyrefsMap.xsl" style="createKeyrefsMap.xsl" out="images/imageKeydefs.ditamap" destd
ir=".">
 <param name="filesList" expression="${prop.dist.contents}"/>

https://github.com/oxygenxml/dita-refactoring-examples/tree/master/18.%20Sort%20Glossentries
https://github.com/oxygenxml/dita-refactoring-examples/tree/master/18.%20Sort%20Glossentries

Blog | 3 - DITA | 193

 </xslt>
</project>

The XSLT stylesheet createKeyrefsMap.xsl is responsible for creating the mapping DITA map:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="1.0">
 <xsl:param name="filesList"/>
 <xsl:output doctype-public="-//OASIS//DTD DITA Map//EN" doctype-system="map.dtd" indent="yes"/>
 <xsl:template match="/">
 <map>
 <xsl:call-template name="tokenizeString">
 <xsl:with-param name="list" select="$filesList"/>
 </xsl:call-template>
 </map>
 </xsl:template>
 <xsl:template name="tokenizeString">
 <xsl:param name="list"/>
 <xsl:param name="delimiter" select="';'"/>
 <xsl:choose>
 <xsl:when test="contains($list, $delimiter)">

 <keydef href="{substring-before($list,$delimiter)}" keys="{substring-before($list,$delimiter)}"/>
 <xsl:call-template name="tokenizeString">
 <xsl:with-param name="list" select="substring-after($list,$delimiter)"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <keydef href="{$list}" keys="{$list}"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

After this step you will have a new DITA map with all image mappings and afterwards you can link it in your main
project's DITA map.

2. We still need to make changes to all DITA topics and replace all image hrefs with keyrefs. Oxygen has support for XML
Refactoring actions and you can define custom XSLT scripts that can be applied to modify an entire set of topics. In the
OXYGEN_INSTALL_DIR/refactoring folder, you can add an XSLT script along with an XML description of the
refactoring action. An XSLT script that would replace @href attributes on images with @keyref would look like this:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:f="http://www.oxygenxml.com/ns/functions">
 <xsl:function name="f:getKeyref" as="xs:string">
 <xsl:param name="element" as="element()"/>
 <xsl:variable name="imageFile" select="tokenize(translate($element/@href, '\', '/'),
 '/')[last()]"/>
 <xsl:variable name="key" select="substring-before($imageFile, '.')"/>
 <xsl:value-of select="$key"/>
 </xsl:function>
 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="image[@href and not(@keyref)]">
 <xsl:copy>
 <xsl:apply-templates select="@* except @href"/>
 <xsl:attribute name="keyref" select="f:getKeyref(.)"></xsl:attribute>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

You can right-click anywhere in the DITA Maps Manager view and choose Refactoring->XML Refactoring, then use
your custom refactoring action to modify all resources.

https://www.oxygenxml.com/doc/ug-editor/topics/xslt-refactoring-actions.html
https://www.oxygenxml.com/doc/ug-editor/topics/xslt-refactoring-actions.html

Blog | 3 - DITA | 194

A set of samples, including the build file, XSLT stylesheets, and refactoring action XML descriptor can be found here:https://
www.oxygenxml.com/forum/files/batchImageHrefToKeyref.zip.

Deleting Elements in a Refactoring Operation

Recently, a writer wanted to remove the index from their DITA book. This required the following:

• Removing the <indexlists> element from the map:

<backmatter>
 <booklists>
 <indexlist/>
 </booklists>
</backmatter>

• Removing topic-level <indexterm> elements from topic prologs:

<topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>
 <indexterm>feature A</indexterm>
 </keywords>
 </metadata>
 </prolog>

• Removing inline <indexterm> elements from topic content:

<p>This is about <indexterm>feature B</indexterm>feature B.</p>

Oxygen provides a "Delete element" refactoring operation. However, it does precisely what it says—deletes the specified
elements, leaving everything else in place:

<topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>

 </keywords>
 </metadata>
 </prolog>

I decided to create an XSLT refactoring operation that does the following:

• Deletes the specified elements

• Deletes any containing (ancestor) elements that became empty as a result

• Updates whitespace/newline formatting around deleted elements as needed

• Serves as an easily customizable template for other element deletion uses

Fortunately, as described in Custom Refactoring Operations, Oxygen allows us to package up customized XSLT refactoring
operations in an easy-to-use way. For the XML descriptor file, put this content into a remove-index.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="remove-index"
 name="Remove index from a DITA book">
 <description>Remove index terms and backmatter index from a DITA book.</description>
 <script type="XSLT" href="remove-index.xsl"/>
 <category>DITA</category>
</refactoringOperationDescriptor>

https://www.oxygenxml.com/forum/files/batchImageHrefToKeyref.zip
https://www.oxygenxml.com/forum/files/batchImageHrefToKeyref.zip
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations.html

Blog | 3 - DITA | 195

For the XSLT file itself, put this content into a remove-index.xsl file:

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">

 <!-- elements to delete -->
 <xsl:variable name="elements-to-delete" select="('indexterm', 'indexlist')"/>

 <!-- delete up to (and including) these elements, if they become empty -->
 <xsl:variable name="delete-up-to" select="('prolog', 'backmatter')"/>

 <!-- baseline identity transform -->
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- remove elements-to-delete -->
 <xsl:template match="*[name() = $elements-to-delete]"/>

 <!-- remove whitespace/newlines before elements-to-delete -->
 <xsl:template match="text()
 [following-sibling::*[1]
 [name() = $elements-to-delete]]
 [matches(., '^\s*\n\s*$')]"/>

 <!-- remove elements that contain our to-be-deleted elements,
 but only if they become empty -->
 <xsl:template match="*[ancestor-or-self::*[name() = $delete-up-to]]
 [descendant::*[name() = $elements-to-delete]]">

 <!-- apply templates to this element's contents and see what we get -->
 <xsl:variable name="contents" as="node()*">
 <xsl:apply-templates select="node()"/>
 </xsl:variable>

 <!-- if children elements remain, copy this element (and its preceding whitespace/newlines)
 and put its contents inside -->
 <xsl:if test="$contents[self::*]">
 <xsl:copy select="preceding-sibling::node()[1][self::text()][matches(., '^\s*\n\s*$')]"/>
 <xsl:copy select=".">
 <xsl:sequence select="$contents"/>
 </xsl:copy>
 </xsl:if>
 </xsl:template>

 <!-- remove whitespace/newlines before elements-to-delete
 (we re-add whitespace/newlines above, if needed -->
 <xsl:template match="text()
 [following-sibling::*[1]
 [ancestor-or-self::*[name() = $delete-up-to]]
 [descendant::*[name() = $elements-to-delete]]]
 [matches(., '^\s*\n\s*$')]"/>

</xsl:stylesheet>

At the beginning of the refactoring operation, two XSLT variables are defined:

• elements-to-delete - the element names to delete, regardless of their contents

• delete-up-to - the highest-level containing element names to delete, if they become empty

The refactoring operation works as follows:

Blog | 3 - DITA | 196

• The elements-to-delete elements are always deleted.

◦ Any whitespace/newline text() nodes directly preceding them are also deleted.

• Any elements that (1) contain an elements-to-delete element as a descendant, (2) are contained by or are themselves a
delete-up-to element, and (3) become empty due to the element deletion, are deleted.

◦ To determine if a "containing" element becomes empty due to the deletion, <xsl:apply-templates> is
called, then the results are checked to see if any elements remain. This is what allows the deletion to continue
dynamically up through the containing elements.

• To conditionally keep the whitespace/newline text() node directly preceding a "containing" element,

◦ A standalone unconditional template always deletes the whitespace/newline text() node preceding a containing
element, whether it will be kept or not.

◦ Inside the template that conditionally keeps containing elements, that same preceding text() node is re-included
if the containing element is kept.

The following example shows a <prolog> element that disappears completely because it does not contain anything other than an
<indexterm> element:

Before refactoring After refactoring

<topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>
 <indexterm>feature A</indexterm>
 </keywords>
 </metadata>
 </prolog>

<topic id="feature_A">
 <title>About Feature A</title>

The following example shows a <prolog> element that is partially kept because it also contains a <resourceid> element:

Before refactoring After refactoring

<topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>
 <indexterm>feature A</indexterm>
 </keywords>
 </metadata>
 <resourceid id="feature_A"/>
 </prolog>

<topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <resourceid id="feature_A"/>
 </prolog>

This same refactoring code can be adapted to other use cases by editing the elements-to-delete and delete-up-to variables as
needed.

Resolving DITA Cross-References in Refactoring Operations

We needed a way to resolve DITA <xref> and <link> elements to their target element in a refactoring operation. We also needed
to determine whether the link was a local or peer-map reference. Fortunately, Oxygen v25.1 provided us with the solution!

The Missing Piece - Resolving a @keyref

For <xref> and <link> elements, we use a mix of @href and @keyref references in our content. In XSLT refactoring operations,
we could resolve @href references to the target file (and optionally, an element in that file) by using the XPath document()

Blog | 3 - DITA | 197

function. However, we had no way of resolving @keyref references because a refactoring operation only processes the current
file (it doesn't consider Oxygen's map context or the keys defined within it). In addition, writing such a resolver in XSLT that
properly considers keyscopes would be enormously difficult.

In the Oxygen v25.1 release, new API functions were introduced to provide information about @keyref references:

• The getKeyRefInfo() function returns information about a reference's type (local, peer, unresolved, and so on).

• The getKeyRefAbsoluteReference() function resolves a @keyref to its equivalent @href reference URL.

Note:

There were subsequent improvements to the API functions in Oxygen v25.1 build 2023070306, so you should use that
release or later for best results.

Thanks to this new API, we could use a simple @href resolver written in XSLT for @keyref references too!

Resolving Cross-References in Refactoring Operations

The attached test case provides the following XSLT file that you can include in your own refactoring operations:

frameworks/dita/refactoring/util-get-referenced-element.xsl

This file defines a mode="get-referenced-element" template that, when applied to any element with an @href or @keyref
attribute, returns the referenced element. If the reference cannot be resolved, the template returns an empty sequence.

The template works as follows:

1. References with @scope="external" always return an empty sequence.

2. References with @format set to a value other than "dita" always return an empty sequence.

3. If the reference has a @keyref, it is converted to an @href value using getKeyRefAbsoluteReference().

4. The @href value is parsed into its components as follows:

[file]#topic_id[/element_id]

5. The target document is obtained as follows:

◦ If no file is specified, the in-memory document that contains the cross-reference element is used.

◦ If a file is specified and that file contains the cross-reference element, the in-memory document that contains the
cross-reference element is used.

◦ Otherwise, the specified file document is loaded from disk using the XPath document() function.

This heuristic approach ensures that in multiple-pass refactoring operations, the in-memory version of the content is
preferred over the on-disk version.

6. The topic that matches the topic_id value is obtained from the target document.

7. If an element_id is specified, the element in the topic that matches the element_id value is obtained.

Because non-topic @id values do not need to be unique, the code ensures that no subtopics within the matching topic are
searched to avoid incorrect matches.

To view the XSLT stylesheet without downloading the archive, click on the following link:

util-get-referenced-element.xsl

https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/dita/extensions/DITAXSLTExtensionFunctionUtil.html
topics/resolving_refs_refactoring/util-get-referenced-element.xsl

Blog | 3 - DITA | 198

There are comments in the code to explain how it works.

The @keyref API functions require that a map context be active in Oxygen. If no context is available (for example, no map is
open in the DITA Maps Manager), there will be no key information available to resolve the reference.

Example Test Case

The following Oxygen project provides examples of how cross-reference resolutions can be used in refactoring operations and
Schematron checks:

resolving_refs_refactoring.zip

Specifically, it provides the following:

• An "Update Cross References" refactoring operation is provided that:

◦ Sets (or updates) the @type attribute for <xref> and <link> elements.

◦ Populates the target text for <xref> and <link> elements that reference topics in peer maps (i.e. cross-book
links).

• Schematron checks are provided that:

◦ Warn about <xref> and <link> elements that reference topics in peer maps (i.e. cross-book links) but do not
contain any target text.

This check also offers a "quick fix" that populates the target text for you.

topics/resolving_refs_refactoring/resolving_refs_refactoring.zip

Blog | 3 - DITA | 199

◦ Show the value of the getKeyRefInfo() and getKeyRefAbsoluteReference() API calls for any element with a
@keyref attribute.

These informational checks are commented out by default. You can uncomment them in the following file:

frameworks/dita/sch/checks.sch

When target text is added to a peer map (cross-book) reference, an <?oxy-peertext?> processing instruction is added to indicate
that the text was updated automatically. If you remove this processing instruction and customize the target text, your customized
text will not be disturbed by future automatic updates.

Inserting and Reformatting Content in Refactoring Operations

In Oxygen, refactoring operations are a powerful way to provide content modification functionality to users. This blog post
describes some challenges that can occur when adding, changing, or deleting content. It also provides solutions that you can use
in your own refactoring operations.

Re-indenting XML After Content Updates

In XSLT, all document content is represented by a node (elements, attributes, text, comments, and so on). In fact, even the
whitespace text surrounding indented elements are explicit text nodes in the document.

Note:

In the figures below:

• Notable space characters are represented by the Unicode "U+2420: Symbol For Space" (#) character.

• Notable line-end characters are represented by the Unicode "U+240A: Symbol For Line Feed" (#) character.

When you delete an element node in a refactoring operation, any preceding or subsequent text nodes are left in place:

####<p>line1</p>#
####<p>line2</p>#
####<p>line3</p>#

####<p>line1</p>#

####<p>line3</p>#

When you insert a new element node before or after an existing element node, no new indenting whitespace is added (unless the
refactoring operation explicitly inserts it):

####<p>line1</p>#
####<p>line2</p>#
####<p>line3</p>#

####<p>line1</p><p>after</p>#
####<p>line2</p>#
####<p>before</p><p>line3</p>#

Blog | 3 - DITA | 200

The test case below provides a mode="indent-stuff" template mode that looks for @indent attribute directives (they are removed
as part of the reformatting process).

In the following example, the indent-reformatting template is applied around a <p> deletion:

 <p>line 1</p>
 <p indent="self">line 2</p>#

 <p indent="self">line 4</p>
 <p>line 5</p>

 <p>line 1</p>#
###<p>line 2</p>#
###<p>line 4</p>
 <p>line 5</p>

<!-- TOP-LEVEL PASS - apply multiple processing passes to input document -->
<xsl:template match="/*" priority="100">
 <xsl:variable name="result" as="element()">
 <xsl:next-match/> <!-- apply #default mode templates first -->
 </xsl:variable>
 <xsl:apply-templates select="$result" mode="indent-stuff"/> <!-- process/remove @indent -->
</xsl:template>

In the following example, the indent-reformatting template is applied to <p> insertions:

 <p>line 1</p>
 <p>line 2</p><p indent="self adjacent-siblings">after</p>
 <p>line 3</p>
 <p indent="self adjacent-siblings">before</p><p>line 4</p>
 <p>line 5</p>

 <p>line 1</p>#
###<p>line 2</p>#
###<p>after</p>#
###<p>line 3</p>#
###<p>before</p>#
###<p>line 4</p>
 <p>line 5</p>

<!-- TOP-LEVEL PASS - apply multiple processing passes to input document -->
<xsl:template match="/*" priority="100">
 <xsl:variable name="result" as="element()">
 <xsl:next-match/> <!-- apply #default mode templates first -->
 </xsl:variable>
 <xsl:apply-templates select="$result" mode="indent-stuff"/> <!-- process/remove @indent -->
</xsl:template>

The @indent attribute contains a space-separated list that supports the following values:

• self - Reformat indenting whitespace before the current element (and after, for the last child of a parent).

• adjacent-siblings - Reformat indenting whitespace before the preceding and following sibling elements (and after, for
the last child of a parent).

• siblings - Reformat whitespace around all sibling elements in the same parent element.

• children - Reformat whitespace around all child elements.

• deep - Reformat whitespace around all child and descendant elements.

The @indent attribute allows you to control the scope of content change so that the revision control change footprint can be
controlled.

The mode="indent-stuff" template works as follows:

• Different files can have different indenting width conventions.

◦ The template uses the most common indenting value (the statistical mode) in each file.

https://en.wikipedia.org/wiki/Mode_(statistics)

Blog | 3 - DITA | 201

• Elements inserted in a block context (i.e. <p>) should be indented, but elements in an inline context (i.e. <codeph>) should
not.

◦ Some elements (i.e. <indexterm>) should be treated as block or inline elements based on their context (such as
when they are in <prolog> or <p>).

• There might or might not be existing indenting whitespace around an element, and it might or might not be correct.

◦ Indenting is added or repaired as needed.

• The last child element of a parent element requires one less indent level before its parent's closing tag.

To determine where indenting is appropriate, the stylesheet defines inner-tag-type and outer-tag-type XSLT3 maps that
indicate the expected type of content at the inside and outside of each element's tags. Possible values are block (block elements),
text (text content or inline elements), or an empty string (unknown or ambiguous content type). For example:

Element outer-tag-type inner-tag-type

body block block

p block text

ph text text

menucascade text block

indexterm '' (empty string) text

entry block '' (empty string)

For elements with unknown or ambiguous content types at the tag boundaries, the stylesheet applies heuristics to guess the
indentation needs.

To view the XSLT stylesheet without downloading the test case, click on the following link:

util-indent.xsl

There are comments in the code to explain how it works.

Considering Content Models During Content Insertion

When inserting new content, the changes should not introduce any DITA content model (schema) violations. Some DITA content
models require a specific element ordering. For example, the content model for <prolog> is:

<prolog> =

<author>*, <source>?, <publisher>?, <copyright>*, <critdates>?, <permissions>?, <metadata>*,
<resourceid>*, (<data> | <data-about> | <foreign> | <sort-as> | <unknown>)*

Commas in the content model indicate an ordering requirement. For example, a <resourceid> element must be inserted after its
preceding elements and before its following elements.

The test case below provides a mode="insert-stuff" template mode that inserts content at a specified element path inside the
selected element.

In the following example, the content-insertion template is applied to a <topic> element to insert a <resourceid> element in a
<prolog> element:

topics/refactoring_inserting_reformatting/util-indent.xsl

Blog | 3 - DITA | 202

<topic id="topic">
 <title>My Topic</title>
 <prolog>
 <author>chrispy</author>
 <data name="my-data"/>
 </prolog>
 <body/>
</topic>

topic.dita (before)
topic.dita (after)

<topic id="topic">
 <title>My Topic</title>
 <prolog>
 <author>chrispy</author>#
######<resourceid appid="topic-id"/>
 <data name="my-data"/>
 </prolog>
 <body/>
</topic>

 <!-- insert a <resourceid> into /topic/prolog -->
 <xsl:template match="/topic">
 <xsl:apply-templates select="." mode="insert-stuff">
 <xsl:with-param name="path" select="'prolog'" as="xs:string*"/>
 <xsl:with-param name="content" as="element()*" tunnel="yes">
 <resourceid appid="topic-id" indent="self"/>
 </xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

In the following example, the content-insertion template is applied to a <topic> template to insert an <indexterm> element using
a multiple-level insertion path:

Blog | 3 - DITA | 203

<topic id="topic1">
 <title>My Topic</title>
 <body/>
</topic>

topic1.dita (before)

topic1.dita (after)

<topic id="topic1">
 <title>My Topic</title>#
###<prolog>#
######<metadata>#
#########<keywords>#
############<indexterm>my-term</indexterm>#
#########</keywords>#
######</metadata>#
###</prolog>
 <body/>
</topic>

<topic id="topic2">
 <title>My Topic</title>
 <prolog>
 <author>chrispy</author>
 <metadata>
 <audience type="user"/>
 </metadata>
 <data name="my-data"/>
 </prolog>
 <body/>
</topic>

topic2.dita (before)
topic2.dita (after)

<topic id="topic2">
 <title>My Topic</title>
 <prolog>
 <author>chrispy</author>
 <metadata>
 <audience type="user"/>#
#########<keywords>#
############<indexterm>my-term</indexterm>#
#########</keywords>
 </metadata>
 <data name="my-data"/>
 </prolog>
 <body/>
</topic>

 <!-- insert an <indexterm> into /topic/prolog/metadata/keywords -->
 <xsl:template match="/topic">
 <xsl:apply-templates select="." mode="insert-stuff">
 <xsl:with-param name="path" select="'prolog/metadata/keywords'" as="xs:string*"/>
 <xsl:with-param name="content" as="element()*" tunnel="yes">
 <indexterm indent="self">my-term</indexterm>
 </xsl:with-param>
 </xsl:apply-templates>
 </xsl:template>

The mode="insert-stuff" template works as follows:

• The path parameter can be a sequence of element name strings, a path string value using slash ("/") separators, or a mix
of both.

◦ An empty string or sequence value inserts the content directly into the applied element.

• New elements are inserted into existing elements using content model information.

◦ The template creates or reuses intermediate element levels as needed, considering content models along the way.

• New elements created by a @path specification have a default @indent value of self.

You can override the default @indent value by specifying the indent parameter with the mode="insert-stuff" template.
For example:

Blog | 3 - DITA | 204

◦ Setting indent to "self adjacent-siblings" reformats content more aggressively around newly created
intermediate elements.

◦ Setting indent to an empty string value disables reformatting for newly created elements.

• The insertion content itself is not indented unless it has explicitly defined @indent attributes.

• Only simple ordered-list content model modeling is supported.

To view the XSLT stylesheet without downloading the test case, click on the following link:

util-insert.xsl

There are comments in the code to explain how it works.

Example Test Case

The following Oxygen project provides the moded templates described earlier, along with an example refactoring operation that
demonstrates their use:

refactoring_inserting_reformatting.zip

Specifically, it provides the following:

• frameworks/dita/refactoring/util-indent.xsl

This stylesheet file defines the mode="indent-stuff" template.

The outer-tag-type and inner-tag-type XSLT3 maps are defined at the top of the file. You can update or add to these as
needed.

• frameworks/dita/refactoring/util-insert.xsl

This stylesheet file defines the mode="insert-stuff" template.

The content-models map is defined at the top of the file. Only <prolog>-related content models are defined in this test
case. You can add to these as needed.

• frameworks/dita/refactoring/insert-by-content-model.xml

frameworks/dita/refactoring/insert-by-content-model.xsl

This Oxygen refactoring operation allows you to interactively experiment with content insertion and reformatting. It
includes and uses both of the stylesheets above.

To try out the example refactoring operation:

1. Open the OPENME2.ditamap file in the DITA Maps Manager.

2. Open "My Topic" (topic.dita) in the Oxygen editor.

3. Right-click in the topic editing window, then choose Refactoring > Content insertion > Insert element by content
model.

4. For the configuration parameters, enter the following:

topics/refactoring_inserting_reformatting/util-insert.xsl
topics/refactoring_inserting_reformatting/refactoring_inserting_reformatting.zip

Blog | 3 - DITA | 205

5. When you preview the refactoring operation, the results should be as follows:

Surveys

Small Problems with the DITA Standard

Don't get me wrong, I think that DITA is a great standard for writing technical documentation, it has lots of reuse possibilities
and linking potential, and in general, it's well thought out and comprehensive.

Blog | 3 - DITA | 206

Over the years, many of our Oxygen XML Editor clients (or me, personally) have encountered various limitations/quirks in the
DITA standard and I will share them below. These complaints are not related at all to the publishing part and I think that some of
them will probably be resolved as the DITA standard evolves from one version to another. Also, many of these issues could not
be effectively fixed since the DITA standard has strived (and succeeded) to be backward compatible and thus, the issues remain
from version to version. So here we go:

• When I create a DITA specialization, to add a new attribute according to the specification I need to add that attribute
to all DITA elements. I think the main idea was that the new attribute is a profiling attribute so it makes sense to be
added to all elements, but sometimes you need to funnel this behavior and make the attribute available only on a certain
element and still consider the specialization as a valid DITA specialization.

• The existing xml:lang attribute cannot be used to profile and filter out content. In the past, we had users somehow
mixing languages in the same DITA Map and expecting to create output for one language or the other by filtering based
on the xml:lang attribute.

• You cannot easily profile/filter out an entire column from a CALS table. For example, you cannot add a profiling
attribute directly to the DITA colspec element to remove entire table columns when publishing. So the alternative is to
use a DITA simple table and define the profiling attribute on each of the cells in the column or to perform some kind of
output customization based on a magic outputclass attribute set on a certain element in the table.

• There are too many constraints imposed when writing DITA specializations. Robert Anderson, the DITA OT project
manager and OASIS member involved in defining the DITA standard, had two interesting blog posts on this:

◦ http://metadita.org/toolkit/ditasplainer.html
◦ http://metadita.org/toolkit/nonononodomains.html

• With most of the material being published for web and with the need to dynamically include media resources (video,
audio) in the published HTML content, it's a pity that the DITA standard does not yet have specialized <audio> and
<video> elements. Again, we need to rely on the magic outputclass attribute to give semantic to the generic DITA
<object> element.

• Sometimes there are two or more ways of doing something. For example, choosing between using a CALS table or a
simple table or choosing between using conkeyref, keyref, or conref to reuse small pieces of text. Why even have the
<simpletable> element in the DITA standard at all, since a CALS table without cells spanning is simple enough? The
LightWeight DITA Project is an alternative to DITA and it tries to simplify the standard and eliminate such problems:
http://docs.oasis-open.org/dita/LwDITA/v1.0/LwDITA-v1.0.html.

• DITA elements that have conrefs or conkeyrefs need to also have the required content specified in them. So I cannot
simply do this:

<table conref="path/to/target.dita#topicID/elementID"/>

Instead, I need to do this:

<table conref="path/to/target.dita#topicID/elementID">
 <tgroup cols="1">
 <tbody>
 <row>
 <entry/>
 </row>
 </tbody>
 </tgroup>
</table>

and have all the required table elements and tgroup elements (plus required attributes) filled out even if the expanded
conref will replace the entire original element.

• You cannot reference directly to a subtopic element using a key. If the standard would allow a DITA Map to reference
directly to a subtopic element like this:

<keydef href="topics/reusableComponents.dita#topicID/tableID" keys="reused_table"/>

you could reuse the table without needing to specify the ID to the reused element on each conkeyref:

<table conkeyref="reused_table"/>

• Some DITA elements (eg: , <entry>, <section>) have a very relaxed content model in the specification allowing
both text and block elements, in any order. So when using visual editing tools, this leads technical writers to create DITA
content that looks like this:

 Preview:

http://metadita.org/toolkit/ditasplainer.html
http://metadita.org/toolkit/nonononodomains.html
http://docs.oasis-open.org/dita/LwDITA/v1.0/LwDITA-v1.0.html

Blog | 3 - DITA | 207

 <p>Here are some of the preview</p>

as the visual editing tool cannot, by default, impose an editing constraint if the standard does not. Usually, for such cases
additional Schematron checks can be handy.

• The DITA content is not automatically profiled based on the new DITA 1.3 deliveryTarget attribute. So setting
deliveryTarget="pdf" on a DITA element will not automatically filter it out of the HTML based outputs, the attribute
is treated just like another profiling attribute, and it can be filtered out from the DITAVAL file.

This concludes my complaint list. Anything else you encountered in the DITA standard that bothers you?

DITA Linking Usage Survey

A few weeks ago I published a survey that was intended to be an overview about DITA Linking habits. A big thank you to
everyone who participated.

Here are some of my thoughts in regards to the results:

• Most projects (including ours) seems to approach linking with a mixture between DITA 1.1 hrefs and DITA 1.2 keyrefs.
In my opinion, this is caused by a variety of factors, of which the most important could be:

◦ Technical writers who are not comfortable using indirect references (keyrefs)
◦ The project was started using hrefs and not all links have been converted to keyrefs

• Almost everybody using related links uses a relationship table to manage them. And that's good.
• There are projects where related links, chunking and collection-type are not used at all. I think this is not because the

projects are not complex, but because the main output delivery format for those projects is PDF. In a DITA Reuse survey
I opened last year, there was a clear indication that PDF was still the most used output format.

Although harder to quantify, I usually like answers to open questions because you get a better idea about the difficulties of
linking in DITA:

• The large set of DITA linking possibilities make the standard harder to use (too many options, harder for writers to
understand and use keyrefs or relationship tables). There seems to be a need to have a best practice involving linking and
DITA.

• Various writers have various writing styles, leading to inconsistent projects.
• Problems with the publishing part, even when the right DITA content is used for links (for example abbreviated-form).

The publishing engine might have issues that break the link in the final output.
• Problems with link management, with having a clear idea of outbound and inbound links and their target. Problems with

broken links.
• The tools used for editing DITA sometimes hide the complexity and even the type of link that gets created. Also, the

tools should help make it easier for the writer to find the target content to link to.

DITA Inheritance Hierarchy

The DITA standard is based on the concept of inheritance that enables extending or restricting the vocabulary while allowing the
XML content to still be regarded as valid DITA. Even in the DITA standard, there are various elements that are specializations of
others (for example "b" is a specialization of "ph"). The XSLT stylesheets that are used for publishing match all DITA elements
by the value of their @class attribute, so knowing how elements may extend each other may be useful when customizing the
DITA XSLT stylesheets.

A DITA inheritance hierarchy list for the base DITA Topic specification is presented below:

• topic/copyryear
• topic/foreign

◦ mathml-d/mathml
◦ svg-d/svg-container

• topic/author
• topic/example

Blog | 3 - DITA | 208

• topic/unknown
• topic/titlealts
• topic/linktext
• topic/category
• topic/data

◦ relmgmt-d/change-request-reference
◦ relmgmt-d/change-person
◦ relmgmt-d/change-request-id
◦ relmgmt-d/change-request-system
◦ relmgmt-d/change-completed
◦ relmgmt-d/change-started
◦ ut-d/sort-as
◦ relmgmt-d/change-item
◦ relmgmt-d/change-organization
◦ relmgmt-d/change-summary
◦ concept/data

▪ glossentry/glossPartOfSpeech
▪ glossentry/glossProperty
▪ glossentry/glossStatus

◦ relmgmt-d/change-revisionid
• topic/longdescref
• topic/audience
• topic/abstract

◦ concept/abstract
▪ glossentry/glossdef

• topic/related-links
• topic/body

◦ task/taskbody
◦ concept/conbody

▪ glossentry/glossBody
◦ troubleshooting/troublebody
◦ reference/refbody

• topic/ph
◦ hi-d/overline
◦ hi-d/line-through
◦ hi-d/sub
◦ pr-d/sep
◦ equation-d/equation-inline
◦ pr-d/repsep
◦ equation-d/equation-number
◦ hi-d/tt
◦ task/cmd
◦ pr-d/synph
◦ sw-d/userinput
◦ ut-d/coords
◦ pr-d/oper
◦ hi-d/sup
◦ pr-d/var
◦ sw-d/msgph
◦ pr-d/codeph
◦ ui-d/uicontrol
◦ hi-d/i
◦ hi-d/u
◦ sw-d/filepath

Blog | 3 - DITA | 209

◦ sw-d/systemoutput
◦ pr-d/delim
◦ hi-d/b
◦ ui-d/menucascade

• topic/object
• topic/fig

◦ ut-d/imagemap
◦ pr-d/syntaxdiagram
◦ equation-d/equation-figure

• topic/featnum
• topic/lines
• topic/brand
• topic/state
• topic/source
• topic/link
• topic/vrm
• topic/sli
• topic/navtitle
• topic/figgroup

◦ pr-d/synblk
◦ pr-d/fragment
◦ ut-d/area
◦ pr-d/groupcomp
◦ pr-d/groupseq
◦ pr-d/groupchoice

• topic/note
◦ hazard-d/hazardstatement
◦ concept/note

▪ glossentry/glossScopeNote
▪ glossentry/glossUsage

• topic/ol
◦ task/substeps
◦ task/steps

• topic/stentry
◦ task/choption
◦ reference/propvalue
◦ reference/propvaluehd
◦ reference/propdeschd
◦ reference/propdesc
◦ reference/proptype
◦ reference/proptypehd
◦ task/choptionhd
◦ task/chdesc
◦ task/chdeschd

• topic/dlentry
◦ pr-d/plentry

• topic/vrmlist
• topic/entry
• topic/fn

◦ pr-d/synnote
• topic/xref

◦ mathml-d/mathmlref
◦ svg-d/svgref
◦ concept/xref

Blog | 3 - DITA | 210

▪ glossentry/glossAlternateFor
◦ pr-d/synnoteref
◦ pr-d/fragref
◦ pr-d/coderef

• topic/component
• topic/series
• topic/bodydiv

◦ reference/refbodydiv
◦ troubleshooting/troubleSolution
◦ concept/conbodydiv

• topic/data-about
• topic/tgroup
• topic/keywords
• topic/boolean
• topic/critdates
• topic/strow

◦ task/chrow
◦ reference/property

• topic/simpletable
◦ reference/properties
◦ task/choicetable

• topic/linklist
• topic/revised
• topic/table
• topic/dt

◦ pr-d/pt
• topic/image

◦ hazard-d/hazardsymbol
◦ concept/image

▪ glossentry/glossSymbol
• topic/ul

◦ hazard-d/messagepanel
◦ task/choices
◦ task/steps-unordered

• topic/p
◦ concept/p

▪ glossentry/glossSurfaceForm
◦ troubleshooting/responsibleParty

• topic/q
• topic/linkinfo
• topic/dd

◦ pr-d/pd
• topic/lq
• topic/prodinfo
• topic/dl

◦ pr-d/parml
• topic/prolog
• topic/indextermref
• topic/copyright
• topic/div

◦ equation-d/equation-block
• topic/sthead

◦ task/chhead
◦ reference/prophead

Blog | 3 - DITA | 211

• topic/tbody
• topic/searchtitle
• topic/colspec
• topic/created
• topic/tm
• topic/text
• topic/cite
• topic/li

◦ hazard-d/howtoavoid
◦ task/step
◦ task/substep
◦ hazard-d/consequence
◦ hazard-d/typeofhazard
◦ task/choice
◦ task/stepsection

• topic/permissions
• topic/no-topic-nesting
• topic/dlhead
• topic/prodname
• topic/index-base

◦ indexing-d/index-sort-as
◦ indexing-d/index-see
◦ indexing-d/index-see-also

• topic/indexterm
• topic/copyrholder
• topic/longquoteref
• topic/required-cleanup
• topic/ddhd
• topic/sl
• topic/draft-comment
• topic/section

◦ task/postreq
◦ task/result
◦ troubleshooting/remedy
◦ task/tasktroubleshooting
◦ concept/section

▪ glossentry/glossAlt
◦ task/context
◦ troubleshooting/cause
◦ task/steps-informal
◦ reference/refsyn
◦ task/prereq
◦ troubleshooting/condition

• topic/pre
◦ sw-d/msgblock
◦ pr-d/codeblock
◦ ui-d/screen

• topic/topic
◦ troubleshooting/troubleshooting
◦ concept/concept

▪ glossgroup/glossgroup
▪ glossentry/glossentry

◦ reference/reference
◦ task/task

Blog | 3 - DITA | 212

• topic/platform
• topic/alt
• topic/keyword

◦ ui-d/shortcut
◦ markup-d/markupname

▪ xml-d/parameterentity
▪ xml-d/xmlatt
▪ xml-d/numcharref
▪ xml-d/xmlpi
▪ xml-d/textentity
▪ xml-d/xmlnsname
▪ xml-d/xmlelement

◦ pr-d/parmname
◦ pr-d/option
◦ sw-d/cmdname
◦ ui-d/wintitle
◦ ut-d/shape
◦ sw-d/varname
◦ pr-d/apiname
◦ pr-d/kwd
◦ sw-d/msgnum

• topic/thead
• topic/publisher
• topic/desc
• topic/term

◦ abbrev-d/abbreviated-form
• topic/title

◦ concept/title
▪ glossentry/glossShortForm
▪ glossentry/glossAbbreviation
▪ glossentry/glossSynonym
▪ glossentry/glossterm
▪ glossentry/glossAcronym

• topic/itemgroup
◦ task/steptroubleshooting
◦ task/tutorialinfo
◦ task/info
◦ task/stepxmp
◦ task/stepresult

• topic/row
• topic/linkpool
• topic/param
• topic/shortdesc
• topic/resourceid
• topic/dthd
• topic/metadata

◦ relmgmt-d/change-historylist
• topic/othermeta
• topic/prognum
• topic/sectiondiv

A DITA inheritance hierarchy list for the base DITA Map specification is presented below:

Blog | 3 - DITA | 213

• abbrev-d/abbreviated-form
• delay-d/anchorkey
• delay-d/exportanchors
• ditavalref-d/ditavalmeta
• ditavalref-d/dvrResourceSuffix
• hazard-d/hazardstatement
• hazard-d/hazardsymbol
• hazard-d/messagepanel
• hazard-d/typeofhazard
• indexing-d/index-sort-as
• map/topicmeta
• map/topicref

◦ ditavalref-d/ditavalref
◦ glossref-d/glossref
◦ mapgroup-d/anchorref
◦ mapgroup-d/keydef
◦ mapgroup-d/mapref
◦ mapgroup-d/topichead
◦ mapgroup-d/topicset
◦ mapgroup-d/topicsetref

• mapgroup-d/topicgroup
• pr-d/parml
• pr-d/pd
• pr-d/plentry
• pr-d/pt
• pr-d/synblk
• pr-d/synnote
• pr-d/synnoteref
• relmgmt-d/change-historylist
• sw-d/msgblock
• sw-d/userinput
• topic/data

◦ ditavalref-d/dvrKeyscopePrefix
◦ ditavalref-d/dvrKeyscopeSuffix
◦ ditavalref-d/dvrResourcePrefix
◦ relmgmt-d/change-completed
◦ relmgmt-d/change-item
◦ relmgmt-d/change-organization
◦ relmgmt-d/change-person
◦ relmgmt-d/change-request-id
◦ relmgmt-d/change-request-reference
◦ relmgmt-d/change-request-system
◦ relmgmt-d/change-revisionid
◦ relmgmt-d/change-started
◦ relmgmt-d/change-summary
◦ ut-d/sort-as

• topic/dd
• topic/dl
• topic/dlentry
• topic/dt
• topic/fig

◦ pr-d/syntaxdiagram
• topic/figgroup

Blog | 3 - DITA | 214

◦ pr-d/fragment
◦ pr-d/groupchoice
◦ pr-d/groupcomp
◦ pr-d/groupseq
◦ ut-d/area

• topic/fn
• topic/image
• topic/index-base

◦ indexing-d/index-see
◦ indexing-d/index-see-also

• topic/keyword
◦ delay-d/anchorid
◦ markup-d/markupname

▪ xml-d/numcharref
▪ xml-d/parameterentity
▪ xml-d/textentity
▪ xml-d/xmlatt
▪ xml-d/xmlnsname
▪ xml-d/xmlpi

◦ pr-d/apiname
◦ pr-d/kwd
◦ pr-d/option
◦ pr-d/parmname
◦ sw-d/cmdname
◦ sw-d/msgnum
◦ sw-d/varname
◦ ui-d/shortcut
◦ ui-d/wintitle
◦ ut-d/shape
◦ xml-d/xmlelement

• topic/keywords
• topic/li

◦ hazard-d/consequence
◦ hazard-d/howtoavoid

• topic/metadata
• topic/note
• topic/ph

◦ hi-d/b
◦ hi-d/i
◦ hi-d/line-through
◦ hi-d/overline
◦ hi-d/sub
◦ hi-d/sup
◦ hi-d/tt
◦ hi-d/u
◦ pr-d/codeph
◦ pr-d/delim
◦ pr-d/oper
◦ pr-d/repsep
◦ pr-d/sep
◦ pr-d/synph
◦ pr-d/var
◦ sw-d/filepath
◦ sw-d/msgph

Blog | 3 - DITA | 215

◦ sw-d/systemoutput
◦ ui-d/menucascade
◦ ui-d/uicontrol
◦ ut-d/coords

• topic/pre
◦ pr-d/codeblock
◦ ui-d/screen

• topic/term
• topic/ul
• topic/xref

◦ pr-d/coderef
◦ pr-d/fragref

• ut-d/imagemap

DITA Usage Survey

A week or two ago I opened a survey about various ways in which people are using DITA. The survey was taken by more than
50 distinct DITA users and I think it indicated quite clearly some trends in the industry. As I said from the beginning,

I will try below to sum up some of the results:

GIT is on a roll

GIT overcomes Subversion to be the most popular open source solution for version control used in DITA projects. Although
most users who responded seem to use open source solutions for version control, there is a solid portion of them using
commercial CMSs probably specialized in DITA content. I suspect that people with small to medium projects prefer open source
solutions because they are more affordable for their small group of writers.

PDF is still the most popular output format

Most of the participants identified PDF as being their primary output format. Most of them output both to PDF and XHTML but
the choice of PDF as the primary output format looks very clear.

Indirect addressing is becoming the main way of reusing content

Plain content references are still used more than content key references but key references are strongly used as well so it seems
that indirect ways of addressing content win this game.

DITA 1.3 features

Besides the use of key scopes and branch filtering (which comes as no surprise) it would see that the troubleshooting topic and
use of SVG embedded directly inside DITA content come as strong needs that DITA 1.3 fulfills.

Popular image formats

The fact that PNG is the most popular image format comes as no surprise. But SVG coming in as a close second identifies an
increasing trend of using vectorial images in technical documentation. Besides the benefit of being vectorial and not losing
information when scaled, SVG allows you the unique capability of translating various parts of the image.

Major DITA frustrations

It would seem there are two major DITA frustrations:

Blog | 3 - DITA | 216

• PDF Customization difficulties. This in my opinion wins the cake in this category. Customizations for the standard PDF
output are hard, they required knowledge of XSLT, XSL-FO and of the PDF plugin architecture. But alternatives do
exist:Possibilities to obtain PDF from DITA (on page 100)

• "DITA is perceived as too complex for casual users." This quote says it all, the entry level is high. There are also
complains about linking, filtering and reuse. All these come from the DITA flexibility and the fact that each new
version adds new elements and ways of working with content. And although DITA can be specialized and reduced as a
vocabulary, I suspect not many people are doing that.

That's all I wanted to cover in this post, so go ahead, enjoy the survey results and any comments are as usual welcomed.

Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML content

A Chatbot is a computer program that simulates human conversation through voice commands or text chats or both. Chatbot
(short for chatterbot), is an artificial intelligence (AI) feature that can be embedded and used through any major messaging
application. Chatbots helps add convenience for customers, they are automated programs that interact with customers like a
human would, and cost little to nothing to engage with.

Suppose you have a simple DITA topic that contains pairs of questions and answers placed as rows in a table:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="frequently_asked_questions">
 <title>Frequently Asked Questions</title>
 <body>
 <p>
 <table frame="all" rowsep="1" colsep="1" id="table_bkf_4dl_vsb">
 <tgroup cols="2">
 <colspec colname="c1" colnum="1" colwidth="1*"/>
 <colspec colname="c2" colnum="2" colwidth="1*"/>
 <tbody>
 <row>
 <entry>
 <p>What is Oxygen XML Editor?</p>
 <p>What is Oxygen XML?</p>
 </entry>
 <entry>
 <p>Oxygen XML Editor is a great tool.</p>
 </entry>
 </row>
 <row>
 <entry>How do I learn DITA?</entry>
 <entry>You can read the "Oxygen" user's guide, and the Oxygen XML Blog.</entry>
 </row>
 </tbody>
 </tgroup>
 </table>
 </p>
 </body>
</topic>

We can use the following XSLT stylesheet to extract the training data as a CSV file from the XML content:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs" version="2.0" xmlns:oxy="abc">
 <xsl:output method="text"/>
 <xsl:template match="/">
 <xsl:text>Question,Answer
</xsl:text>
 <xsl:for-each select="//tbody/row">
 <xsl:for-each select="entry[1]">
 <xsl:choose>
 <xsl:when test="p">
 <xsl:for-each select="p">
 <xsl:value-of select="oxy:escapeForCSV(normalize-space(.))"/>,<xsl:value-of
 select="oxy:escapeForCSV(normalize-space(string-join(../../entry[2]//text(),
 '')))"/><xsl:text>
</xsl:text>

Blog | 3 - DITA | 217

 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="oxy:escapeForCSV(normalize-space(.))"/>,<xsl:value-of
 select="oxy:escapeForCSV(normalize-space(string-join(../entry[2]//text(),
 '')))"/><xsl:text>
</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
 <xsl:function name="oxy:escapeForCSV">
 <xsl:param name="value"/>
 <xsl:value-of select="replace(replace($value, '"', '""'), ',', '","')"/>
 </xsl:function>
</xsl:stylesheet>

Create a transformation scenario using these 2 files. Save the output to a CSV file, as in the picture below:

After applying the transformation, the following CSV file should appear:

What is Oxygen XML Editor?,Oxygen XML Editor is a great tool.
What is Oxygen XML?,Oxygen XML Editor is a great tool.
How do I learn DITA?,You can read the ""Oxygen"" user's guide"," and the Oxygen XML Blog.

Notice:

The structure of the CSV file contains a table with 2 columns, where the first column represents the question and the
second column the answer, separated by a comma. In general, a line is in the form: "Question, Answer". One limitation
is that each question can have only one answer. For the same answer to be suitable for several questions, you can copy it
in the columns corresponding to the questions.

Next, follow these steps to use the data from the CSV file in the Google Dialogflow chatbot:

1. Create an account on https://dialogflow.cloud.google.com/.
2. Create a new agent and complete the required fields:

https://dialogflow.cloud.google.com/

Blog | 3 - DITA | 218

3. In Settings, enable BETA FEATURES.

4. Go to Knowledge > CREATE KNOWLEDGE BASE, enter a name for this knowledge base, and click the SAVE
button.

5. Use the CSV document for training. For this: Press Create the first one and complete the fields. Select the Update file
from your computer option and select the desired file. Click the CREATE button.

Blog | 3 - DITA | 219

The document will be registered in the knowledge base, as in the image below:

6. Convert questions and answers into intents.

Click the View link from the image above. Check all questions that need to be converted to intents. Click the
CONVERT TO INTENTS button.

Blog | 3 - DITA | 220

Now, when you click on Intents, the converted questions should appear:

7. Do a simulation. Click Integration > Web demo, and if the demo feature is disabled, enable it.

Blog | 3 - DITA | 221

8. Integrate the Chatbot in your HTML Content. Go to the Dialogflow Integrations page, click the Web Demo integration
and you will get an <iframe> HTML element which can be pasted in your HTML page. Using a WebHelp customization
you can also integrate the Chatbot in the footer for each generated HTML page.

This was a basic way to show how a chatbot can be trained with intents and answers by using a DITA topic to produce a comma-
separated value file.

Using ChatGPT in a DITA XML Project

The ChatGPT OpenAI bot has the potential to help with various technical documentation tasks (advice about the standard, small
conversions, content generation, writing style, and readability analysis).

Below, you can see a list of prompts that I gave the bot along with the answers. The prompts to the chatbot are presented as
codeblocks.

Advice About DITA XML Standard Use

1. Ask about the type of DITA links to use in a topic.

Should I use cross references or related links in my DITA XML topic?

https://chat.openai.com/chat

Blog | 3 - DITA | 222

2. Ask information about a specific DITA XML element.

Blog | 3 - DITA | 223

Can I use the DITA XML uicontrol element for company names?

Generate New Content

1. Instruct ChatGPT to generate DITA content about a very common task.

Write a small DITA XML task about installing a software application on Windows.

2. Generate a list of index terms from existing DITA XML content.

Blog | 3 - DITA | 224

Create a DITA XML prolog element containing 5-6 index term elements related to the DITA XML topic
 below:
....

Simple Conversions

1. Convert Markdown content to DITA XML topic.

Convert this Markdown content to a DITA XML topic:

Getting Started

List of steps:

- Install application
- Login
- Perform task

Blog | 3 - DITA | 225

2. Convert CSV content to DITA XML table.

Convert this CSV content containing headers to a DITA XML table element:

Common name,Scientific name,Location,Temperament,Diet,Water,Size,Region of the Aquarium,Breeding
Compressiceps,Haplochromis compressiceps,Lake Tanganyika,Territorial,Omnivore,"PH 7.0 - 8.0, Temp. 73
 - 77 F",5 inches,Bottom,Hard
Frontosa,Cyphotilapia frontosus,Lake Tanganyika,Very peaceful,Omnivore,"PH 7.8 - 8.5, Temp 75F -
 82F",14 inches,Middle-Bottom,Medium

Writing Style

1. Ask what terminology to use in certain cases.

Should I use for technical documentation the phrase "click a button" or "press a button"?

Blog | 3 - DITA | 226

2. Re-phrase documentation provided by engineers using the Microsoft Style Guide style and also change the point of view
from first-person to third-person.

Re-phrase the following content to adhere to the Microsoft Style Guide, third person:

The action Show only keys with closest relative key scope from DITA Reusable Components / Keys tab was
 also added to Media tab Settings drop down menu
The states of the two actions are synchronized. If you check it in Keys tab will automatically get
 checked in Media tab

3. Translate some notes from the engineer's native language (in this case, Romanian with a mix of English words) to
English, re-phrase using the Microsoft Style Guide style, and also change the point of view from first-person to third-
person.

Translate to English, rephrase to adhere to the Microsoft Style Guide, third person:

In tabul Media, in meniul Settings a aparut actiunea Show only keys with closest relative key scope
Cand o bifam trebuie sa ramana in view doar cheile relative (cheile cu forma cea mai scurta).

Blog | 3 - DITA | 227

4. Re-write an entire DITA XML topic to increase its readability.

Re-write the following DITA XML topic preserving all its original XML elements to increase its
 readability:
<topic id="dita_oriented_tips_and_tricks">
 <title>DITA Oriented Tips And Tricks</title>
 <prolog>
 <author>Radu Coravu</author>
 </prolog>
 <body>
 <p><ph keyref="oxygen"/> has about 18 years of development under its wings. During these
 years, we added lots of functionality and many of our users usually do not know more than 20-30%
 of Oxygen's features. So this presentation is intended for technical writers using Oxygen to
 write DITA content and who may want to find out more about their tool.</p>
 <section id="section_gld_tbs_gfb">
 <title>Add-ons</title>
 <p>There are lots of free add-ons provided by the Oxygen team that can be installed in an
 <xref
 href="https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories"
 format="html" scope="external">Oxygen standalone version</xref>. I will enumerate some of
 the most interesting one:</p>
 <ul id="ul_xbw_ccs_gfb">
 <xref href="https://github.com/oxygenxml/oxygen-git-plugin" format="html"
 scope="external">Git add-on</xref>. This plugin adds a side view allowing you to do some
 common Git operations like pull, commit, push (mostly 90% of what a regular Git user would
 do).
 <xref href="https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html"
 format="html" scope="external">Content Fusion Connector add-on</xref>. Collaborate with
 your peers by sending them links that allow them to give you feedback on your work using a
 web browser without the need to pre-install anything on their side.

 </section>
 </body>
</topic>

Result:

<topic id="dita_oriented_tips_and_tricks">
 <title>DITA Oriented Tips And Tricks</title>
 <prolog>
 <author>Radu Coravu</author>
 </prolog>
 <body>
 <p><ph keyref="oxygen"/> has been under development for about 18 years. During this time, we
 have added a lot of functionality, but many of our users are not aware of more than
 20-30% of Oxygen's features. This presentation is intended for technical writers who use
 Oxygen to write DITA content and want to learn more about the tool.</p>
 <section id="section_gld_tbs_gfb">
 <title>Add-ons</title>
 <p>Oxygen provides a range of free add-ons that can be installed in the <xref
 href="https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories"
 format="html" scope="external">Oxygen standalone version</xref>. Here are some
 of the most interesting ones:</p>

 <ul id="ul_xbw_ccs_gfb">
 <xref href="https://github.com/oxygenxml/oxygen-git-plugin" format="html"
 scope="external">Git add-on</xref>: This plugin adds a side view that allows
 you to perform common Git operations like pull, commit, and push (similar to
 what a regular Git user would do).
 <xref
 href="https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html"
 format="html" scope="external">Content Fusion Connector add-on</xref>:
 Collaborate with your peers by sending them links that allow them to give you
 feedback on your work using a web browser, without the need for them to
 pre-install anything on their side.

 </section>
 </body>
</topic>

Remarks: If the prompt insists that all XML elements should be preserved, the re-write does few things, but if the prompt
does not insist that all XML elements should be preserved, the inline elements and links are removed.

Blog | 3 - DITA | 228

Statistics
Create readability analysis for a DITA XML topic.

Create a readability analysis for the following DITA XML topic:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="topic_whr_nly_c5">
 <title>Sharing Application Settings</title><prolog><author>Radu Coravu</author></prolog>
 <body>
 <p>There are various ways in the Oxygen standalone version through which a team of writers
.........

Custom Validation (Schematron-based)

1. Create an ISO Schematron validation check that counts words.

Create an ISO Schematron schema which reports if a DITA short description element has more than 20
 words.

Blog | 3 - DITA | 229

Remark: The namespace declaration and usage is wrong (DITA elements are in no namespace). The assert test is correct.

2. Create an ISO Schematron validation check from a description.

Create an ISO Schematron validation rule which reports an error if a DITA XML image element does not
 contain a scale attribute

Remark: The namespace declaration and usage is wrong (DITA elements are in no namespace). The assert test is correct.

Blog | 3 - DITA | 230

Oxygen AI Positron Assistant Add-on

We are proud to introduce our new Oxygen AI Positron Assistant add-on, which provides support for helping technical
documentation writers generate and re-write content by using the Oxygen AI Positron service.

The Oxygen Positron Service uses the OpenAI ChatGPT model GPT-3.5 to provide document generation, change suggestions,
and translation capabilities. A setting to switch to using the GPT-4 model is also provided.

More details about installation and all the AI Positron features can be found in the Oxygen User's Manual.

https://www.youtube.com/embed/Do_KWYZfCFg?si=2Mrm7Bh1pmPvehqV

Overview

In a simplified form, technical documentation is often done in two stages: analysis and implementation. In the analysis stage,
technical writers could use various resources such as web searches, ChatGPT, or discussions with colleagues or engineers to
further understand the subject that needs to be documented. In the second stage, technical writers would use tools such as Oxygen
to write the actual content.

The Oxygen AI Positron Assistant add-on provides various ways to use ChatGPT to help writers while editing or reviewing
the technical documentation. For example, it can be used to receive hints about what to write next, improve the readability of
content, or re-structure the content in various ways.

Note: Content received from the OpenAI ChatGPT model may be inaccurate or contain misleading information, so it
needs to be thoroughly reviewed and revised accordingly.

Terms: The terms of use for the service can be found here.

As always, we are interested in your feedback and improvement suggestions.

Manual Installation

To manually install this add-on, follow this procedure:

1. Go to Help > Install new add-ons to open an add-on selection dialog box. Enter or paste https://www.oxygenxml.com/
InstData/Addons/default/updateSite.xml in the Show add-ons from field or select it from the drop-down menu.

2. Select the Oxygen AI Positron Assistant add-on and click Next.
3. Read the end-user license agreement. Then select the I accept all terms of the end-user license agreement option and

click Finish.
4. Restart the application.

Result: The AI Positron Assistant side view is now available.

Connecting to the Oxygen AI Positron Service

You can use the AI Positron Assistant side view to easily configure login details and connect to the Oxygen Positron Service
in the web browser.

To initiate the connection process, use the Connect button in the AI Positron Assistant view (or from the user drop-down menu
at the top-right corner of the view).

Note: The Oxygen Positron Service uses by default the OpenAI ChatGPT engine version 3.5 API to propose
document generation and change suggestions.

https://www.oxygenxml.com/doc/ug-editor/topics/ai_positron.html
https://www.youtube.com/embed/Do_KWYZfCFg?si=2Mrm7Bh1pmPvehqV
https://www.oxygenxml.com/aipositron/user_terms.html

Blog | 3 - DITA | 231

AI Server Requests and Credits

Each user has a limit to the number of requests that are sent to the AI server each month and this is managed through the use of
credits.

Generating and Refining Content

Once you log in to the server, the following actions for generating content are available in the Actions drop-down menu at the
top of the AI Positron Assistant side view (and also in the AI Positron Assistant submenu within the contextual menu, and in
the AI main menu). The progress and results of triggering an action are displayed in the main chat pane (on page 232):

Content Generation

• New DITA Topic - Generates a DITA XML topic based on a text description entered in a popup dialog
box.

• Continue Writing - Generates additional text based on the content preceding the cursor position.

• Short Description - Generates a short description (inside a <shortdesc> element) based on a summary
of the selected text (or the entire document if there is no selection). You can configure the style and the
approximate number of sentences to be generated.

• Index Terms - Generates a <keywords> element that contains index terms obtained from the selected text
(or the entire document if there is no selection).

• Follow Instructions (available when editing schemas, XSLT stylesheets, and Schematron files) -
Replaces the selected instructions with content generated based on them.

Rewrite

• Correct Grammar - Generates a suggestion for correcting the grammar and spelling within the selected
content.

• Improve Readability - Modifies the selected content to improve readability and fix grammar/spelling
errors. If you hover the mouse prompt over this button, a Settings button becomes available in the top-
right corner. Clicking the Settings button opens a pop-up window where you can choose the writing
level of the content to be generated. You can choose between: 5th grade (Very Easy), 8th grade (Plain
English), and College (Advanced).

• Use Active Voice - Generates a suggestion for replacing the selected content with content that has been
converted from passive to active voice.

• Itemize - Generates a suggestion for converting the selected content into a list of items.
• Join Items - Generates a suggestion for converting the selected list of items into a paragraph.

Overview

• Answer Questions - Generates answers to questions that the AI finds within the selected content (or the
entire document if there is no selection).

• Generate Questions - Generates a list of five questions that are answered within the selected content (or
the entire document if there is no selection).

• Summarize - Generates a summary of the selected content (or the entire document if there is no
selection).

• Readability - Generates suggestions for changing the selected content (or the entire document if there is
no selection) to improve its general readability.

Translation

The actions in this category translate the selected text to the target language (English, German, French,
Japanese), while preserving the original XML markup.

Marketing

https://aipositron.oxygenxml.com/

Blog | 3 - DITA | 232

• Release Notes - Creates release notes based on a set of features or issue ticket numbers with optional
descriptions.

• Marketing Post - Creates a marketing post based on a list of ideas or release notes.
• Improve SEO - Rewrites the content to enhance search engine optimization.
• Pain-Agitate-Solution - Rewrites the content using a marketing style based on the Pain-Agitate-Solution

framework.
• Features-Advantages-Benefits - Rewrites the content using a marketing style based on the Features-

Advantages-Benefits framework.

Tip: Custom actions can be configured in the AI Positron Assistant preferences page (on page 233).

AI Positron Assistant View

The add-on provides access to the AI Positron Assistant side-view. If the view is not displayed, it can be opened by selecting it
from Window > Show View.

Figure 1. AI Positron Assistant View

The Actions drop-down menu at the top of the AI Positron Assistant view contains the available AI-powered actions that can be
used to generate and refine content (on page 231). Simply select the action to trigger it. You can hover the mouse cursor over
an action to see a description of what the action does. A set of 5 recently used actions are also available in the Actions drop-down
menu.

Blog | 3 - DITA | 233

The Record button in the top-left corner of the view allows you to create custom actions or prompts by recording changes
(on page 235).

There is also a user drop-down menu at the top-right corner of the AI Positron Assistant view that contains the following:

• My account - Opens a webpage where you can see your current subscription package and credit status.
• Disconnect - Disconnects Oxygen from the Oxygen Positron Service.
• Preferences - Opens the Oxygen AI Positron Assistant preferences page (on page 233) where you can configure

the AI Positron service address and provide a Context for the user that the AI will use to create more relevant and
personalized responses.

The main chat pane presents the results after processing an action and allows you to further refine the responses by sending
messages to the Positron service platform. When an AI Positron action is triggered, the chat pane displays the progress and
results.

The response is received from the server in streaming mode (the AI sends chunks of the response as it is being generated rather
than waiting to send the entire response after it is generated). Once the entire response is received from the server, the following
actions are available under the response:

• Insert/Replace - Inserts the response at the cursor location within the document (or replaces the selected content).
• Preview - Allows you to preview the content that would be inserted at the cursor location within the document.
• Copy - Copies the response to the system clipboard.

The Chat History drop-down toolbar button makes it easy to go back to previous conversations and continue them.

You can use the bottom pane to refine the response by sending a message to the AI platform and it will generate a new response
based upon your message. You can create your own favorite prompts and use supported variables to specify the content that

is sent to the platform. You can use the Favorites drop-down button to store a favorite prompt. You can use the

Insert Variables drop-down button to select one of the supported variables:

• ${selection} - Expands to the currently selected content.
• ${document} - Expands to the content of the entire document.

Tip: Previously sent prompts can be modified directly in the chat thread. Once a prompt is edited, a new chat thread

is started based on the new prompt's content. For edited prompts, you can use the Next/ Previous buttons to
navigate between chat threads.

To clear the information in the chat pane and start a new chat, click the New Chat button in the top-right corner of the view.

AI Refactoring

The AI Positron Assistant add-on contributes an AI Positron Refactoring action in the contextual menu (Refactoring > AI
Positron Refactoring) of both the Project and DITA Maps Manager views in Oxygen XML Editor.

You can invoke the AI Positron Refactoring action to apply either a predefined AI action or a custom prompt to modify the
selected resources. The resulting AI Positron Refactoring dialog box presents an estimate of the amount of credits that will be
consumed by the operation, and you have the option to preview the changes before applying them over the original content.

For example, you could use the predefined Translate to action to translate multiple DITA topics into a certain language or apply
the Correct Grammar or Improve Readability actions on multiple resources.

AI Positron Assistant Preferences Page

Various settings can be configured in Options > Preferences > Plugins > Oxygen AI Positron Assistant:

AI Positron Service address

Blog | 3 - DITA | 234

Currently, there is only one public platform providing this service.

Default model

The default model is used for the chat pane and for actions that do not explicitly specify a fixed model. Each
chosen model consumes a certain number of credits (on page 231) per token.

Context

The context provides useful information about the user to the AI and is used in each action and chat request to
create more relevant and personalized responses.

Load default actions

Specifies if default actions are loaded.

Additional actions folder

You can use this option to specify a local folder where you have stored additional actions.

Enable XPath Functions

Enables the use of AI-specific XPath functions in the application when applying Schematron validation or XSLT
transformations. This feature is disabled by default.

Cache responses and reuse them for identical prompts

If enabled (default), responses for identical requests are stored (cached), resulting in fewer requests
being sent to the AI server and faster completion times. A Clear cache button located to the right
of this option can be used to clear the cache.

Cache size

Specifies a maximum limit for the cache size.

Notify me when the number of requests exceeds

You can select this option and specify a number of AI requests that when exceeded, a confirmation
dialog box is displayed asking if you want to continue using the XPath AI functions. If you select
"No" for the answer, the XPath functions will be disabled.

Validation Quick Fixes

When validation problems are displayed in the Results pane, you can right-click on a problem and use the AI Positron Fix
action to ask the AI Positron platform for help with fixing the problem. It will propose content in the chat pane (within the AI
Positron Assistant view) that can be used to solve the problem.

Blog | 3 - DITA | 235

Creating Custom Actions

In the AI Positron Assistant preferences page (on page 233), you can define a reference to a folder that contains custom
actions.

Once the add-on is installed, the File > New Document wizard can be used to create a new AI Positron Custom Actions
file that contains a JSON array with multiple actions. If the actions file is saved in the custom actions folder defined in the AI
Positron Assistant preferences page, validation and content completion will be automatically provided for it.

The most simple action defines an action id, title, type, and context:

[
 {
 "id": "my.action.id",
 "title": "Improve Grammar",
 "type": "replace-selection-with-fragment",
 "input-type": "markup",
 "context": "Improve grammar in the following content preserving the XML markup:"
 }
]

Defined actions can contain expandable parameters and their values can be customized before invoking the action:

[
 {
 "id": "my.action.id",
 "title": "Improve Grammar",
 "type": "replace-selection-with-fragment",
 "input-type": "markup",
 "context": "${style} Improve grammar in the following content preserving the XML markup:",
 "expand-params":[
 {
 "name": "style",
 "label": "Style",
 "value": "",
 "alternate-values": ["Use active voice.", "Use passive voice."],
 "alternate-value-labels": ["Active voice", "Passive voice"],
 "choice-type": "single-choice"
 }
]
 }
]

Create Custom Prompts/Actions by Recording Changes

The Record button in the top-left corner of the view allows you to create new AI actions. It opens the Record examples for
instructions dialog box where you can provide a set of instructions that are intended for the AI to follow. Then, after clicking the
Start recording button at the bottom of the dialog box, you can record a collection of examples in the editing area that will help
the AI better follow the given instructions. The examples are recorded from the changes made in the open editors.

After providing examples, you need to click the Record button again to stop the recording. You will then have the
opportunity to save the final result as either a Positron action or as a favorite chat prompt.

For example, if you want to add DITA markup to menu cascades, you can follow these steps:

1. Click the Record button.
2. In the Record examples for instructions dialog box, enter some instructions like: You are a technical writer. Add DITA

markup to menu cascades.
3. Click Start recording.
4. Open a DITA topic that has a menu cascade without markup (for example: File > Export).
5. Edit the topic and add markup, transforming it to:

<menucascade>
 <uicontrol>File</uicontrol>
 <uicontrol>Export</uicontrol>
</menucascade>

Blog | 3 - DITA | 236

6. Click the Record button again to stop the recording. The system generates the following instructions with examples:

You are a technical writer. Add DITA markup to a menu cascades.
###
Input:
 <p>File > Export</p>

Output:
 <p><menucascade><uicontrol>File</uicontrol>
 <uicontrol>Export</uicontrol></menucascade></p>

Input: ${selection}
Output:

7. In the resulting dialog box, save the final result as either a Positron action or as a favorite chat prompt.

Custom Validation Rules

The add-on contributes two XPath extension functions (available in the content completion proposals for Schematron, XSLT,
XQuery, and XPath) that can be used to rephrase content or to perform validation checks on existing content:

ai:transform-content(instruction, content)

Use this function from namespace http://www.oxygenxml.com/ai/function to automatically transform content using
AI.

The function has two string parameters:

• instruction - The OpenAI instruction to be performed on the content.
• content - The content to be transformed.

It returns a string that represents the transformed content.

Here is an example of a custom Schematron schema that uses the transform-content function to correct the
number of words used in a short description:

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt3"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <sch:ns uri="http://www.oxygenxml.com/ai/function" prefix="ai"/>
 <sch:pattern>
 <sch:rule context="shortdesc">
 <sch:report test="count(tokenize(.,'\s+')) > 50" sqf:fix="rephrase">
 The phrase must contain less than 50 words.</sch:report>
 <sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Rephrase phrase to be less that 50 words</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content(
 'Reformulate phrase to be less that 50 words', .)"></sqf:replace>
 </sqf:fix>
 </sch:rule>
 </sch:pattern>
</sch:schema>

ai:verify-content(instruction, content)

Use this function from namespace http://www.oxygenxml.com/ai/function to automatically validate content using
AI.

The function has two string parameters:

• instruction - The OpenAI instruction to be performed on the content.
• content - The content to be validated.

It returns a boolean value that represents the result of the validation.

Blog | 3 - DITA | 237

Here is an example of a custom Schematron schema that uses the verify-content function to check a short
description for instances of a passive voice:

<sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt3"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <sch:ns uri="http://www.oxygenxml.com/ai/function" prefix="ai"/>
 <sch:pattern>
 <sch:rule context="shortdesc">
 <sch:report test="ai:verify-content('Does the following content has passive voice?', .)"
 sqf:fix="rephrase">The phrase uses passive voice.</sch:report>
 <sqf:fix id="rephrase">
 <sqf:description><sqf:title>Rephrase text to be active voice</sqf:title>
</sqf:description>
 <sqf:replace match="text()"
 select="ai:transform-content('Rephrase text to be active voice', .)"/>
 </sqf:fix>
 </sch:rule>
 </sch:pattern>
</sch:schema>

Resources

To see a visual demonstration of the AI Positron Assistant add-on, along with various uses cases for using the tool, see the
following recorded webinar: AI as a Tool for Technical Content Creation.

See ways to use AI tools from XSLT stylesheets and Schematron schemas in the following recorded webinar: Leveraging the
Power of AI and Schematron for Content Verification and Correction.

Related information
Blog Post About AI Positron Add-on By Tom Johnson
Webinar: AI as a Tool for Technical Content Creation
Webinar: Leveraging the Power of AI and Schematron for Content Verification and Correction

Similarities Between Technical Doc Writers and Software Engineers

I'm a software engineer, working for Oxygen XML Editor along side my colleagues in developing tools used by technical
documentation writers. I also do lots of technical support and sometimes I write small blog posts like this one or update our
technical documentation.

Over time, I've come to view the aspects of a technical writer's job (especially a tech writer who is using standards that have lots
of potential for reuse, like DITA XML) quite similar to many of the aspects of a software developer's job. So I started putting
together a list of concepts and the way in which both of these jobs (which may seem incompatible with each other at first) would
utilize such concepts.

Concept Software Engineers Tech Docs Writer

Accessibility We build our software products by following ac
cessibility best practices, we test our products us
ing screen readers and collaborate with our vi
sion-impaired users to fix accessibility problems.
We also try to make sure there is enough color
contrast in the application components and icons,
that all font sizes are configurable and ship vari
ous color themes for the application.

Published technical documentation also needs
to be accessible, for example by adding alter
nate text for images and using relevant text for
links. It's also important to make sure the color
theme of the published output has enough con
trast. WebHelp and PDF outputs obtained using
Oxygen from DITA XML content are section 508
compliant.

Accurate and Concise
Messages

We are required to present accurate and concise
error messages, dialogs, and prompts to our end
users. Over time, we've learned to pass most of
these error messages by our tech docs writers,
asking their opinion to help improve them.

The technical documentation must also be accu
rate and concise. The technical writer's advice
can also greatly benefit the software developers
when they work in developing the messages in
the application.

Building Complex Sys
tems from Basic Build
ing Blocks

We build small components (classes) and then we
use them to build projects. We then use the many
individual projects to build entire large products.

Publications are built by using small topics of in
formation or small reusable elements like notes
or tables. Even larger publications can be built by

https://www.oxygenxml.com/events/2023/webinar_ai_as_a_tool_for_technical_content_creation.html
https://www.oxygenxml.com/events/2023/webinar_leveraging_the_power_of_ai_and_schematron_for_content_verification_and_correction.html
https://www.oxygenxml.com/events/2023/webinar_leveraging_the_power_of_ai_and_schematron_for_content_verification_and_correction.html
https://idratherbewriting.com/learnapidoc/docapis_oxygenxml_positron_assistant.html
https://www.oxygenxml.com/events/2023/webinar_ai_as_a_tool_for_technical_content_creation.html
https://www.oxygenxml.com/events/2023/webinar_leveraging_the_power_of_ai_and_schematron_for_content_verification_and_correction.html
https://www.oxygenxml.com/doc/ug-webhelp-responsive/topics/whr-accessibility.html

Blog | 3 - DITA | 238

Concept Software Engineers Tech Docs Writer

We keep the small components as simple as pos
sible to maximize their reuse potential. With
these simple components, we build large complex
projects.

combining the DITA maps used to describe sub
components of the product.

Individual topics/tasks are small, simple, and
easy to follow. With these simple topics, you can
build large technical documentation projects.

Code Review We have a stage where the code that was writ
ten by someone is reviewed by a usually more ex
perienced peer. The code reviewer may propose
various changes, either small message changes or
changes from the point of view of someone who
knows the architecture of the project better. There
is also the possibility for a novice to code review,
as this exposes them to new techniques and they
also can give a fresh perspective on things.

Having experienced technical writers review the
work of novice writers is a great way to acclimate
the novice writers to a specific way that the con
tent must be written for a certain company. Expe
rienced tech writers can also, for example, better
determine if the content should be placed some
where else in the project or if the current topic
should be split into multiple ones as they have a
better overall overview of the project.

Content Reuse We reuse entire small projects in multiple prod
ucts. We reuse libraries, classes, and functions.
Content reuse gives us the ability to build prod
ucts faster and to build different products from
the same content.

Similarly, starting from the top down, entire DI
TA maps can be joined together to create docu
mentation for larger publications, topics can be
used in multiple places in a DITA map, and el
ements like notes, tables, lists can be reused in
multiple places.

Useful links:

• DITA Reuse Strategies (on page 79)
• DITA Style Guide

Custom Validation
Rules

We have various automatic tools (like Sonar)
that report warnings when certain best practices
for writing the code are not followed. This gives
us more consistency as we are many devs work
ing on the same code base and the code we pro
duce needs to be easily read, understood, and
maintained by others.

Using Schematron Rules (on page 178), tech
nical writers also can impose custom validation
rules, specific for their project. These custom val
idation rules ensure consistency throughout the
tech docs project.

Deleting Unused/Dep
recated Content

All mature software products contain components
that in time may become unmaintained or unused.
Over time, such components may become secu
rity problems or may just contain inaccurate in
formation. So, software developers also spend
time deprecating and then removing these com
ponents.

Technical documentation also may contain con
tent that is no longer accurate or topics that refer
to features that no longer exist. So, deleting un
used content is also a part of a tech writer's job.

Document my Code/
Documentation

Most programming languages have support to
add comments containing documentation about
what the code does and why various choices were
made. This documentation gives more informa
tion that could not be derived just by reading the
code. We also have internal wikis with diagrams
and descriptions of various architecture choic
es and steps to set up various projects for people
who just started working on them.

It's a best practice to try Implementing your own
Style Guide (on page 180) where various best
practices and architectural decisions for the doc
umentation project are described. Such a Style
Guide makes on-boarding easier and over time,
the rules in the style guide may start to be au
tomatically applied using Schematron or a ter
minology checker. Publishing customizations
should also be documented in a style guide and a
quick getting started tutorial for people who start
working on the specific technical documentation
project may also be useful.

Enjoy For the long term, it's good to find particular as
pects about your job that you particularly enjoy

Whether it's rewriting/correcting problems in ex
isting content, writing new content, adding cus

https://www.oxygenxml.com/dita/styleguide/c_Content_Re-use.html

Blog | 3 - DITA | 239

Concept Software Engineers Tech Docs Writer

doing. For example, in my case I've always been
interested in investigating why certain bugs occur
and following through, spending hours to investi
gate and solve them. I'm also very eager to delete
unused code and functionality.

tom validation rules, helping others, discussing
with engineers, or improving the architecture
of the existing technical documentation project,
technical writers may also have preferred activi
ties. In general, we get to know what each person
does best within the team and who to ask for ad
vice in certain cases.

Evolve We need to constantly deepen our understand
ing of the current techniques we use, learn new
techniques, and new frameworks or programming
languages. Learning new things also helps us to
obtain a different view of the current techniques
we are using.

By reading various resources like the DITA Style
Guide, the DITA 1.3 standard, or the Oxygen
XML Blog (on page 5), a technical writers can
deepen their understanding of the used standard,
what features it offers, and what best practices to
follow.

There are lots of useful resources about approach
ing technical documentation online like: Diátaxis.
And various community places (on page 9)
where one can ask for help or follow up on con
versations.

Sometimes, technical writers also become in
volved in styling the published HTML or PDF
outputs, in uploading the deliverables to the prop
er places on the web site, producing training ma
terial, or receiving user feedback and integrating
it back in the documentation. So, they move to
wards scripting and being power-users.

Helping Yourself When I do not know how to do something, I first
try to figure things out on my one before asking
for help. I use various internal resources (our in
ternal wiki) or external resources like Google,
ChatGPT, StackOverflow. I always tend to re
member the solution better if I put some effort in
to finding it myself.

Overcoming obstacles by oneself is possible if
the company has internal wikis or internal style
guides that the technical writers can use. By help
ing ourselves, experienced writers develop a cer
tain grit that allows them to overcome daily ob
stacles.

Inversion of Control Most of the time, we use libraries developed by
us or by others to build larger projects. So, our
code uses other code. But there are frameworks
like Java Spring that have this concept of inver
sion of control. With this concept, our code does
not use libraries, but those libraries in turn or
chestrate and use our code.

The DITA XML standard has the concept of key
scopes (on page 78), which allows key refer
ences and content key references in topics to have
different values depending on where the topic is
referenced in the DITA map. So in a way, your
topics contain variable place holders that may
expand to different content depending on where
they are used in the DITA Map.

The DITA XML standard also has this concept
of content reference push (on page 84). With
conref push content can be placed in a topic from
the outside.

A DITA topic that contains key references is not
truly instantiated until it's referenced in a certain
place in the DITA map.

Issues/Tickets List We work internally mostly with Atlassian JIRA
to create issues/tickets. We have various work
flows for our issues that allow us to have quality
assurance, and documentation connected to the

An issues/tickets list is also very important for
tech doc writers to keep track of what needs to be
done.

https://www.oxygenxml.com/dita/styleguide/
https://www.oxygenxml.com/dita/styleguide/
https://www.oxygenxml.com/dita/1.3/specs/
https://diataxis.fr/

Blog | 3 - DITA | 240

Concept Software Engineers Tech Docs Writer

same issue ID. The issue connects all the com
mits and modifications made both in the devel
opment phase and in the documentation phase.
So, looking at an issue, I can also see links to all
changes made to fix and document the issue.

For some projects, we also work with GitHub is
sues or GitLab issues/tickets and although more
simple, they also provide us with some basic way
of keeping track of work progress.

Learn by Teaching Teaching is a great way to learn more about the
concepts yourself. You do not need to be highly
experienced in a subject matter in order to make
small presentations in the team about it. I some
times make small presentations to start discus
sions about the subject matter and gather best
practices from other team members who now
more about the subject matter than I do.

You can read about an aspect of a standard like
DITA XML that you are not using in the compa
ny (for example, about branch filtering (on page
76) or relationship tables), make a small pre
sentation in the team, and then try to start a dis
cussion about how the feature could be used in
the tech docs project and what problems it could
solve.

Managing Dependen
cies/Linking between
objects

The more dependencies a class, object, or project
has, the more difficult is to use it in another con
text. In our work, we try to uncouple objects, to
decrease the dependencies between them to be
able to reuse the objects in multiple contexts.

There are various linking strategies (on page
72), the main idea being to avoid direct ref
erences between topics and instead use indirect
links and relationship tables. This gives you more
flexibility to re-use topics in multiple contexts.

Metadata/Extensibility From the point of view of a Java developer like
myself, support for annotations was added to the
Java programming language about 20 years ago
and it allowed the creation of various important
libraries that in a way extend the language to of
fer all kinds of useful functionality.

The DITA XML standard has various ways that
users can enhance the publishing or add metadata
that is useful for specific needs:

• Using the <metadata> element and sub-
elements to define key words, index
terms, categories that can be used to add
various publishing features. The Oxygen
WebHelp output uses keywords to en
hance the search functionality and index
terms to create and index page.

• The @outputclass attribute can be set on
almost all DITA elements and allows you
to easily customize elements using CSS
in the published output. For example,
you can use it to specify the language of
codeblock elements.

• The <foreign> element allows adding
non DITA XML content and can be used
for various enhancements like embed
ding HTML content directly in DITA
topics.

• The <data> element can be used almost
anywhere to specify key value pairs that
are later used in the published output.

• The DITA XML standard itself can be
specialized or restricted using a specific
procedure.

https://www.oxygenxml.com/dita/1.3/specs/langRef/base/metadata.html
https://www.oxygenxml.com/doc/ug-editor/topics/add-syntax-highlights-codeblocks-x.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-embed-html.htm
https://www.oxygenxml.com/doc/ug-editor/topics/dita-embed-html.htm
https://www.oxygenxml.com/doc/ug-editor/topics/dita-integrate-specialization.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-integrate-specialization.html

Blog | 3 - DITA | 241

Concept Software Engineers Tech Docs Writer

This possibility to extend the standard makes it
much more valuable and allows targeting specific
company needs.

No Appreciation for
Fluff

The written code should be as compact and easy
to read as possible. An application's features
should again be intuitive to use with a user's in
terface that does not present more than you need
to accomplish a certain task.

Small topics describing key concepts, small tasks
describing how various things can be accom
plished. Precise messages, simplified English, no
fancy words, no thesaurus.

Obtaining multiple
products from the same
code base

Using configuration files, we can reuse an entire
product code base to create multiple products,
each with a specific subset of features.

Using profiling/filters or multiple main DITA
maps, a DITA XML based project can be used to
create user guides for multiple products (on page
81).

One trick pony / Jack of
all trades

Even if over time we specialize and become very
productive with one set of tools and when work
ing on a certain aspect of the application, hav
ing a larger overview and being able to use oth
er tools/languages/frameworks when necessary
gives us lots of flexibility to help members of
other teams or to make changes to sub-projects
that we are not directly involved in.

Being able to write documentation in multiple
formats (Markdown, DITA XML, MS Word), be
ing able to use various version control systems
like Git or content management systems gives
you the ability to apply for and be able to perform
any technical documentation job, besides the ben
efit of using much of the workflows and tools
other people in the company might use.

Overview of Complex
Systems

Either when making a small improvement or im
plementing a large feature, having an overview of
the entire project's architecture helps a lot.

Having an overview of the documentation project
helps you know where to make a change, what
pleasant or unpleasant side effects it generates
and how to possibly re-structure the content to fa
cilitate making that change. Content reuse adds a
lot of efficiency to the process of building a user's
guide and reusing large chunks of content be
tween user manuals. Content reuse unfortunate
ly also sometimes makes it easier to propagate er
rors in multiple places.

Pair Programming We have this concept that we apply from time to
time in which two people work on the same is
sue from the same computer. These people can
be peers with the same knowledge, in which case
one of them thinks about the larger context in
which the issue is resolved and asks questions
while the other implements it. Or the engineers
can be an expert and a novice, in which case the
novice directly sees how the expert considers and
implements the issue.

I'm not sure if in the domain of tech docs writ
ing people use such pair docs writing but I think
it could also benefit a novice to see exactly how
people with more experience organize them
selves, understand the requirements, and work on
issues.

Project Structure and
Naming Resources

Experienced software developers are interested
in properly naming things. We try to give good
names to functions, variables, and packages. We
try to be consistent when naming things using
compound names, either using hyphens or up
per-lower-case sequences.

It makes sense for technical documentation writ
ers to also have best practices when it comes to
a project's structure, how files should be named,
where images should be stored, how key names
should be given, and so on. Sample Project.

Publishing Orchestra
tion

We have various automated flows that generate
nightly build installation kits for our product that
can be further tested by the QA team.

Although the published output can be obtained
from an Oxygen installation by running a trans
formation scenario, over time it's a good idea to
automate the publishing by using an integration
server like Jenkins, for example, to constantly
poll the user guide project for modifications and
update an internal web site with the latest HTML

https://github.com/oxygenxml/dita-project-best-practices

Blog | 3 - DITA | 242

Concept Software Engineers Tech Docs Writer

or PDF outputs to show how the documentation
is evolving and give material to engineers who
want to review the published content. For the
Oxygen XML blog, for example, a Gradle build
file (on page 6) is used to automate the publish
ing.

Read the Docs We learn a lot by doing, or by copy pasting or
reusing content from other similar projects that
we have. But sometimes taking the time to read
the documentation for the frameworks and li
braries that we use is really worth it.

By reading the DITA 1.3 standard documen
tation, for example, a technical documentation
writer might find various features that can be
used in their project. They might also understand
certain limitations in the way things work.

There are lots of resources (on page 8) for
learning DITA or for learning how to better use
Oxygen to edit DITA XML content. So, it is
sometimes worth taking the time to explore the
tools you are using and the capabilities of the
standard.

Requesting Help from
Peers

Besides an internal wiki of content and proce
dures, we rely on a network of colleagues, some
from our teams, some from others or from the
system admins team. Over time, we come to
know each other's strengths and know who to call
when we need advice. Helping someone else usu
ally takes priority over the current task.

Besides asking their peers for help, technical doc
umentation writers also have various engineers
and subject matter experts who could help when
writing content either by giving feedback or by
providing some initial content (some notes for ex
ample) to be used for the official documentation.

Security We do our best to protect our applications from
security vulnerabilities by updating old libraries
and by considering various scenarios in which at
tackers would attempt to gain control over an ap
plication.

Besides keeping the user guide contents in a se
cure location to avoid exposing information to the
competition or features that have not yet been re
leased, the HTML output obtained from the user
guide contents also needs to be updated to con
tain the latest Javascript libraries and not be sus
ceptible to vulnerabilities when loaded in a web
browser.

Content in the user's guide in general also needs
to be considered from the point of view of not
giving an attacker details about how the product
could be configured for use in other scenarios
other than the ones intended by the developers.

Server Side Validation Validation and automated tests run on the server
side (we use a Jenkins integration server) when
ever changes are made to source code for a cer
tain project. If automatic tests fail, emails are
sent to the people who have committed the latest
changes that broke the builds.

Whenever you have multiple topic files, filters, or
content reuse, you may end up with potential val
idation problems in the edited content, problems
ranging from broken links to invalid ID attribute
values or invalid topics.

Oxygen has a very useful Validate and check
for completeness action that checks lots of po
tential problems in the context of a DITA map,
but maybe not all people run such an action be
fore they commit. Such an action can also be
scripted to run on the server side in an integration
server like Jenkins, for example.

Terminology There are lots of ways that a message can be con
veyed. All messages presented to the end user

Controlled terminology (on page 286) is also
an important aspect of a technical writer's job.

https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/dita/1.3/specs/
https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html
https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html
https://www.oxygenxml.com/doc/ug-editor/topics/scripting_oxygen_dita_validate_and_check_for_completeness.html

Blog | 3 - DITA | 243

Concept Software Engineers Tech Docs Writer

need to have a certain style, tone, and use plain
language.

Translation In general, all user interface strings in an appli
cation will be translated to multiple languages so
we need to take this into account when designing
the application.

A DITA XML project that needs to be translated
into multiple languages also needs to follow a se
quence of best practices (on page 176).

User's Point of View All features need to be discussed and implement
ed from the point of view of the people who will
actually benefit from using them. For technical
people, this is sometimes difficult to do but we
try to constantly remind ourselves to implement
features that help certain real-world workflows to
be performed by the end user and not for the sake
of closing tickets.

The documentation also needs to target certain
user profiles and be written to help people per
form tasks and understand concepts. The product
knowledge level of the end user is almost never
the same as that of the tech writer.

User Feedback It's important to get feedback from end users.
This feedback gives us ideas about what to imple
ment in the future and also allows us to modify
existing features to better accommodate certain
workflows. So, we try to make it as easy as pos
sible to give feedback, we have a Report prob
lem action directly in the application, we have a
support email address, a forum, user's list, and on
each of our user's manual pages, there is also a
feedback comments section.

Receiving user feedback for the written documen
tation is also very important to improve the docu
mentation to cover the actual user needs. For ex
ample, the Oxygen Feedback platform can be eas
ily embedded in the generated web pages to al
low users to provide feedback related to the docu
mentation. We use it for the Oxygen user's manu
al, blog, and it's a very good mechanism to get in
touch with users and to improve the docs.

User Interface An application may work very well from the
functionality point of view but if it does not look
very nice (ugly color theme, ugly icons, not intu
itive user interface layouts) it will not end up get
ting used very much.

A published user's guide also needs to have ap
propriate colors and fonts to improve readabil
ity and find ability. So, besides the actual con
tent care, decisions must also be made in terms
of what font styles and sizes to use, or what color
theme to implement.

Version Control We use a mix of Git repositories and Subversion
repositories for our software projects. Version
control allows us to collaborate, to have a history
of changes, and to have release branches for our
products.

Using a version control system like Git similarly
gives the possibility to collaborate on documen
tation projects with various workflows (on page
154).

As an alternative, you can use a commercial con
tent management system or in the cloud editing
solution.

No matter what storage system you use to col
laborate, having a history of changes and release
branches is a must.

Working with AI tools Developers can work with ChatGPT to ask advice
about how to write various pieces of code, espe
cially in programming languages that they are not
familiar with. They can also ask for help re-writ
ing messages or translating small pieces of con
tent.

Working directly with AI tools or using an add-
on like the Oxygen AI Positron Assistant view
(on page 230), tech doc writers can also use
the AI tools to improve readability, remove gram
mar problems, re-write content in various styles,
or translate content. So, AI tools are valuable for
writers as co-pilots.

Writers and software engineers have lots of things in common because we are all working with language and we communicate in
a specific language. Computer programming languages contain less words and are more simple than the English vocabulary, but
in the end we are all in the market of describing, expressing, and building large systems using simple terms.

https://www.oxygenxml.com/oxygen_feedback.html

Blog | 3 - DITA | 244

If you have feedback about these concepts and how they influence your writing, it is as usual, welcomed.

Chapter 4. Migrate
Oxygen XML Editor provides various facilities to migrate content from one format to another.

Migrating to a Structured Standards-based Documentation Solution

Potential clients come to this world of structured content authoring from two main sources:

1. They are starting fresh and after a little bit of comparing between structured and unstructured editing, between opened
and closed solutions and some soul searching they come to regard structured authoring with a specific XML standard in
general (and usually DITA in particular) as the possible solution for them.

2. They are migrating from a previous unstructured or structured solution.

I think people in this second category start thinking about structured writing when they start encountering certain limitations with
their current approach. These limitations they experience with their current system could be:

• The need to reuse more content.

With structured XML authoring in general and with DITA in particular you have so many ways of reusing content. In a
previous blog post I tried to come up with an overview about all the ways in which you can reuse content using DITA:
DITA Reuse Strategies (on page 79)

• Produce multiple outputs from the same content using some complex profiling conditions which are not supported in the
current work flow.

• Stop thinking about how the content is styled.

You may want to focus more on the actual content and on semantically tagging it than on the way in which it will be
presented in a certain output format.

• Publish to more output formats than the current editing solution allows.

Using a widely adopted open source standard like DITA for documentation also means having access to a variety of
commercial and open source tools to generate various output formats from it. For example for obtaining the PDF you
have about 5-6 distinct possible solutions:Possibilities to obtain PDF from DITA (on page 100).

• Enforce certain internal rules on the documents.

It's hard to impose best practices in unstructured documents. But with structured XML content, you can use Schematron
to easily cover this aspect and even to provide quick fixes for your authors: Schematron Checks to help Technical
Writing (on page 178).

• Benefit of advice and help from a larger community of writers and developers.

When you are using a closed source solution, you may have only one forum and a couple of people willing to help. When
you have a larger community you will be able to reach out with a single email to lots of people, and somebody may want
to help you.

• Share documentation between different companies.

If a larger company which uses structured writing takes over a smaller one, the smaller company will need to adopt
structured writing as well.

• Own your content.

Some editing solutions are closed source, you are forced to use a single tool because there are no other tools being to
read that format. Then you need to ask yourself the question: “Is this content actually mine?”

Blog | 4 - Migrate | 246

• Problems with your current tool vendor.

If the format is closed source and the tool vendor is not responsive to your needs, you need to somehow move your
content over to a market with multiple tool vendors available because competition also means smaller prices and better
customer support.

Switching to structured content writing also has its problems. And I think the main ones are these:

• The people. The fact that we all are reluctant to change. The learning curve. Writers might need to re-learn how to
structure and write their documentation. Besides the technical aspects they will need to learn to divide content in small
modules and to reuse parts in multiple places. Writers may not be willing to do this. We usually are very reluctant to
change tools if we do not see instant benefits deriving from it.

• Effort to convert the current available content to structured content. You can either choose manual conversion or
automated conversion or in most cases a mixture of the two. Conversion will never be perfect, you will still need to go
through the entire content and re-structure it taking into account module-based editing.

• Customize the obtained output format. You may get out of the box various outputs from your content but you will always
need to customize it to adhere to company standards. If you are using the DITA Open Toolkit for publishing you will
need basic XSLT development skills to customize the PDF and CSS skills to customize the XHTML based output.

• Money. You need to spend more money to get new tools, possibly a new CMS. Although I consider that starters, for
a pilot project DITA does not need to be expensive. Here's how we're using DITA internally for our user's manual:
Collaboration for Documenting a Software Product using DITA (on page 290).

• Sometimes you might need to control the styling of your obtained output so much and it would be impossible to separate
the styling information from the content.

So can we draw a conclusion from all this?

Well, maybe not everybody interested in structured authoring will succeed to convert to it. But I think that one thing will hold
true in most cases:

Once you convert to structured content, you will never go back.

Migrating Various Document Formats to DITA

Most companies do not start new DITA-based projects from scratch. They already have content written in various other formats
and somehow they need that content converted to DITA. In this blog post, I will offer some conversion advice depending on the
format of your current project.

Migrating DocBook Content to DITA.

You can migrate one or multiple DocBook documents to DITA using the Oxygen Batch Documents Converter add-on: https://
www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

The DocBook to DITA conversion contains an option named Create DITA maps from DocBook documents containing
multiple sections. When this option is selected, all sections from your DocBook document will be separated into individual
DITA topics and referenced in a DITA map.

Migrating Microsoft Word Content to DITA

The Oxygen XML User Manual has a detailed topic enumerating the possibilities to convert Microsoft Word content to DITA:
https://www.oxygenxml.com/doc/ug-editor/topics/ooxml-to-dita.html.

Migrating Excel Content to DITA

You can use Oxygen's Smart Paste functionality to copy content from an Excel spreadsheet and paste it inside an opened DITA
topic. Also, as an alternate possibility, the Oxygen Batch Documents Converter add-on was updated to be able to batch convert
Excel to DITA: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/ooxml-to-dita.html
https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

Blog | 4 - Migrate | 247

Migrating LibreOffice Content to DITA

LibreOffice documents can be saved in Word format, and once you do that, you can convert the Word content to DITA as
described above. Alternatively, you can save the LibreOffice documents to DocBook and then apply the DocBook to DITA
conversion technique described above.

Migrating Google Docs to DITA

You have three possibilities to convert Google Docs to DITA using Oxygen:

• Copy/Pasting from Google Docs to a DITA Topic opened in Oxygen in the Author visual editing mode should work and
convert the pasted content to DITA.

• Save the Google document as OpenDocumentFormat (ODF) then save the ODF document as DocBook with Libre
Office, then apply the DocBook to DITA transformation scenario shipped in Oxygen to convert DocBook to DITA.

• Save the Google document as HTML then use the Oxygen batch converter add-on to convert it to DITA: https://
www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

Migrating Markdown Content to DITA

The DITA Open Toolkit publishing engine bundled with Oxygen allows you to reference Markdown files directly in a DITA map
and either publish them directly or export the Markdown files to DITA one by one: https://www.oxygenxml.com/doc/ug-editor/
topics/markdown-dita-2.html. If you want to convert multiple Markdown documents at once, you can use the Oxygen Batch
Documents Converter add-on: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

Migrating HTML Content to DITA

Using Oxygen's Smart Paste functionality, you can open the HTML documents in a web browser, then copy the contents and
paste it in a DITA topic opened in Oxygen's Author visual editing mode. If you want to convert multiple HTML files, you can
use the Oxygen Batch Documents Converter add-on: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-
addon.html.

Migrating Unstructured FrameMaker to DITA

There is a detailed blog post enumerating the possibilities to convert Unstructured FrameMaker content to DITA: Migrating
Unstructured Adobe FrameMaker Content to DITA (on page 255).

Migrating MadCap Content to DITA

This open source project contains such a stylesheet which attempts to convert a Flare project to DITA XML and instructions
about how to use it. As an alternative some recent MadCap versions seem to have facilities to export content directly to DITA.

Migrating Confluence Content to DITA

To convert Confluence content to DITA, you can use the Oxygen Batch Documents Converter add-on: https://
www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

You first need to export the content to HTML. For this, log in to your Confluence account and navigate to the specific space that
you want to export. Then go to Space Settings→Export space and choose to export it as HTML. Then, back on Oxygen, you
can then use the Confluence to DITA action (available once the add-on is installed) to convert the exported index.html file
into a DITA map with topics.

Migrating AsciiDoc to DITA

The Asciidoctor third-party application can be used to convert AsciiDoc content to DocBook. Then, you can convert the
DocBook content to DITA using the method described here (on page 246).

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/markdown-dita-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/markdown-dita-2.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://github.com/oxygenxml-incubator/FlareToDITA
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://asciidoctor.org/

Blog | 4 - Migrate | 248

Migrating reStructuredText to DITA

The Pandoc third-party application can be used to convert reStructuredText content to DocBook or HTML. Then, you can
convert the DocBook or HTML content to DITA using the Oxygen Batch Documents Converter add-on.

Migrating LaTex to DITA

You may use a third-party application (like Pandoc) to convert LaTex content to Word or HTML. Afterwards use the Oxygen
Batch Documents Converter: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

Migrating Other Formats to DITA

You may find third-party applications (like Pandoc) that can convert your content to HTML or to some kind of XML format like
DocBook. Once you have HTML or DocBook content, you can convert them to DITA using the advice above.

How to Migrate from Word to DITA

The need for migrating Microsoft Office® Word documents to XML formats, and particularly to DITA, is quite a frequently
encountered situation. As usual, migration from proprietary formats to XML is never perfect and manual changes need to be
made to the converted content. However, the methods below should help you find the best approach for your particular case:

Oxygen Batch Documents Converter add-on

The Oxygen Batch Documents Converter add-on can be installed in Oxygen and it allows you to convert one or more documents
to various formats.

More details about the main stages of the Word to DITA migration using the Batch Documents Converter add-on: Migrating MS
Word to DITA using the Batch Documents Converter (on page 249)

Note: The Batch Documents Converter add-on is the recommended way to convert one or multiple Word documents to
DITA content.

Smart Paste

1. Open the Word document in MS Office, select all the content, and copy it.
2. Open Oxygen and create a new DITA topic in the Author visual editing mode.
3. Paste the selected content. Oxygen's smart paste functionality (on page 271) will attempt to convert the content to

DITA.

Word to HTML to DITA

1. Save your MS Office Word document as HTML.
2. Once you obtain that HTML, you have two possibilities:

◦ In Oxygen, Select File->Import->HTML File to import the HTML as XHTML. Then open the XHTML in
Oxygen and in the "Transformation Scenarios" view there should be four pre-configured transformation
scenarios to convert XHTML to DITA topics, tasks, references, or concepts.

◦ Open the HTML file in any Web browser, select all of its content, and copy it. Then open Oxygen, create a new
DITA topic in the Author visual editing mode, and paste the selected content. Oxygen's smart paste functionality
(on page 271) will attempt to convert the HTML to DITA.

Word to DocBook to DITA

1. Open the Word document in the free Libre Office application and save it as DocBook.
2. Open the DocBook document in Oxygen.
3. Run the predefined transformation scenario called DocBook to DITA.

https://pandoc.org/
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://pandoc.org/
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://pandoc.org/
https://github.com/oxygenxml/oxygen-resources-converter

Blog | 4 - Migrate | 249

Word to DITA using DITA For Publishers

1. If the Word document is in the new DOCX format you can open it in Oxygen's Archive Browser view and then open
the document.xml file contained in the archive.

2. Run the predefined transformation scenario called DOCX DITA. This ANT scenario runs the following build file:
OXYGEN_INSTALL_DIR/frameworks/dita/DITA-OT/plugins/net.sourceforge.dita4publishers.word2dita/build-
word2dita.xml over the DOCX archive and should produce a DITA project that contains a DITA map and multiple
topics.

3. You may need to do some reconfiguring to map DOCX styles to DITA content.

Note: This method may also be helpful if you want to run it automatically with scripts, since it is based on the DITA OT and
Dita For Publishers plugins.

Migrating MS Word to DITA using the Batch Documents Converter

This blog post presents how you can migrate from MS Word to DITA using the Oxygen Batch Documents Converter add-on.

The migration process has three main stages:

1. Preparing Word Document for Migration (on page 249)

2. Converting the Word Document (on page 250)

3. Post-processing the DITA Content Converted from Word (on page 251)

A webinar presenting this migration is available here: Working with DITA in Oxygen - Migrating to DITA and Refactoring

A list of frequently asked questions about the migration process can be found here: Word to DITA Conversion FAQ (on page
252)

Preparing Word Document for Migration

The Word to DITA conversion uses the styles found in the Word document for creating structure and formatting the text into the
output document. The converter ignores the font, size or color set on text content. To achieve the best results, the Word document
has to be well styled.

This preparation step assumes correcting various cases when formatting of the content was not made using styles. These are the
things that you should take into account when checking the Word document:

1. It's important to make sure that titles and headings were formatted using styles because the topics and sections structure
of the output document results from these.

This is an example of bad formatting: Instead of using the "Heading 1" style, when formatting a title paragraph, the
writer changed its font, size and color, keeping the default "Normal" style:

2. For the rest of the content, you can try to use the default Word styles for creating semantics where it's possible.

This is an example of bad formatting: Instead of using the "Quote" style, when formatting a paragraph, the writer added
it between quotes characters and changed its font and alignment keeping the default "Normal" style:

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html

Blog | 4 - Migrate | 250

Converting the paragraphs containing the "Normal" style will result in DITA p elements. So if you omit this step, you
also have the option of adding semantics by post-processing the resulting DITA content.

Note: The text content formatted using the bold, italic, underline, strike-through, subscript or superscript actions
are handled by the converter. So you don't need to replace them with correspondent styles like "Strong" and
"Emphasis".

3. Save the shapes as SVG images because the converter doesn't support them. See the following link for more information:
How can I preserve the Word shapes? (on page 254)

Converting the Word Document

For converting the Word document you have to install the Batch Documents Converter add-on in Oxygen. For this, you can
follow the installation procedure from the documentation.

Configuring Word styles mapping

The Word to DITA conversion has two main steps: Word to HTML to DITA. The converter allows customising the first step by
setting a mapping between Word styles and HTML elements. It already contains a default mapping configuration and because of
this, it knows to handle the default styles and the custom styles that are based on the default styles.

Here you have more information about the Word Styles Mapping option: Conversions from Word

This is an example of styles configuration: How can I fix unrecognized style warnings? (on page 252)

Configuring the Maximum Heading Level for Creating Topics

The converter has an option named "Maximum Heading Level for Creating Topics" in the Oxygen Preferences > Batch
Documents Converter preferences page that allows setting a maximum heading level to process as a DITA topic. The headings
with a higher nesting level will be converted to <section> elements.

This option can correspond with the value of the Show levels option that you configure in MS Word for generating a table of
contents.

For example, consider a document with the following headings hierarchy in the Word document:

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__section_tdq_wvx_qsb
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__wordStylesMapping

Blog | 4 - Migrate | 251

if you keep the default 5 value for the Maximum Heading Level for Creating Topics option, all Word sections will be
converted to DITA topics. If you set the option to 3, the "Species" and "Characteristics" Word sections will be converted to
DITA sections inside the "Salvia" DITA topic.

Converting the document

You can invoke the Word to DITA action from the following places for converting the Word documents:

• Batch Documents Converter from the Tools menu.
• Batch Documents Converter in the contextual menu from the Project view.
• Additional conversions from the FileImport menu.
• Import from the Append child, Insert Before, or Insert After sub-menus in the contextual menu from the DITA Maps

Manager view. Note that these actions automatically insert references to the resulting documents into the DITA map.

The Word to DITA conversion dialog contains an option named Create DITA Maps from Word documents containing
multiple headings that allows us to choose if the output will be a single DITA Topic or a DITA Map. When the option is
checked, the resulting DITA topics will be extracted into separate files and referenced into an output DITA Map, otherwise, the
topics will be grouped into a DITA Composite file. The resulting topics can be controlled using the Maximum Heading Level for
Creating Topics (on page 250) option.

Post-processing the DITA Content Converted from Word

Oxygen provides refactoring actions that can be used for organizing and customizing the resulting DITA documents, to take into
account various DITA best practices.

These are some of the most used refactoring operations that can be applied after the conversion process:

• In the Project view, the Move Resource and Rename Resource actions can be applied to DITA or non-
DITA resources: https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html#dita-main-
files__moving_or_renaming_nondita_resources

• In the DITA Maps Manager view you can arrange the topics and nodes using the drag and drop
support: https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html#dita-maps-
manager__drag_and_drop_in_the_dita_maps_manager

https://www.oxygenxml.com/doc/ug-editor/topics/refactoring-xml-documents-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html#dita-main-files__moving_or_renaming_nondita_resources
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html#dita-main-files__moving_or_renaming_nondita_resources
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html#dita-maps-manager__drag_and_drop_in_the_dita_maps_manager
https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html#dita-maps-manager__drag_and_drop_in_the_dita_maps_manager

Blog | 4 - Migrate | 252

• There are refactoring actions for converting between DITA topic types. So, if the resulting topics look more like DITA
Tasks or DITA Concepts, you can simply convert them using refactoring actions like Convert to Task, Convert to
Concept and others.

• There are actions for generating unique IDs for elements (Generate IDs) or changing the ids of the topics using the file
names (Change topic ID to file name).

• When resulting documents contain nested topics or sections, you can use Convert Nested Topics to New Topics or
Convert Sections to New Topics to extract new files.

• Topics can be extracted from the map hierarchy into a new DITA map, using the Extract to new DITA Map action.

• The Convert DITA Map to Bookmap and Convert Bookmap to DITA Map actions allow converting between map
and bookmap types.

• For converting links inside your documents from direct addressing to indirect key-based addressing, you can use the
Define keys for all topic references action.

• There are also operations for modifying elements inside documents: https://www.oxygenxml.com/doc/ug-editor/topics/
predefined-refactoring-operations-x-tools.html#predefined-refactoring-operations__refactoring_operations_for_elements

In the main menu Tools > XML Refactoring dialog you can find the list of all built-in refactoring operations: https://
www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html

If you want to make custom batch changes to the converted documents you can create a custom refactoring operation: https://
www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html.

Example of a custom refactoring operation (on page 253).

Word to DITA Conversion FAQ

How can I fix unrecognized style warnings?

When converting a Word document, the styles that don't have a mapping in the Word styles mapping table from the preferences
page are converted to simple paragraph elements and a warning is reported for each of them in the Results view.

As an example, suppose I have converted the Word document and I see the following warnings in the Results view:

Here are the steps that you should follow for this configuration:

1. Open the Plugins / Batch Documents Converter preferences page in Oxygen.
2. To fix the Unrecognized "Document Title" style for "p" Word element warning, add a new row in the Word styles

mapping table with the following cells:
a. Type "p" in the Word element cell (because the unrecognized style was found on a Word paragraph).
b. Type "Document Title" in the Word style cell.
c. In the "HTML elements" cell, you need to add a corresponding HTML element. For this example, a

corresponding element is "<h1>" for the default mapping of the "Title" style. So, type "h1:fresh" into this cell.
The ":fresh" suffix instructs the converter to create a new element every time it finds this kind of paragraph.
When it's not set, the converter will try to reuse the elements and combine sequences of the same style of
paragraphs into a single element.

3. To fix the Unrecognized "Keyboard Key" style for "r" Word element warning, add a new row in the Word styles
mapping table with the following cells:

a. Type "r" in the Word element cell (because the unrecognized style was found on a Word character).
b. Type "Keyboard Key" in the Word style cell.
c. In the HTML elements cell, you need to add a corresponding HTML element. For this example, a

corresponding element is "<kbd>" for the default mapping of the "HTML Keyboard" style. So, type "kbd" in this
cell.

https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html#predefined-refactoring-operations__refactoring_operations_for_elements
https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html#predefined-refactoring-operations__refactoring_operations_for_elements
https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html

Blog | 4 - Migrate | 253

After completing these steps, you should have these two rows in the configuration table:

p Document Title h1:fresh

r Keyboard Key kbd

For more information about the Word styles mapping configuration, see the following section from the documentation:
Conversions from Word.

How can I configure the styles mapping when the wanted element doesn't exist in HTML?

A frequent case when setting the mapping configuration for a custom style is to not find a correspondent element in HTML,
although one exists in DITA.

As an example, suppose I have a Word document that contains a character custom style named "filepath". We know that a
correspondent element exists in DITA, but we cannot find one in HTML.

These are the steps that can be applied to handle this case:

1. Go to the Plugins / Batch Documents Converter preferences page and add the following mapping in the Word styles
mapping table:

r Filepath i.filepath

2. Convert the Word document to DITA. The characters styled with the Filepath style in Word are converted to the <i>
element with the "filepath" @outputclass attribute.

3. Move the output files to your project, select them, and apply the "Rename element" refactoring operation using the "//
i[@outputclass = 'filepath']" XPath for matching the target <i> element and changing them to the <filepath> DITA
element.

4. Apply the "Remove attribute" refactoring operation using the "//filepath[@outputclass = 'filepath']" XPath for matching
the target elements and deleting the @outputclass attributes.

Instead of steps 3 and 4, you can also create a custom refactoring operation that makes these two changes, like this:

1. Create an XSLT file (for example, named batch-converter-post-processing.xsl) that iterates over all
elements from the document, finds the <i> elements with the "filepath" @outputclass attribute, and replaces them with
the <filepath> elements without copying the @outputclass attribute:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs" version="2.0">

 <xsl:template match="@* | node()">
 <xsl:copy>
 <xsl:apply-templates select="@* | node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="i[@outputclass = 'filepath']">
 <xsl:element name="filepath">
 <xsl:apply-templates select="node()"/>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

2. Create an XML Refactoring operation descriptor (for example, named batch-converter-post-
processing.xml) that references the stylesheet and provides descriptions:

<?xml version="1.0" encoding="UTF-8"?>
<refactoringOperationDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="op_qzq_y2x_nsb"
 name="Post-processing Batch Documents Converter">
 <description>Post-process the resulting DITA documents from the Word conversion using the Batch
 Documents Converter add-on.</description>

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__wordStylesMapping

Blog | 4 - Migrate | 254

 <script type="XSLT" href="batch-converter-post-processing.xsl"/>
</refactoringOperationDescriptor>

3. Copy these two files to a folder scanned by Oxygen XML Editor when it loads the custom operation.
4. Apply the new custom operation named "Post-processing Batch Documents Converter" that can now be found in the list

of refactoring operations from the "XML Refactoring" dialog box.

How can I configure the styles mapping for paragraphs styled as code blocks?
In Word, a code block is represented as a sequence of paragraphs styled with a custom style that adds a custom font and border,
like this:

To add a mapping for this custom style, follow these steps:

1. Open the Options → Preferences → Plugins → Batch Documents Converter preferences page in Oxygen.
2. Add a new row to the Word styles mapping table.
3. Enter "p" in the Word element cell, and enter "Code Snippet" in the Word style cell to match the paragraphs styled with

"Code Snippet".
4. Enter "pre:separator('\n')" in the HTML elements cell. The <pre> element is the corresponding HTML element for

these types of paragraphs. Since we want to merge these sequences of "Code Snippet" style paragraphs, the ":fresh"
marker was not used. The ":separator('')" syntax configures a separator when the same type of consecutive paragraphs
are merged. If it isn't specified, we would obtain a <pre> element with a single line of text.

Using this configuration, a <pre> element is the result in the converted DITA output for every code block sequence.
For obtaining <codeblock> elements in DITA, see How can I configure the styles mapping when the wanted element
doesn't exist in HTML? (on page 253) for setting a class attribute on the resulting <pre> HTML element (by setting
"pre.codeblock:separator('\n')" in the HTML elements cell) and creating a custom refactoring operation.

How can I preserve the Word shapes?
The converter doesn't support the Word shapes and these will be ignored when the document is converted to HTML or DITA. A
workaround is to save them manually as SVG images in MS Word before the conversion. For this, you should follow these steps
for every shape inside the document:

1. Select the shape.
2. Invoke the Cut action from the contextual menu.
3. Invoke the Paste Special... action from the Home > Paste menu.
4. In the resulting dialog box, select Picture (SVG) and OK.

After completing these steps, the document will contain "SVG" images that will be preserved in the HTML or DITA results.

https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-operations.html

Blog | 4 - Migrate | 255

Batch converting HTML to XHTML

Suppose you have a bunch of possibly "not-wellformed" HTML documents already created and you want to process them
using XSLT. For example, you may want to migrate the HTML documents to DITA using the predefined XHTML to DITA
Topic transformation scenario available in Oxygen. So you need to create valid XML wellformed XHTML documents from the
existing HTML documents and you need to do this in a batch processing automated fashion.

There are lots of open source projects that deliver processors that can convert HTML to its wellformed XHTML equivalent. For
this blog post, we'll use HTML Tidy. Here are some steps to automate this process:

1. Create a new folder on your hard drive (for example, I created one on my Desktop: C:\Users\radu_coravu\Desktop
\tidy).

2. Download the HTML Tidy executable specific for your platform (http://binaries.html-tidy.org/) and place it in the folder
you created in step 1.

3. In that same folder, create an ANT build file called build.xml with the following content:

<project basedir="." name="TidyUpHTMLtoXHTML" default="main">
 <basename property="filename" file="${filePath}"/>
 <target name="main">
 <exec command="tidy.exe -o ${output.dir}/${filename} ${filePath}"/>
 </target>
</project>

4. In the Oxygen Project view, link the entire folder where the original HTML documents are located.
5. Right-click the folder, choose Transform->Configure Transformation Scenarios... and create a new transformation

scenario of the type: ANT Scenario. Modify the following properties in the transformation scenario:
a. Change the scenario name to something relevant, like HTML to XHTML.
b. Change the Working Directory to point to the folder where the ANT build file is located (in my case: C:\Users

\radu_coravu\Desktop\tidy).
c. Change the Build file to point to your custom build.xml (in my case: C:\Users\radu_coravu\Desktop\tidy

\build.xml).
d. In the Parameters tab, add a parameter called filePath with the value ${cf} and a parameter called output.dir

with the value of the path to the output folder where the equivalent XHTML files will be stored (in my case, I set
it to: C:\Users\radu_coravu\Desktop\testOutputXHTML).

6. Apply the new transformation scenario on the entire folder that contains the HTML documents. When it finishes, in the
output folder you will find the XHTML equivalents of the original HTML files (XHTML documents that can later be
processed using XML technologies such as XSLT or XQuery).

Migrating Unstructured Adobe FrameMaker Content to DITA

This article explores ways to convert unstructured FrameMaker documents to a DITA XML project.

Using a FrameMaker Plugin

There is a FrameMaker plugin that can be used for this type of conversion: http://leximation.com/tools/info/fm2dita.php.

Using FrameMaker Conversion Table

FrameMaker has a "Conversion Table" feature that can be used for this type of conversion: https://help.adobe.com/en_US/
framemaker/using/using-framemaker/user-guide/WSB3FD6CD7-6930-474f-BB1E-64762D105DB6_ver12.0.html.

Unstructured FrameMaker to HTML to DITA

To perform this migration, your documents must be in the ".mif" format.

If your documents are in the '.fm' format, you can use the MIF Wash Utility to convert your book into a .mif document: https://
helpx.adobe.com/framemaker/kb/how-to-use-mifwash-utility-in-framemaker.html.

The 'mif' document must go through the following conversion and correction steps to obtain DITA content:

Publish Your Unstructured FrameMaker to HTML

http://www.html-tidy.org/
http://binaries.html-tidy.org/
http://leximation.com/tools/info/fm2dita.php
https://help.adobe.com/en_US/framemaker/using/using-framemaker/user-guide/WSB3FD6CD7-6930-474f-BB1E-64762D105DB6_ver12.0.html
https://help.adobe.com/en_US/framemaker/using/using-framemaker/user-guide/WSB3FD6CD7-6930-474f-BB1E-64762D105DB6_ver12.0.html
https://helpx.adobe.com/framemaker/kb/how-to-use-mifwash-utility-in-framemaker.html
https://helpx.adobe.com/framemaker/kb/how-to-use-mifwash-utility-in-framemaker.html

Blog | 4 - Migrate | 256

In this step, the mif document is converted to HTML using the Basic HTML scenario from FrameMaker. Here are
the substeps:

1. Create a settings file for publishing that contains mappings to HTML elements for all paragraph and
character styles:

It's very important to have mappings to HTML heading elements for paragraph styles that mark headings
in your document. In the example above, the "Chapter", "Heading", and "Title" styles are mapped to the
"h1" element, the "Subtitle" and "Section" styles to the 'h2' element, and the "Subsection" style to the 'h3'
element.

The styles set on the list should be mapped to the 'li' elements. In the example, it's the "Bullet", "Step",
and "Step1" styles.

The paragraph styles without mapping are converted to HTML paragraphs, so you can skip the ones
where the mapping is not necessary. The "Body", "CellBody", and "CellHeading" styles don't have a
mapping in the example above.

Blog | 4 - Migrate | 257

2. Publish the 'mif' document to HTML using Basic HTML:

This should result in an '.htm' document located in the output directory:

Correct the Resulting HTML Using a Custom Refactoring Operation

The HTML document that results from publishing requires some extra processing before applying the DITA
conversion.

For this, do the following:

1. Download the content from the following GitHub repository: https://github.com/oxygenxml/dita-
refactoring-examples.

2. Copy the correctHtmlFromMif.xml and correctHtmlFromMif.xsl files from the "43.
FM conversion fixes" directory in one of the locations that Oxygen scans when loading the custom
refactoring operations: https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-
operations.html.

3. Restart Oxygen.
4. Add the output directory that contains the HTML file to your project.

https://github.com/oxygenxml/dita-refactoring-examples
https://github.com/oxygenxml/dita-refactoring-examples
https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-operations.html
https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-operations.html

Blog | 4 - Migrate | 258

5. In the Project view, right-click the HTML file, and invoke the Refactoring> XML Refactoring action.
6. In the resulting dialog box, search for the operation named Correct HTML resulting from 'mif' and apply it

to the HTML document.

The applied refactoring operation corrects two problems in the HTML document:

• The list items without a parent element ('ol' or 'ul').
• Targets of the cross references that have the "name" attributes from anchor elements instead of the "id"

attributes.

Convert HTML to DITA Using the Oxygen Batch Documents Converter Add-on

The Batch Documents Converter add-on has to be installed in Oxygen for this step. Follow the installation
procedure here.

Before converting the document, you should configure which headings are handled as topics or sections. For this,
use the Maximum Heading Level for Creating Topics options from the add-on's preferences page.

For converting the document, do the following:

1. Right-click the HTML document in the Project view and invoke the "HTML to DITA" option from the
Batch Documents Converter submenu.

2. In the resulting dialog box, make sure that the Ignore HTML 'div' elements option is selected (because
this element is not useful in the output) and that the Create DITA maps from HTML documents
containing multiple headings option is also selected:

3. Click the Convert button.

The resulting DITA map preserves the structure of the document, images, tables, and internal and external links:

https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html#batch-converter-addon__maximumHeadingLevelForCreatingTopics

Blog | 4 - Migrate | 259

Note that migration from proprietary formats to XML is never perfect and manual changes need to be made. The names of the
original styles are preserved on the @ouputclass attributes and these can be used for adding extra processing using refactoring
operations.

Adobe and FrameMaker are either registered trademarks or trademarks of Adobe in the United States and/or other countries.

Automation - Using DITA XML Topic Titles to Generate File Names

When you create a new DITA topic in Oxygen XML Editor, you can usually specify the title of the topic and that title is
used by the application to propose a file name. For example, for a topic title like WebHelp Output, the file name could be
webhelp_output.dita.

In general, I think having file names that match the topic titles seems like a best practice technique to identify each topic based
solely on the file name. However, there are cases where the file names do not match the topic or map titles and for such cases, I
created a free-to-use Python script to update the file names of all topics and maps based on the titles specified inside them. The
script should also update any link or conref references to reflect the file name changes it makes.

I think this script that updates file names based on titles for an entire DITA XML project could be useful in these cases:

• There are content management systems (CMSs) that use unique IDs as file names (for example, abc434243243.xml).
When such projects are exported from the CMS, the file names look quite ugly on disk and also when publishing the
projects to HTML-based outputs, you might get links to HTML files like abc434243243.html, which are ugly and hard to
remember.

• In time, from one version of the user's guide to another, the titles of certain topics may change and having a way to
update the file names based on titles in the entire project may be useful.

• Sometimes after migrating another file format like Microsoft Word to a DITA Map using the Oxygen Batch Documents
Converter add-on, you may want to make sure the topic file names reflect their titles.

Below, you can leave feedback or comments about such a practice or about using the script for your project.

https://github.com/oxygenxml/dita-refactoring-examples/tree/master/46%20Topic%20titles%20to%20File%20Names

Chapter 5. SDK Development (Plugins, Frameworks)
Oxygen XML Editor provides various ways to customize the application either by adding frameworks to customize editing for a
certain XML vocabulary or by creating plugins.

Customizing Oxygen XML Editor (Overview)

Let's assume you just bought Oxygen and want to customize it in order to better suit your team's workflow or to add support for
your custom XML vocabulary. I will attempt to provide a set of use cases along with indications and useful links about what
customization should be done in order to cover each use case:

Add support for editing a specific XML vocabulary

This kind of support usually should include:

• New file templates.
• Validate opened XML documents according to a custom schema.
• Provide custom CSS to be used in the Author visual editing mode.
• Provide custom toolbar, menu, and contextual menu actions to be used in the Author visual editing mode.

Such support is done using a document type/framework configuration: The Oxygen SDK (Part 2: Frameworks) (on page 272).

Customize the existing support for a specific XML vocabulary

Oxygen comes with pre-configured framework configurations for the most commonly used XML standards such as DITA,
Docbook, TEI, or XHTML. You may want to customize the existing configuration for one of these vocabularies and share the
customization with others. Such customizations may include:

• Provide custom file templates: Sharing New Custom File Templates for a Specific Vocabulary (on page 264).
• Provide a custom CSS layer: Customizing the DITA Visual Editing Experience (on page 137).
• Provide custom Schematron validation rules: Sharing Schematron Validation Rules (on page 262).
• Provide custom actions or modify the existing actions.

All of these customizations can be done by extending the existing framework configuration and then sharing the extension:
Document Type Extension Sharing (on page 261).

Provide custom settings

You may want to provide all members of the team with a fixed set of options: Sharing Application Settings (on page 289).

Modify the application appearance or behavior using plugins

Oxygen plugins can be used to:

• Contribute custom views and toolbars for the entire application.
• Filter out existing views or toolbar actions.
• Contribute a fixed set of options/settings to the application.
• Register various listeners and be notified when a document is opened, closed, saved, and so on.
• Use the existing API to make changes to the opened documents.

A more detailed overview of Oxygen plugins can be found here: The Oxygen SDK (Part 1: Plugins) (on page 272).

The most popular plugin extension is the Workspace Access plugin extension: https://www.oxygenxml.com/doc/ug-editor/topics/
workspace-access-plugin.html. This extension is notified when the application starts and can contribute custom views, custom
main menu items, custom main toolbar actions, or add listeners for various document-related changes.

https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 261

There is also a JavaScript-based workspace access plugin extension that can use JavaScript to call our Java API: https://
www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin-js.html.

A set of sample plugins built with the JavaScript-based extension can be found here: https://github.com/oxygenxml/wsaccess-
javascript-sample-plugins.

Our Maven-based SDK can be used to develop both plugins and framework Java customizations: https://www.oxygenxml.com/
oxygen_sdk_maven.html.

Document Type Extension Sharing

Instead of copying an entire framework configuration folder (like DITA or Docbook), then modifying and distributing it, you
can choose to extend that framework and distribute the extension. This way, you benefit from new functionality added to the base
framework by newer Oxygen versions and you can still use your customizations.

The steps below describe how to construct and share an extension of the DITA framework that removes certain elements from
the content completion list:

1. Somewhere on your local disk (in a place where you have full write access), create a folder structure like:
custom_frameworks/dita-extension.

2. In the Document Type Association / Locations preferences page, add the path to your custom_frameworks folder
in the Additional frameworks directories list. Click OK or Apply to save your changes.

3. In the Document Type Association preferences page, select the DITA document type configuration and use the Extend
button to create an extension for it.

4. Give the extension a custom name (for example, DITA - Custom), then change its Storage to external, and save it to a
path like: path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

5. Make changes to the extension (for example, go to the Author->Content completion tab and add elements that should
not be presented to the end users in the Filter - Remove content completion items list).

6. Click OK to close the dialog box and then either OK or Apply to save the preferences changes.

After you perform the steps above, in the dita-extension folder you will have a fully functioning framework that can be
shared with others.

The framework can be shared with others in several ways:

• Copy it to their [OXYGEN_DIR]/frameworks directory.
• Somewhere on the local disk, create a custom_frameworks folder, copy the framework there, and then in the

Document Type Association / Locations preferences page, add the path to your custom_frameworks folder in the
Additional frameworks directories list.

• Distribute the framework along with a project by following these steps:
1. On your local drive, create a directory with full write access that contains the project files and a
custom_frameworks folder that contains your dita-extension.

2. Start the application, go to the Project view, and create a project. Save it in the newly created directory.
3. In the Document Type Association / Locations preferences page, select Project Options at the bottom of the

page.
4. In the Additional frameworks directories list, add an entry like: ${pd}/custom_frameworks.
5. Add other resources to your project (for example, you can have all of your DITA content located inside the

project folder).
6. You can then share the new project directory with other users. For example, you can commit it to your version

control system and have them update their working copy. When they open the customized project file in the
Project view, the new document type becomes available in the list of Document Types.

• Deploy the framework/document type configuration as an add-on.

After your team members install the framework, they can check in the Document Type Association preferences page (in the list
of Document Types) to see if the framework is present and if it appears before the bundled DITA framework (meaning that it has
higher priority).

https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin-js.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin-js.html
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://www.oxygenxml.com/oxygen_sdk_maven.html
https://www.oxygenxml.com/oxygen_sdk_maven.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/packing-and-deploying-addons.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 262

Sharing Schematron Validation Rules

Custom Schematron rules are a great way to ensure consistency for the edited XML structure, especially when there is a large
team working on the same set of documents. You can use Schematron for numerous use cases. For example, to make sure that
certain elements are not used at all, to impose restrictions on the amount of text for an element, or to impose restrictions on
certain elements based on various attribute values or text content set in other elements. Furthermore, you can define quick fixes
for each Schematron rule to give the technical writer proposed solutions for the reported problem. In a previous blog post, I
described how we use Schematron rules for our Oxygen User's Manual to impose restrictions when editing DITA content:
Schematron Checks to help Technical Writing (on page 178).

Once you define the Schematron rules, they can be shared with the other members of your team via a document type
framework configuration: The Oxygen SDK (Part 2: Frameworks) (on page 272).

In this post, I'm going to provide some precise steps to share a set of Schematron rules with a DITA framework extension.

Instead of making changes directly to the DITA framework configuration folder (located in OXYGEN_INSTALL_DIR
\frameworks\dita) and distributing it, you can choose to extend the DITA framework and distribute the extension. This way,
you will benefit from new functionality added to the base framework in newer versions of Oxygen and you can still use your
customizations.

The following steps describe how you can extend a DITA framework that contains an additional Schematron rules file:

1. Create a folder structure (for example, custom_frameworks/dita-extension) somewhere on your local disk, in a place
where you have full write access.

2. In that new folder structure, create another folder (custom_frameworks/dita-extension/rules) that will contain all of
your custom Schematron files.

3. Create a new ISO Schematron file (for example, additionalRules.sch) that contains the additional rules you want to
impose. For example, the following Schematron rule reports an error if the @scale attribute is used on an image:

<schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <pattern>
 <rule context="*[contains(@class, ' topic/image ')]">
 <assert test="not(@scale)">
 Dynamically scaled images are not properly displayed, you
 should scale the image with an image tool and keep it within
 the recommended width and height limits.
 </assert>
 </rule>
 </pattern>
</schema>

4. In the Document Type Association / Locations preferences page, add the path to your custom_frameworks folder in the
Additional frameworks directories list. Click OK or Apply in the Preferences dialog to save your changes.

5. In the Document Type Association preferences page, select the DITA document type configuration and use the Extend
button to create an extension for it.

6. Give the extension a custom name (for example, DITA - Custom), then change its Storage option to External, and then
save it to a path such as: path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

7. Make whatever changes you desire to the extension, go to the Validation tab, edit the default DITA validation scenario,
and add an extra validation stage to it (a stage that uses your custom Schematron schema). More details about validation
scenarios can be found here: https://www.oxygenxml.com/doc/ug-editor/topics/dg-validation-scenarios.html.

8. Click OK to close the dialog box and then either OK or Apply to save the preferences changes.

After you perform the steps above, in the dita-extension folder you will have a fully functioning framework extension that can
be shared with others.

There are several methods for sharing the framework and you can read about them here: https://www.oxygenxml.com/doc/ug-
editor/topics/author-document-type-extension-sharing.html.

After your team members install the framework, they can check the Document Type Association preferences page to make sure
the framework is present in the list of Document Types and that it appears before the bundled DITA framework (meaning that it
has higher priority).

https://www.oxygenxml.com/doc/ug-editor/topics/dg-validation-scenarios.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-document-type-extension-sharing.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-document-type-extension-sharing.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 263

You can use the framework extension mechanism to customize numerous aspects of the DITA functionality in Oxygen. For
example, you can remove various elements from the content completion list: Document Type Extension Sharing (on page
261). Or you can distribute custom new file templates: Sharing New Custom File Templates for a Specific Vocabulary (on
page 264).

Public hosted Oxygen Plugin and Framework Projects

All resources, Frameworks and Plugins which we make publicly available to contributors can be found on the oxygenxml
GitHub group:https://github.com/oxygenxml/:

• Plugins: https://github.com/search?q=topic:oxygen-standalone-plugin+org:oxygenxml&type=Repositories

Examples:
◦ Workspace containing sample Oxygen plugins implemented in Javascript: https://github.com/oxygenxml/

wsaccess-javascript-sample-plugins.
• Frameworks: https://github.com/search?q=topic:oxygen-framework+org:oxygenxml&type=Repositories.

Examples:
◦ Framework which adds Daisy support in Oxygen: https://github.com/oxygenxml/Daisy
◦ Framework which adds STRATML support to Oxygen: https://github.com/oxygenxml/stratml
◦ S1000D Framework which adds some limited support to edit S1000D documents in the Author visual editing

mode:https://github.com/oxygenxml/S1000D

Besides, there are interesting Oxygen plugins and frameworks which are developed as separate public projects and maintained by
third parties (either users or companies). I will try to compile a list below:

• Project Argon by German company Axxepta provides a plugin which can connect Oxygen to a BaseX server: https://
github.com/axxepta/project-argon. The integration also provides CMS-like capabilities for searching and version control.
The plugin is available as an add-on: http://argon-author.com/.

• LanguageTool plugin for Oxygen: https://github.com/danielnaber/oxygen-languagetool-plugin
• The latest version of XSpec framework is available as an external framework or an add-on. See XSpec Wiki for more

details.
• You can define terminology terms and then create Schematron rules for them using the Doctales terminology checker

Oxygen framework: https://github.com/doctales/org.doctales.terminology.
• Framework which adds JATS/NLM support for Oxygen developed by Wendell Piez: https://github.com/wendellpiez/

oXygenJATSframework.
• Framework for validating XSL-FO with Antenna House extensions developed by Antenna House: https://github.com/

AntennaHouse/focheck.
• Fork of the JATS framework which adds Schematron checks and Literatum package building: https://github.com/le-tex/

oXygenJATSframework_Literatum
• Three open-source frameworks for editing ATA-2300, S1000D and RIF XML documents in Oxygen developed by

Amplexor: https://github.com/Amplexor.
• Besides being bundled with Oxygen the TEI framework is also available as a project partly maintained by the TEI

community: https://code.google.com/p/oxygen-tei/

• HisTEI: An Oxygen framework for historical documents encoded in TEI.

More details: https://github.com/odaata/HisTEI, https://www.oxygenxml.com/pipermail/oxygen-sdk/2014-
November/000182.html

• oXbytei is an oXygen framework for editing TEI, that is configured by TEI's header. It offers high-level functions that
facilitate everyday work on TEI documents. More details: https://github.com/SCDH/oxbytei#an-oxygen-framework-
configured-by-tei

• Ediarium is an extension package for TEI editing within Oxygen.

More details:https://www.bbaw.de/en/bbaw-digital/telota/research-and-software/ediarum, https://github.com/telota/
ediarum

https://github.com/oxygenxml/
https://github.com/search?q=topic:oxygen-standalone-plugin+org:oxygenxml&type=Repositories
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/search?q=topic:oxygen-framework+org:oxygenxml&type=Repositories
https://github.com/oxygenxml/Daisy
https://github.com/oxygenxml/stratml
https://github.com/oxygenxml/S1000D
https://github.com/axxepta
https://github.com/axxepta/project-argon
https://github.com/axxepta/project-argon
http://argon-author.com/
https://github.com/danielnaber/oxygen-languagetool-plugin
https://github.com/xspec/xspec/wiki/Running-with-Oxygen#running-the-latest-version-of-xspec-with-oxygen
https://github.com/doctales/org.doctales.terminology
https://github.com/wendellpiez/oXygenJATSframework
https://github.com/wendellpiez/oXygenJATSframework
https://github.com/AntennaHouse/focheck
https://github.com/AntennaHouse/focheck
https://github.com/le-tex/oXygenJATSframework_Literatum
https://github.com/le-tex/oXygenJATSframework_Literatum
https://github.com/Amplexor
https://code.google.com/p/oxygen-tei/
https://github.com/odaata/HisTEI
https://www.oxygenxml.com/pipermail/oxygen-sdk/2014-November/000182.html
https://www.oxygenxml.com/pipermail/oxygen-sdk/2014-November/000182.html
https://www.oxygenxml.com/
https://tei-c.org/
https://github.com/SCDH/oxbytei#an-oxygen-framework-configured-by-tei
https://github.com/SCDH/oxbytei#an-oxygen-framework-configured-by-tei
https://www.bbaw.de/en/bbaw-digital/telota/research-and-software/ediarum
https://github.com/telota/ediarum
https://github.com/telota/ediarum

Blog | 5 - SDK Development (Plugins, Frameworks) | 264

• TEI Facsimile Plugin offers a side view in which users can load an image and see the marked areas (all the zone
elements from a TEI document), draw new areas over the image and copy them into the editor:https://github.com/
oxygenxml/TEI-Facsimile-Plugin.

• A Workspace Access Plugin for Oxygen XML Editor that creates TEI-conform UUIDs starting with a letter: https://
github.com/digicademy/CustomUUID

• TEI Authorizer is a plugin for Oxygen which lets you query remote authority files via HTTP and use retrieved data to
autocomplete attribute values in your TEI documents and define and implement forms to fill out new data and post it to
your server via HTTP:https://github.com/BCDH/TEI-Authorizer

• Framework for editing UBL documents (UBL 2.1, 2.2 csd01 and 2.2 Pre-award csd02wd01pa01) developed by G. Ken
Holman: https://cranesoftwrights.github.io/resources/ubl/#oxygenubl

• Framework for validating OASIS genericode 1.0 documents developed by G. Ken Holman: https://
cranesoftwrights.github.io/resources/ubl/#oxygengc.

• Automatic builder for Oxygen frameworks which allows user to describe framework's behaviour by using only XQuery,
HTML, and CSS, and automatically generate the framework archive ready to be deployed (developed by Claudius
Teodorescu):https://github.com/claudius108/oxygen-addon-builder-plugin

• Plugin developed by Clausius Teodorescu which allows opening a JavaFX-based web browser in Oxygen: https://
github.com/claudius108/oxygen-webview-plugin.

• OpenDocs Plugin allows you to focus on specific file types opened in the editor in order to perform various actions on
them. GitHub repository: https://github.com/nkutsche/opendocs/.

• XsltGui Project by Patrik Stellmann is an example of how you can show dialogs to the end users from an XSLT script:
https://github.com/dita-semia/XsltGui.

• Plugin developed by pagina GMBH which expands a custom editor variable called ${clipboard} to the clipboard
contents: https://github.com/paginagmbh/oxygen-plugin_clipboard-editor-variable.

• The NameDropper Oxygen plugin can be used to simplify the process of tagging names in XML and associating those
names with authoritative identifiers:https://github.com/emory-libraries-ecds/namedropper-oxygen.

• Sample Oxygen plugin demo by Tobias Fisher: https://github.com/tofi86/oxygen_PluginDemo.

If anyone else wants to add something else to the list, just drop us an email.

Sharing New Custom File Templates for a Specific Vocabulary

The support Oxygen provides for editing DITA topics comes with quite an extensive set of new file templates used to create new
DITA topic types. If you have a team of writers, you may want to filter out certain new file templates or add your custom new
file templates, then share these custom templates with your team members.

This blog post will attempt to give you some clear steps for sharing a custom set of new file templates with your team.

All the original DITA new topic templates are located in the folder: OXYGEN_INSTALL_DIR\frameworks\dita
\templates.

Instead of making changes directly to that folder, copying the entire DITA framework configuration folder (like
OXYGEN_INSTALL_DIR\frameworks\dita), modifying and distributing it you can choose to extend the DITA framework
and distribute the extension. In this way, you will benefit of new functionality added to the base framework by newer Oxygen
versions and still use your customizations.

The steps below describe how an extension of the DITA framework which adds a custom set of new file templates can be
constructed and shared:

1. Create somewhere on your disk, in a place where you have full write access a folder structure like:
custom_frameworks/dita-extension.

2. In that new folder structure create another folder custom_frameworks/dita-extension/templates which
will contain all your custom new topic templates.

3. In the Document Type Association / Locations preferences page add in your Additional frameworks directories list
the path to your custom_frameworks folder. Click OK or Apply in the Preferences dialog to save your changes.

4. In the Document Type Association preferences page select the DITA document type configuration and use the Extend
button to create an extension for it.

5. Give a custom name to the extension, for example DITA - Custom and then change its Storage to external, then save it
to a path like: path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

https://github.com/oxygenxml/TEI-Facsimile-Plugin
https://github.com/oxygenxml/TEI-Facsimile-Plugin
https://www.oxygenxml.com/doc/ug-oxygen/index.html#concepts/workspace-access-plugin.html
https://github.com/digicademy/CustomUUID
https://github.com/digicademy/CustomUUID
https://github.com/BCDH/TEI-Authorizer
https://cranesoftwrights.github.io/resources/ubl/#oxygenubl
https://cranesoftwrights.github.io/resources/ubl/#oxygengc
https://cranesoftwrights.github.io/resources/ubl/#oxygengc
https://github.com/claudius108/oxygen-addon-builder-plugin
https://github.com/claudius108/oxygen-webview-plugin
https://github.com/claudius108/oxygen-webview-plugin
https://github.com/nkutsche/opendocs/
https://github.com/dita-semia/XsltGui
https://github.com/paginagmbh/oxygen-plugin_clipboard-editor-variable
https://github.com/emory-libraries-ecds/namedropper-oxygen
https://github.com/tofi86/oxygen_PluginDemo

Blog | 5 - SDK Development (Plugins, Frameworks) | 265

6. Make changes to the extension, go to the Templates tab, remove all previous entries from it and add a new entry
pointing to your custom templates folder: ${frameworkDir}/templates.

7. Click OK to close the dialog and then either OK or Apply to save the preferences changes.

After you perform the steps above you will have in the dita-extension folder a fully functioning framework extension
which can be shared with others.

The framework can then be shared with others in several ways:

• Copy it to their [OXYGEN_DIR]/frameworks directory.
• Create somewhere on disk a custom_frameworks folder, copy the framework there and then from the Document

Type Association / Locations preferences page add in your Additional frameworks directories list the path to the
custom_frameworks folder.

• Distribute the framework along with a project.

Follow these steps:
1. On your local drive, create a directory with full write access, containing the project files and a
custom_frameworks folder containing your dita-extension framework.

2. Start the application, go to the Project view and create a project. Save it in the newly created directory.
3. In the Document Type Association / Locations preferences page, select Project Options at the bottom of the

page.
4. Add in the additional framework directories list an entry like ${pd}/custom_frameworks.
5. Add other resources to your project, for example you can have all your DITA content located inside the project

folder.
6. You can then share the new project directory with other users. For example you can commit it to your version

control system and have they update their working copy. When they open the customized project file in the
Project view, the new document type becomes available in the list of Document Types.

• Deploy the framework/document type configuration as an add-on.

After your team members install the framework they can check in Document Type Association preferences page in the list of
Document Types to see if the framework is present and if it appears before the bundled DITA framework (meaning that it has
higher priority).

You can use the framework extension mechanism to customize lots of aspects of the DITA functionality in Oxygen. For example
you can remove various elements from the content completion list: Document Type Extension Sharing (on page 261).

Composing Author Actions

Suppose that each time you insert a DITA table in the Author visual editing mode, you want to always have the attributes
colsep="1" rowsep="1" frame="all" set on it. The purpose of this post is to create a new DITA-specific action for inserting a
table that invokes the current table insertion action and then forces those three attributes to be set on the table element. Here are
some steps to accomplish this:

1. Follow the steps listed in this older blog post to create an extension of the DITA framework: Customizing the DITA
Visual Editing Experience (on page 137).

2. In the Document Type Association preferences page, edit the DITA framework extension you just created.
Go to the Author->Actions tab and create a new action with the ID change.table.colsep. Use the predefined
ChangeAttributeOperation to set the (colsep="1" attribute) on the closest table element. The custom action would look
like this:

https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/#topics/packing-and-deploying-addons.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 266

3. Based on the same idea, create two more new actions called "change.table.rowsep" and "change.table.frame" that will
set the rowsep="1" and frame="all" attributes on the closest table, respectively.

4. Create a new action with the ID insert.table.fixed.attributes and use the predefined
ExecuteMultipleActionsOperation to call 4 actions in a row, the original insert.table action ID that inserts the table,
followed by the three action IDs that set various attribute values to the inserted table.

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 267

5. Go to the Author->Toolbar tab and in the "Current actions" panel, remove the current "insert.table" action and
replace it with the insert.table.fixed.attributes action ID.

6. When editing a DITA topic, pressing the toolbar action for inserting a table should now call your custom action that sets
those three attributes on the inserted table.

Implementing a Custom Author Action to Split a Table

Let's say you are editing XML documents belonging to a certain vocabulary (like DITA) for which there is a framework
configuration available. The purpose of this post is to create a new custom Author action for splitting the current edited table
in two based on the table row in which the cursor is located. The custom action will use Javascript to call Oxygen's API and
accomplish this. Here are some steps to follow:

1. Follow the steps 1,3, 4 and 5 listed in this older blog post to create an extension of the DITA framework: Customizing
the DITA Visual Editing Experience (on page 137).

2. In the Document Type Association preferences page, edit the DITA framework extension you just created. Go to the
Author->Actions tab and create a new action with the ID split.table. Use the predefined JSOperation to invoke a
custom Javascript code. The custom action definition would look like this:

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html#dg-default-author-operations__jsoperation

Blog | 5 - SDK Development (Plugins, Frameworks) | 268

3. Set as value to the script parameter of the operation the following Javascript code:

function doOperation(){
 current =
 authorAccess.getDocumentController().getNodeAtOffset(authorAccess.getEditorAccess().getCaretOffset(
));
 tableNode = null;
 rowNode = null;
 while(current != null) {
 if(tableNode == null && ("table".equals(current.getName())
 || "informaltable".equals(current.getName()))) {
 tableNode = current;
 }
 if(rowNode == null && ("row".equals(current.getName()) || "strow".equals(current.getName()))) {
 rowNode = current;
 }
 current = current.getParent();
 }
 if(tableNode != null && rowNode != null) {
 //Create a fragment starting from the row to the end of the table
 secondTable =
 authorAccess.getDocumentController().createDocumentFragment(rowNode.getStartOffset(),
 tableNode.getEndOffset());
 //Delete the content from the first table.
 authorAccess.getDocumentController().delete(rowNode.getStartOffset(), tableNode.getEndOffset()
 - 1);
 //Insert the second table.
 authorAccess.getDocumentController().insertFragment(tableNode.getEndOffset() + 1, secondTable);

Blog | 5 - SDK Development (Plugins, Frameworks) | 269

 }
}

4. Go to the Author->Toolbar tab and use the Current actions panel to add the action with ID split.table to the toolbar.

5. When editing a DITA topic, pressing the toolbar action for splitting the table should now call your custom action and
split the current table.

6. You can add keyboard shortcuts for all custom actions either when defining them or from the Oxygen main menu
Preferences->Menu Shortcut Keys page.

Adding a Custom Author Action to the Content Completion Window

Let's say you are editing XML documents belonging to a certain vocabulary (like DITA) for which there is a framework
configuration available. The content completion window appears in the Author visual editing mode when you press the ENTER
key and usually presents the set of XML elements allowed at the caret position. The same list of elements is present in the
Elements view. These elements are usually proposed based on the DTD, XML or Relax NG vocabulary used to validate the
XML document.

But there may be cases in which you want to customize the content completion items. There is a content completion
configuration file which can be changed to allow for various use cases:

• Disallow a certain set of elements to appear in the content completion window.
• Declare a set of required child elements which should be inserted automatically when the parent element is inserted.
• Declare a set of required attributes which should be inserted when a certain element is inserted.

There are also a number of use cases not covered by the content completion filter file:

• You want to add a new item in the content completion filter which triggers a complex action. For example when the item
is selected you show a dialog and ask the end user from some data, then insert a custom XML fragment based on that
data the end user filled out.

• You want to replace an existing item in the content completion window with an item with the same name but which
again triggers a more complex action.

Further in the blog post we'll go through the steps necessary to replace an item from the content completion window with a
complex action. As an example for the DITA vocabulary when the created item is selected in the content completion window we
want the inserted XML content to contain the current date like:

<created date="2020-03-26"/>

Here are some steps to follow:

1. Follow the steps 1,3, 4 and 5 listed in this older blog post to create an extension of the DITA framework: Customizing
the DITA Visual Editing Experience (on page 137).

2. In the Document Type Association preferences page, edit the DITA framework extension you just created.
Go to the Author->Actions tab and create a new action with the ID created.current.date. Use the predefined
InsertFragmentOperation to insert a small XML fragment. The XML fragment uses an editor variable which will be
expanded to the current date. There are plenty of other editor variables (on page 292) to choose from.

The custom action definition would look like this:

https://www.oxygenxml.com/doc/ug-editor/topics/configure-elements-attr-cc-individually.html
https://www.oxygenxml.com/doc/ug-editor/topics/configure-elements-attr-cc-individually.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html#dg-default-author-operations__insertfragmentoperation

Blog | 5 - SDK Development (Plugins, Frameworks) | 270

There are plenty of other pre-defined operations which can be used from an Author action. For example a Javascript-
based operation (on page 267), there are some other examples of what such operations can do in a separate GitHub
project.

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html
https://github.com/oxygenxml/javascript-sample-operations
https://github.com/oxygenxml/javascript-sample-operations

Blog | 5 - SDK Development (Plugins, Frameworks) | 271

3. Go to the Author->Content Completion tab, find the new action in the Available Actions list and add it to the Current
actions list. You will be able to add it both in the content completion list and the Elements view. In the Filter - Remove
content completion items list add an entry for created because we want to remove the original item and replace it with
the action.

4. Save all your changes by using the Ok button both in the document type configuration dialog and in the Preferences
dialog.

5. When editing a DITA topic in the Author visual editing mode you can press ENTER to show the content completion
window, choose created and your custom Author action will be called instead of the original item.

How Special Paste works in Oxygen

If you've worked with one of the XML vocabularies for which Oxygen has out of the box support like DITA, Docbook, TEI,
XHTML you've probably already used the support Oxygen has for converting content pasted in the application from external
applications like Microsoft Word, Excel or from any web browser. This is a very useful feature for converting various types of
content to XML because it preserves and converts styling, links, lists, tables and image references.

The feature relies on the fact that when copying content in the applications mentioned above, they set in the clipboard the HTML
equivalent of the copied content. So all Oxygen has to do is clean up that HTML, make it wellformed XHTML and apply
conversion XSLT stylesheets over it.

This support is not hardcoded and anybody who is developing an Oxygen framework customization (on page 272) for a certain
XML vocabulary can provide conversion stylesheets for external pasted HTML content.

I will describe how this works for the DITA framework and you can do the same for yours. You can also use this information to
modify the way in which smart paste works for the bundled framework configurations.

1. In the Preferences->Document Type Association page you can choose to edit (or extend) the DITA document type
association.

2. In the Extensions tab the Extensions bundle implementation is set to DITAExtensionsBundle which resides in the
DITA Java extensions archive dita.jar.

3. The DITAExtensionsBundle is an extension of the ExtensionsBundle API and it provides its own external object
extension handler:

 /**
 * @see ro.sync.ecss.extensions.api.ExtensionsBundle#createExternalObjectInsertionHandler()
 */
 @Override
 public AuthorExternalObjectInsertionHandler createExternalObjectInsertionHandler() {
 return new DITAExternalObjectInsertionHandler();
 }

4. The DITAExternalObjectInsertionHandler extends the base class AuthorExternalObjectInsertionHandler and
provides a reference to its specific conversion stylesheet:

 /**
 * @see
 ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler#getImporterStylesheetFileName(ro.syn
c.ecss.extensions.api.AuthorAccess)
 */
 @Override
 protected String getImporterStylesheetFileName(AuthorAccess authorAccess) {
 return "xhtml2ditaDriver.xsl";
 }

Note: The Extensions tab also allows you to specify the external object insertion handler as a separate
extension.

5. In the same Document Type edit dialog in the Classpath tab you will see that there is a reference to a framework-
specific resources folder like:${framework}/resources/

6. If you look on disk in the DITA framework resources folder: "OXYGEN_INSTALL_DIR\frameworks\dita
\resources" you will find the xhtml2ditaDriver.xsl stylesheet there. The stylesheet imports various other

https://www.oxygenxml.com/doc/ug-editor/index.html#tasks/dg-extensions-bundle.html
https://www.oxygenxml.com/InstData/Editor/SDK/javadoc/ro/sync/ecss/extensions/api/AuthorExternalObjectInsertionHandler.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 272

stylesheets which you could probably fully reuse and which apply various cleanups on HTML produced with MS Word.
It also handles the conversion between the pasted HTML content and DITA so it is a good starting point, you can copy
the entire set of XSLT stylesheets to your framework and use those as a starting point.

The Oxygen SDK (Part 1: Plugins)

During the last years we added a lot of API and extension points to Oxygen in order to allow for different customizations to the
application. But our documentation is sometimes lacking. We mostly rely on Javadoc documentation and on Java samples.
Here's some feedback we got at the last Oxygen Users Meetup in Munich this year:

“Too less information about frameworks, plugins, everything is spread over certain documents, webinars, etc .

Please centralize these information in one form.”

I will try to centralize these resources and add some useful links for people who want to start customizing Oxygen. First the
difference between a framework and a plugin:

• A plugin can be used to customize the behavior of the entire application no matter what XML document is currently
being edited.

• A framework configuration provides validation, content completion and editing support for a specific XML vocabulary.

Plugins:

A plugin is a folder containing a descriptor plugin.xml file and various other JAR libraries and resources.http://
www.oxygenxml.com/doc/ug-oxygen/index.html#topics/preferences-plugins.html

Only the standalone version of Oxygen supports plugins. The Eclipse Plugin version of Oxygen is itself a plugin and can be
customized by adding a plugin in the Eclipse workbench which depends on the Oxygen Eclipse plugin. Despite of this, most of
the API is common.

The plugin can be deployed either by copying it to the plugins folder of an Oxygen installation:https://www.oxygenxml.com/
doc/ug-editor/topics/howto-install-plugins.html or by deploying it as an add-on:http://www.oxygenxml.com/doc/ug-oxygen/
index.html#tasks/deploying-addons.html

The Oxygen Plugins SDK:https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins contains Java sources and
Javadoc for all the API accessible from a plugin. The Plugins SDK also contains sample plugins and their Java code. This Java
code should be very helpful to get you started and to show how various API can be used.

Although there are many types of plugins:http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/pluginTypes.html
the most useful plugin extension type is the "Workspace Access" extension type:http://www.oxygenxml.com/doc/ug-oxygen/
index.html#concepts/workspace-access-plugin.html This kind of plugin allows you to use the API and add or remove toolbar
and main menu buttons, add custom views and toolbars. It also allows you to access and control/make changes to the XML
documents opened in the workbench.

As an example, all full-featured integrations which have been created to connect Oxygen with a specific CMS or remote
repository use a combination of "Workspace Access" and "Custom Protocol" plugin:http://www.oxygenxml.com/doc/ug-oxygen/
index.html#topics/howto-cms-plugin.html

You can create automated tests for your plugins:http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-
tests.html and even debug their functionality:http://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/
debug-plugin.html

The Oxygen SDK (Part 2: Frameworks)

This is the second part of a blog post I started some time ago:

The Oxygen SDK (Part 1: Plugins) (on page 272).

https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/preferences-plugins.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/preferences-plugins.html
https://www.oxygenxml.com/doc/ug-editor/topics/howto-install-plugins.html
https://www.oxygenxml.com/doc/ug-editor/topics/howto-install-plugins.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#tasks/deploying-addons.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#tasks/deploying-addons.html
https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/pluginTypes.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#concepts/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#concepts/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/howto-cms-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/howto-cms-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-tests.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-tests.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/debug-plugin.html
https://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/debug-plugin.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 273

There are two ways of customizing the application, by implementing a plugin or by implementing a framework:

https://www.oxygenxml.com/doc/ug-editor/topics/api_faq_plugin_framework_difference.html

A framework configuration provides validation, content completion and editing support for a certain XML vocabulary.

If you are already using Oxygen for editing DITA, Docbook, XHTML or TEI documents you may notice that Oxygen knows
how to validate these vocabularies and that it can propose content completion entries while you are editing. Also when you are
editing in the Author visual editing mode you have lots of custom vocabulary-specific toolbar buttons which can be used to insert
links, images, to manipulate tables and so on. This happens because each Oxygen installation comes with pre-bundled framework
configurations for certain XML vocabularies that we consider to be more important for our users.

Knowing how to create and modify a framework/document type association configuration will benefit you in two ways:

1. Create your own framework which adds editing support to Oxygen for certain specific XML vocabularies and then
distribute it to your team.

2. Customize an existing framework bundled with the installation (DITA, Docbook, etc) and change certain behaviors in it.

Our user manual contains a special step by step tutorial which explains how a new framework configuration (document type
association) can be created and configured:

https://www.oxygenxml.com/doc/ug-editor/topics/authoring_customization.html

The Oxygen Preferences->Document Type Association page lists all detected frameworks (document type associations).
Usually looking inside one of the pre-configured document type associations (eg: DITA) is a good place to start exploring what
such a customization contains:

1. Association rules - when one of these rules matches the opened XML document, Oxygen will associate it with the
current document type association. The rules are pretty simple to compose, they refer to a certain root name, namespace,
certain attributes set on the root and so on.

2. Schema - specifies a grammar to be used to providing validation and content completion if the opened XML document
does not refer directly to any particular gramar.

3. Classpath - a list of JAR libraries which contain Java extensions for this specific framework.
4. Author - contains all necessary support for editing the XML in the Author visual editing mode:

◦ CSS - one or more CSS files to be used when rendering the XML. If you define alternate CSSs, you will be able
to switch between them when editing. The user manual contains a list of supported CSS features and additional
available extensions.

◦ Actions - a list of actions specific for modifying the edited content. An action has a name, description, icons
and shortcut key. It also has one or more activation contexts which depending on an XPath expression enable a
certain operation be executed. A fair amount of basic operations are already available but you can create your
custom operations.

◦ Menu, Contextual menu and Toolbar - you can easily mount defined actions to the main document type menu,
to the contextual menu or to the special Author toolbar(s).

◦ Content Completion - add defined actions to the content completion window (shown when ENTER is pressed
in the Author editor mode) or remove existing entries from the content completion window. You can for
example replace some of the insert suggestions given by the association grammar with your own custom actions.

5. Templates - points to folders which contain new file templates for this particular framework. These new file templates
will be shown in the New wizard dialog.

6. Catalogs contains a list of XML catalogs which will be used to indirectly solve various references (like references to
schemas or other XML documents).

7. Transformation may contains a predefined list of transformation scenarios which are available when you want to
publish your opened XML document to various output formats.

8. Validation may contain a predefined list of validation scenarios which are used to add complex multi-stage validation
(with multiple engines) for the XML documents matching the document type association.

9. Extensions - contains implementations of the available Java extensions which are used to provide further functionality
for editing in the Author visual editing mode. Here's what some of the extensions do:

https://www.oxygenxml.com/doc/ug-editor/topics/api_faq_plugin_framework_difference.html
https://www.oxygenxml.com/doc/ug-editor/topics/authoring_customization.html
https://www.oxygenxml.com/doc/ug-editor/topics/document-type-association-rules-tab.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 274

◦ AuthorExtensionStateListener - provides a way to be notified when the XML was opened in the Author
editing mode. You can then add all kinds of listeners and react to edit events done by the user. For example add
a modification listener, send the edited content to an external spell checker engine and then add highlights in the
content on invalid constructs.

◦ AuthorExternalObjectInsertionHandler - reacts to drag and drop and copy/paste events containing with
HTML content or resources. In the case of DITA for example this handler is responsible of the automatic
conversion of HTML pasted from the browser to DITA content.

◦ SchemaManagerFilter - filter and modify the insertion items detected from the associated grammar when
editing XML content. For example even if the schema proposes certain elements as valid insertions at the caret
offset, you can filter out and restrict the suggestions given by the associated schema (grammar).

◦ StylesFilter - take control over the rendering styles for each node by adding this layer of Java customization
over the styles provided by the associated CSSs.

◦ AuthorSchemaAwareEditingHandler - handle special editing cases and provide fallbacks which keep the
document in a valid state. For example if the user starts typing text between two paragraphs, the handler can
automatically create a new paragraph.

You can create automated tests for your frameworks:

http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-tests.html

and even debug their functionality:

https://www.oxygenxml.com/doc/ug-editor/topics/debug-sdk.html

Your First Oxygen Add-on

A framework configuration (on page 261) provides validation, content completion, and visual editing support for a certain
XML vocabulary.

Existing framework configurations that come bundled with Oxygen can be extended and modified. For example, the DITA
framework configuration that adds support for editing DITA documents can be modified to remove existing actions, add custom
actions, or modify many other behaviors: Document Type Extension Sharing (on page 261).

One way of distributing framework configurations is by using Oxygen's add-on support: https://www.oxygenxml.com/
addons.html. An add-on configuration is usually composed of only two files:

1. A ZIP file containing the zipped framework folder.
2. An add-on XML configuration file that references the zipped framework folder and defines various properties of the add-

on. A small example can be seen below:

<xt:extensions xmlns:xt="http://www.oxygenxml.com/ns/extension"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oxygenxml.com/ns/extension
 http://www.oxygenxml.com/ns/extension/extensions.xsd">
 <xt:extension id="dita-extension">
 <xt:location href="dita_extension.zip"/>
 <xt:version>1.0.0</xt:version>
 <xt:oxy_version>18.0+</xt:oxy_version>
 <xt:type>framework</xt:type>
 <xt:author>Radu Coravu</xt:author>
 <xt:name>DITA Extension which removes the bold action</xt:name>
 <xt:description xmlns="http://www.w3.org/1999/xhtml">
 This extension removes the bold action
 </xt:description>
 <xt:license>
<![CDATA[
Everybody's welcomed to use this
]]></xt:license>
 </xt:extension>
</xt:extensions>

In the add-on descriptor file you usually need to specify the following :

https://www.oxygenxml.com/doc/ug-editor/topics/automated-tests-x-sdk2.html
https://www.oxygenxml.com/doc/ug-editor/topics/debug-sdk.html
https://www.oxygenxml.com/addons.html
https://www.oxygenxml.com/addons.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 275

◦ The ID of the extension.
◦ The version of the add-on.
◦ The minimum supported Oxygen version.
◦ Author name.
◦ Name and description of add-on.
◦ Licensing details.

Changing the add-on version in the XML file will trigger notifications to the end user to install the new add-on. Therefore,
you can modify the framework customization in a common location and change the add-on version to signal all end-users
who have installed the add-on that a new version is available. More details about packing an add-on can be found here:https://
www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html#packing-and-deploying-addons.

If you want to test the small add-on I exemplified, you can find the sample add-on resources here:https://www.oxygenxml.com/
forum/files/sample-add-on.zip.

Installing an add-on is straight-forward using the Install new add-ons dialog box from the Oxygen Help menu. You can add a
reference to the add-on XML descriptor file that can reside either on the local hard drive or on a web server, and Oxygen will
present all available add-ons: https://www.oxygenxml.com/doc/ug-editor/topics/installing-and-updating-add-ons.html

The add-ons support can also be used to install Oxygen plugins (on page 272). Some of the public hosted Oxygen plugins and
frameworks are also available as add-ons: Public hosted Oxygen Plugin and Framework Projects (on page 263).

In conclusion, if you want to share Oxygen customizations with others, you should try the add-on approach, it is a better
approach to manually distributing frameworks and plugins.

Oxygen Add-ons Overview

Oxygen XML Editor can be extended to support new functionalities and vocabularies. These extensions can be either plugins or
frameworks: https://www.oxygenxml.com/doc/ug-editor/dev_guide/introduction-dev-guide.html.

This blog post is intended as a small overview of Oxygen XML Editor add-ons, what they are, sample add-ons implemented by
third parties, sample add-ons implemented by us and where we want to go from here.

Short History of Frameworks Support in Oxygen XML Editor

• The concept of framework appeared around Oxygen XML Editor version 9.

A framework (or document type) is a means to group together resources for editing, rendering and validating a specific
XML vocabulary: https://www.oxygenxml.com/doc/ug-editor/glossary/framework.html.

• Originally frameworks could be manually installed by being copied to the OXYGEN_INSTALL_DIR\frameworks
folder or by setting them up in the Preferences page.

Around version 14 we added support to pack plugins and frameworks as add-ons (on page 274) and thus automate the
installation process.

• In version 16 we added support to extend a base framework. Such an extension can be afterwards be bundled as an add-
on.

• A sample framework extension add-on which adds custom visual display support can be found here: DITA Topics as
Slides.

Short History of Plugin Support in Oxygen XML Editor

• The initial support for plugins was primitive, it allowed adding a contextual menu action in the Text editing mode for
manipulating the selected content: https://www.oxygenxml.com/doc/ug-editor/topics/text-editing-mode-plugins.html.

• In version 11.2 the Workspace Access plugin type was added: https://www.oxygenxml.com/doc/ug-editor/topics/
workspace-access-plugin.html.

Workspace Access plugins allow you to:

https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html#packing-and-deploying-addons
https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html#packing-and-deploying-addons
https://www.oxygenxml.com/forum/files/sample-add-on.zip
https://www.oxygenxml.com/forum/files/sample-add-on.zip
https://www.oxygenxml.com/doc/ug-editor/topics/installing-and-updating-add-ons.html
https://www.oxygenxml.com/doc/ug-editor/dev_guide/introduction-dev-guide.html
https://www.oxygenxml.com/doc/ug-editor/glossary/framework.html
https://github.com/oxygenxml/dita-author-slides
https://github.com/oxygenxml/dita-author-slides
https://www.oxygenxml.com/doc/ug-editor/topics/text-editing-mode-plugins.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html
https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 276

◦ Add custom toolbar and menu actions.
◦ Add custom side views.
◦ Add various behaviors depending on various events which occur in the application:

▪ Open, Save, Close documents.
▪ Switch between document.
▪ Open or close the application.

Such plugins can be implemented either in Java or Javascript (since version 17.1).
• Originally plugins could be manually installed by being copied to the OXYGEN_INSTALL_DIR\plugins. Around

version 14 we added support to pack plugins and frameworks as add-ons (on page 274) and thus automate the
installation process.

Public Hosted Plugins and Frameworks

There is an older blog post with an up to date list of Public hosted Oxygen Plugin and Framework Projects (on page 263).

Private Hosted Plugins and Frameworks

Content Management Systems like Astoria, Bluestream, Ixiasoft, SDL have implemented plugins which allow Oxygen XML
Editor to connect to their remote storage servers.

There are also lots of privately used frameworks used for editing various varieties of XML documents inside companies.

Why are we (the Oxygen XML Editor team) working on add-ons?

• Open source add-ons are useful as samples for third parties.
• We can work with external collaborators on add-ons.
• Add-ons can be released at a much faster pace.
• Interns who work for us for a couple of months can implement useful functionality without making changes to the

application main code base.
• We can work on add-ons before Oxygen XML Editor releases when we enter a code freeze stage.
• We can use our own API and abandon the mindset of regarding the main application as a monolith.
• Sincerely, working on add-ons is more FUN.

Plugins and Frameworks Developed by Oxygen XML Editor

Samples:

• Sample Javascript-based plugins: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins.
◦ Apply XSLT filter on open/save.
◦ Add custom editor variable resolver.
◦ Impose options.
◦ Add custom image renderer for Author visual editing mode.
◦ Add custom validation problems filter.

• Sample Workspace-access plugin Maven based: https://github.com/oxygenxml/sample-plugin-workspace-access
• User interface filter plugin: https://github.com/oxygenxml/oxygen-components-filter-plugin

Useful add-ons with public sources:

• Git support add-on: https://github.com/oxygenxml/oxygen-git-plugin
• Batch Resources Convertor add-on: https://github.com/oxygenxml/oxygen-resources-converter
• DocBook Validation add-on: https://github.com/oxygenxml/oxygen-docbook-validate-check-completeness
• Add-on for connecting to any CMIS-enabled storage server (like Alfresco): https://github.com/oxygenxml/oxygen-cmis-

plugin.
• DITA-specific add-ons:

https://github.com/oxygenxml/wsaccess-javascript-sample-plugins
https://github.com/oxygenxml/sample-plugin-workspace-access
https://github.com/oxygenxml/oxygen-components-filter-plugin
https://github.com/oxygenxml/oxygen-git-plugin
https://github.com/oxygenxml/oxygen-resources-converter
https://github.com/oxygenxml/oxygen-docbook-validate-check-completeness
https://github.com/oxygenxml/oxygen-cmis-plugin
https://github.com/oxygenxml/oxygen-cmis-plugin

Blog | 5 - SDK Development (Plugins, Frameworks) | 277

◦ Translation helper: https://github.com/oxygenxml/oxygen-dita-translation-package-builder
◦ Prolog updater: https://github.com/oxygenxml/oxygen-dita-prolog-updater
◦ Outgoing References View: https://github.com/oxygenxml/oxygen-dita-outgoing-references-view

• Support for rendering various image formats in the Author visual editing mode:
◦ EMF: https://github.com/oxygenxml/oxygenxml.emf.support
◦ CGM: https://github.com/oxygenxml/oxygenxml.cgm.support
◦ PDF: https://github.com/oxygenxml/oxygen-pdf-image
◦ LaTex: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support
◦ PlantUML: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/plantuml-images-

support

Useful add-ons with private repositories (can be installed from application default add-on update site):

• Content Fusion Oxygen add-on - bundled with Oxygen.
• WebHelp Feedback Oxygen add-on.
• Emmet plugin for Oxygen.

Using Frameworks and Plugins in the WebAuthor in-browser editor

The WebAuthor in-browser editing tool reuses on the server most of the internal architecture of an Oxygen XML Editor
standalone version:

• The WebAuthor can use for editing XML vocabularies the same framework configurations used in Oxygen XML Editor:
https://www.oxygenxml.com/doc/ug-waCustom/topics/customizing_frameworks.html

• Plugins can be implemented to connect the WebAuthor to various servers.

Where can we go from here?

Possible future plugins we can work on:

• Support for Google Drive (already available in WebAuthor)
• Support for Perforce (already available in WebAuthor)
• Use Grammarly for spell check (no API available on Grammarly side)
• Presentation mode plugin (increase fonts, disable certain settings).
• Context side view plugin using XPath with support for favorite expressions.
• Plugin which highlights various characters or text fragments in the content.

Possible new API enhancements:

• Add support for a plugin to contribute a custom editing perspective (toolbars/views arrangement).

Besides the possible enhancements listed below, we want your feedback. So are you using Oxygen add-ons? Are you developing
such add-ons? What do you need from us to better support your use cases?

Adding CALS-table related functionality to your custom Oxygen
framework

Oxygen comes with full support for CALS tables in DITA and Docbook documents, meaning that you can easily make
selections, resize columns, and invoke special actions like insert or delete rows and columns, join, or split cells. You can also
easily customize tables properties such as alignments, separators, and table borders. But what if you are editing documents from
other vocabularies, containing tables with CALS structure? What you can do to obtain the same table editing features?

One option is to use a plugin that adds CALS table editing support along with specific table related actions: https://github.com/
oxygenxml/web-author-sample-plugins/tree/master/web-author-CALS-table-plugin.

https://github.com/oxygenxml/oxygen-dita-translation-package-builder
https://github.com/oxygenxml/oxygen-dita-prolog-updater
https://github.com/oxygenxml/oxygen-dita-outgoing-references-view
https://github.com/oxygenxml/oxygenxml.emf.support
https://github.com/oxygenxml/oxygenxml.cgm.support
https://github.com/oxygenxml/oxygen-pdf-image
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/plantuml-images-support
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/plantuml-images-support
https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html
https://www.oxygenxml.com/doc/ug-waCustom/topics/customizing_frameworks.html
https://www.oxygenxml.com/doc/ug-waCustom/topics/customizing_plugins.html
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/web-author-CALS-table-plugin
https://github.com/oxygenxml/web-author-sample-plugins/tree/master/web-author-CALS-table-plugin

Blog | 5 - SDK Development (Plugins, Frameworks) | 278

Another option is to customize your framework configuration:

Let's suppose that you already created an Oxygen framework for your documents vocabulary (if you need further information
about frameworks, see The Oxygen SDK (Part 2: Frameworks) (on page 272)). What we want to obtain next is to extract all
the CALS tables related support from Docbook framework and add it to your custom framework. Why Docbook and not DITA
as reference? Because the DITA customization is based on the "class" attribute checking while the Docbook one is more general
(element-name oriented).

1. Table rendering
a. copy [oXygen_install_dir]\frameworks\docbook\css\cals_table.css and

[oXygen_install_dir]\frameworks\docbook\css\html_cals_table.css in your framework css directory
b. in the Document Type edit dialog, Author tab, CSS sub-tab, add the ${framework}/css/cals_table.css entry to

the list of the CSSs

In this way the table will be rendered properly in Author mode and the following features will be available:

◦ select cells (CTRL+click), rows (click before the row), columns (click on top of the row), tables (click in the left-
up corner of the table)

◦ resize table column
2. Create table actions

Here are the table-related actions implemented in Docbook that you can implement also in you framework:

◦ Expand colspecs
◦ Insert/Delete Rows
◦ Insert/Delete Columns
◦ Table Properties
◦ Join cells
◦ Split cell
◦ Colspecs (both table.collapse.colspec and table.expand.colspec)
a. Copy [oXygen_installation_dir]\frameworks\docbook\docbook.jar in your framework directory (this jar

contains all the table operations classes needed to create table actions). In Document type edit dialog go to
Classpath tab and add the docbook.jar from your framework directory to the list of paths. In this way you have
access to all table operations from your framework.

b. For every table action you have to define a corresponding action in the Document type configuration dialog.
Here are the details: https://www.oxygenxml.com/doc/ug-editor/#topics/the-action-dialog.html. You can look
at the corresponding Docbook action to see the properties (id, name, icons, the conditions that enables it, the
specific operation for CALS tables).

Once you created these actions you can add them to the UI.

3. Add table actions to menu, toolbar and contextual menu
a. To add an action to the menu go to Document Type configuration dialog, Author tab, Menu sub-tab, select the

action from Available actions section and add it to the Current action section.
b. To add an action to the contextual menu go to Document Type configuration dialog, Author tab, Contextual menu

sub-tab, select the action from Available actions section and add it to the Current action section.
c. To add an action to the toolbar go to Document Type configuration dialog, Author tab, Toolbar sub-tab, select the

action from Available actions section and add it to the Current action section.

If all goes well, your custom framework which uses the standard CALS table naming mechanism will properly handle tables,
both for display and for table-related operations.

Convert Code Templates to External Author Actions
Describes how to bring code templates into a framework as author actions.

Code templates are code fragments that can be inserted quickly at the current editing position. Author actions that are available in
the Author mode offer a lot more flexibility. For example, you can decide what fragment to insert based on the current context.
If you want to create a new framework or customize an existing framework (on page 138), then it makes sense to convert code

https://www.oxygenxml.com/doc/ug-editor/#topics/the-action-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-action-dialog.html#the-action-dialog

Blog | 5 - SDK Development (Plugins, Frameworks) | 279

templates to author actions. You can then contribute them to the content completion window. You can also define the framework
using a Framework extension script.

1. Create a framework or extend an existing framework using a Framework extension script.
2. Go to Options > Preferences > Code Templates and Export the code templates to a file named code-
templates.xml.

3. Create an XSLT file with the following content:

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="3.0">
 <xsl:output method="xml"/>
 <xsl:template match="//codeTemplateItem[field[@name='contentType']/String/text() = 'text/xml']">
 <xsl:variable name="actionName" select="field[@name='renderString']/String/text()"/>
 <xsl:result-document href="externalAuthorActions/{$actionName}.xml">
 <a:authorAction xmlns:a="http://www.oxygenxml.com/ns/author/external-action"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oxygenxml.com/ns/author/external-action
 http://www.oxygenxml.com/ns/author/external-action/authorAction.xsd"
 id="{$actionName}">
 <a:name><xsl:value-of select="$actionName"/></a:name>

 <a:description><xsl:value-of select="field[@name='descriptionString']/String/text()"/></a:descripti
on>
 <a:operations>
 <a:operation id="InsertFragmentOperation">
 <a:xpathCondition>true()</a:xpathCondition>
 <a:arguments>
 <a:argument name="fragment">
 <!-- Try parsing the fragment. if it succeeds, we basically unwrap it
 from the CDATA. -->
 <xsl:try

 select="parse-xml-fragment(field[@name='unparsedInsertString']/String/text())">
 <xsl:catch>
 <!-- Parsing failed. It might have unresolved entities. Keep
 it in a CDATA. -->

 <xsl:text disable-output-escaping="yes"><![CDATA[</xsl:text>

 <xsl:value-of disable-output-escaping="true" select="field[@name='unparsedInsertString']/String/text
()" ></xsl:value-of>
 <xsl:text disable-output-escaping="yes">]]></xsl:text>
 </xsl:catch>
 </xsl:try>
 </a:argument>
 </a:arguments>
 </a:operation>
 </a:operations>
 <a:accessKey/>
 </a:authorAction>
 </xsl:result-document>
 </xsl:template>

 <xsl:template match="text()"/>
</xsl:stylesheet>

4. Create an XSLT Transformation scenario and apply the XSLT over the code-templates.xml file.
5. Go to the directory of code-templates.xml and copy the generated externalAuthorActions to the

framework directory (the directory with the framework extension script).
6. Create another XSLT with the following content, then create an XSLT Transformation scenario and apply it over the
code-templates.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="3.0">
 <xsl:output method="xml" omit-xml-declaration="yes" indent="true"></xsl:output>
 <xsl:output method="xml"/>
 <xsl:template match="/">
 <contentCompletion>

https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-code-templates.html#preferences-editor-code-templates__dlentry_omp_bgk_54b
https://www.oxygenxml.com/doc/ug-editor/topics/xslt-transformation.html
https://www.oxygenxml.com/doc/ug-editor/topics/xslt-transformation.html

Blog | 5 - SDK Development (Plugins, Frameworks) | 280

 <authorActions>
 <xsl:apply-templates/>
 </authorActions>
 </contentCompletion>
 </xsl:template>
 <xsl:template match="//codeTemplateItem[field[@name='contentType']/String/text() = 'text/xml']">
 <xsl:variable name="actionName" select="field[@name='renderString']/String/text()"/>

 <addAction id="{$actionName}" inCCWindow="true"/>
 </xsl:template>

 <xsl:template match="text()"/>
</xsl:stylesheet>

7. Copy the resulting <contentCompletion> into the Framework extension script root element.

There is a new external author action for each initial code template. All actions are contributed to the content completion
window.

https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html
https://www.oxygenxml.com/doc/ug-editor/topics/dg-create-custom-actions.html#dg-create-custom-actions__section_2
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html#framework-customization-script-usecases__section_cgh_yzm_knb
https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html#framework-customization-script-usecases__section_cgh_yzm_knb

Chapter 6. Miscellaneous

Oxygen XML Ecosystem

The set of Oxygen XML related products has expanded over the years. It is helpful to have a general understanding of the
functionality we offer and what each of these products can do. I enjoyed the presentation by George Bina titled Use-cases using
the Oxygen XML tools at Convex Baltimore 2023. It provided an overview of all our products. I am embedding it below for our
clients and integrators to also have a general understanding of our products' ecosystem.

Add-ons For Technical Documentation
Oxygen XML Author has various free and useful add-ons for technical documentation writers, including a language model for
editing, batch document converter, Git client, content fusion connector, feedback comments manager, terminology checker,
DITA translation, and live tutorials.

Oxygen XML Author can be enhanced by installing add-ons. There are a large number of free and useful add-ons for technical
documentation writers and we will explore some of them. Documentation and installation instructions for all Oxygen add-ons can
be found here.

Oxygen AI Positron Assistant Add-on (on page 230)

Use the Oxygen AI Positron service based on ChatGPT to enhance your editing experience.

Fluenta DITA Translation Add-on

Create and manage XLiff files from your DITA XML content using the Fluenta libraries.

• Create translation projects
• Convert DITA XML to XLiff
• Convert XLiff to DITA

Batch Documents Converter

Convert various formats like Word, HTML, Markdown, DocBook, Open API, or Confluence into other formats
like DITA XML.

Git Client add-on

Collaborate with your colleagues on a Git project. Comes with support for:

• Git Staging
◦ Settings to validate before commit or before push.

• Git History
• Git Branch Manager

Content Fusion Connector Add-on

Create review tasks for collaborators and subject matter experts who can later review the tasks in a web browser.

Feedback Comments Manager Add-on

View and manage comments made in the Oxygen WebHelp Feedback forms directly in the Oxygen application.

Terminology Checker Add-on

• Define terminology rules specific for your application to suggest replacements for certain combinations of
words.

• Use rules already implemented in Vale syntax.

Live Tutorials Add-on

https://www.oxygenxml.com/doc/ug-editor/topics/add-ons.html
https://www.oxygenxml.com/doc/ug-editor/topics/fluenta-dita-translation-add-on.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/ofb-feedback-comments-manager.html
https://www.oxygenxml.com/doc/ug-editor/topics/terminology-checker-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/live-tutorials-addon.html

Blog | 6 - Miscellaneous | 282

Create or explore already available tutorials to learn various Oxygen features.

DITA Prolog Updater Add-on

Automatically update the author name and revision dates in the prolog section when saving DITA topics or maps
in Oxygen.

DITA References View Add-on

See the set of outgoing and incoming references for each opened DITA topic, including references defined in a
relationship table.

Tips And Tricks

Oxygen XML Editor has about 18 years of development under its wings. During these years, we added lots of functionality and
many of our users usually do not know more than 20-30% of Oxygen's features. So this presentation is intended for people using
Oxygen and who may want to find out more about their tool.

General Layout - Views and Toolbars:

• Side views and toolbars can be arranged by drag and drop. Views can be switched to the auto-hide mode to gain screen
size.

• To hide all side views you can use the main menu Window->Maximize Editing Area action. Or you can maximize the
editing area by double clicking on the tab of an opened XML document.

• To hide all toolbars you can use the main menu Window->Hide all toolbars action.
• You can also right-click in the toolbar area and use the Configure Toolbars action to see what toolbars are available or

what toolbars can be removed.
• The Symbols toolbar is quite interesting if you often want to insert symbols that are not on the current keyboard.
• The entire layout of the views and toolbars can be saved (Window->Export Layout) and then shared with others

(Window->Load Layout).

Side Views You Probably Never Used

• The Information view.
• The Properties view.
• The Scratch Buffer view.

Project-related Functionality:

The Oxygen Project view is the place where you can organize and apply batch changes to all your resources:

• Master files support. Enable master files support in the project, add your top level XML documents as master files
and any structure changes, renaming or moving files will automatically update all links in the Project. Also works for
renaming/moving image resources.

• Store options at project level. Almost all of Oxygen's preferences pages can be saved at project level. Once you do that,
you can share the project.xpr file with somebody else and when they open it, they will also get the settings set inside the
project. Transformation and validation scenarios can also be saved at project level.

• Compare files/folders by selecting them in the Project view, right click and using the Compare... popup menu action.
• Add references to multiple folders from various parts of your current file system and organize your work in one place.
• Batch operations: Select a folder in the project, right click and use the Transform, Validate, Format and Indent, Find/

Replace in Files, or Spell Check in Files. Or use the XML Refactoring action to apply a refactoring stylesheet over all
the selected files.

• Filter files. You can instruct the Project view to hide various file types.
• The Image Preview view will show the image current selected in the Project view.
• Open command prompt in a certain folder (right click on a folder, Show in->Terminal.
• Open the current selected file or folder in the system file browser (right click and choose Show in->Finder).

https://www.oxygenxml.com/doc/ug-editor/topics/dita-prolog-updater.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-outgoing-references-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-storing.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html
https://www.oxygenxml.com/doc/ug-editor/topics/using-the-project-view.html

Blog | 6 - Miscellaneous | 283

Navigation:

Actions to find opened files, find files containing a certain content or navigate between files.

• In the main Window menu, you can find the Next/Previous Editor actions and their shortcuts. Together with the Switch
editor tab action, these help you navigate between opened XML documents.

• The Open/Find Resource view (main menu Window->Show View) allows you to search for file names, search in file
contents, or search for files containing comments or change tracking.

• Right-click the tab of an opened XML document and use the Copy location action. Or use the Show in Explorer/Finder
action to locate the file.

• Use the main menu File->Reopen last closed editor action to re-open the last closed file.
• Use the Navigation toolbar to Go back/forward/last modification.

• The main Window menu has actions to tile all opened XML documents and also to enable synchronous scrolling in them
(useful if you want to look at similar XML documents and maybe to copy/paste between them).

Find/Replace Functionality

The Find/Replace functionality is the bread and butter of any editing application and Oxygen has lots of functionality in this
regard:

• Find/Replace in Files.
◦ Restrict to XPath - If you want to make replacements only in certain parts of the XML document, the XPath

restriction can be used to focus only on certain attributes or element content.
◦ Ignore Whitespaces - You should usually check this checkbox as there is always there is a possibility what the

words you are searching for may be split on multiple lines in the XML content.
• The Find menu → Find Next/Previous actions allow you to find the next/previous occurrence of the current selected

word(s). Or you can use the Find All action to find and highlight all occurrences of a word or a sequence of words.
• The Find menu → Find all Elements action shows a dialog box allowing you to find elements or attributes containing a

sequence of words.
• The Find menu → Quick find toolbar is a compact toolbar giving you access to search functionality.
• The XPath toolbar allows you to use XPath expressions (i.e. //comment()[contains(., 'TODO')]) to search the current

topic or a set of topics for elements, attributes, or comments matching a set of conditions.

Text Editing:

• You can use the mouse wheel or the Ctrl + and Ctrl - shortcuts to increase or decrease the font in the current opened
XML document.

• The Preferences->Editor / Edit Modes / Text page allows you to wrap the visual line and show a print margin.

• Code templates can be used in order to define small code snippets which are often inserted. Editor variables can be used
inside those code templates and they will get expanded on insertion. Various useful editor variables:

◦ ${author.name}

◦ ${selection}

◦ ${ask('Author Name', generic, 'John Doe')}

◦ ${xpath_eval(upper-case(substring('${cfn}', 1, 4)))}

Code templates can also be saved at project level or exported in order to share them with others. You can read more
about the contexts in which editor variables can appear in this blog post: All About Editor Variables (on page 292).

• Triple click an element tag to select the entire element.
• Various navigation shortcuts: Go after next tag. Select parent. Use the top level breadcrump.
• Move lines up and down (Alt-Up/Down).
• Click line number to select the entire line.
• Go to line/column (main menu Find->Go to...).
• Open file at cursor on references to navigate to referenced file or create new file (Ctrl-ENTER).

https://www.oxygenxml.com/doc/ug-editor/topics/open-find-resource-dialog.html
https://www.oxygenxml.com/doc/ug-editor/topics/find-and-replace-text-in-files.html
https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html
https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html
https://www.oxygenxml.com/doc/ug-editor/topics/text-navigate-document-content.html

Blog | 6 - Miscellaneous | 284

• Bookmarks (main menu Edit->Bookmarks).
• Quick find filter for side views (Outline, Entities, Transformation Scenarios).
• Drag/drop resources from a file browser or copy/paste to create links to the resources.
• Remove results of XPath execution.
• Use contextual menu to:

◦ Apply base 64/32 encoding or decoding to various parts of the XML document. (for example insert base 64
encoded images using the data:image/png;base64, protocol.

◦ Escape/unescape selection.
◦ Toggle comment.
◦ Indent selection.

• Split editor (main menu Window->Split actions) to copy paste between different parts of the XML document.
• Open an XML document in the Text editing mode, right click, choose Go to definition to open the DTD, XML Schema

or RelaxNG Schema at the precise location where that XML element is defined.

Huge File Editing

Huge XML and Text documents (Gigabytes) can be opened and edited in the application.

Grid editing mode:

• The Grid editing mode is useful for looking at XML documents exported from data bases.
• You can use this mode to sort tables or to copy table data to Excel spreadsheets.
• The JSON editor also has a Grid editing mode.

Editing in the Author Visual Editing Mode

• Increase/decrease editor font - Use Ctrl/CMD +/- to increase or decrease the font in the current edited document.
• Inserting elements - Pressing ENTER in the Author visual editing mode will show you a list with all possible elements

that can be inserted. If you choose an invalid element, Oxygen will find a place for it. You can also add custom actions or
code templates to the content completion list.

• Select content then press ENTER to surround the content in a new element.
• Select start tag of element, press ENTER to rename the element.
• Select multiple intervals - Press the Ctrl/CMD button when selecting text to select multiple text intervals. Once you do

that, you can use toolbar actions like Bold, Italic, or Underline or you can use the Edit Profiling Attributes action to
set profiling attributes on all the selected items.

• In-place attributes editor - Instead of using the Attributes view, you can press Alt-Enter to edit attributes for the current
element in a small pop-up dialog box.

• Select an entire element - Triple-click inside an element's contents to select the entire element. After this, you can move
the element to a new place.

• Double-click to select by word, then drag the mouse to select the content word by word.
• Move elements (especially paragraphs, list items) up or down (ALT-UP/DOWN), indent or unindent list items (Tab,

Shift-Tab).
• Easily insert lists using framework specific auto correct support. Insert for example 1. at the beginning of a paragraph,

press the Space key and the inserted content becomes an ordered list. Or in a DITA topic at the beginning of a paragraph
type ```java and press space to insert a <codeblock>.

• Select content and then use the Toggle comment action (contextual menu Refactoring submenu) to quickly add an
XML comment around it.

• In the contextual menu the Text submenu contains useful actions to count the number of words in the entire document
(or in the selected text), convert the selection to upper, lowercase, or sentence case).

• Bookmarks - Click the vertical left side bar in the editing area to add a bookmark. Navigate to that bookmark even after
the file has been closed using the Ctrl/CMD + number shortcut.

• Collapse other folds - Click a fold triangle in the Author visual editing mode and you can choose to close all other folds,
useful when working with multiple sections in the same file.

• Code templates - Define small fragments of XML content that can be inserted either by defining a shortcut key or by
pressing ENTER in the editing area.

https://www.oxygenxml.com/doc/ug-editor/topics/text-mode-actions.html
https://www.oxygenxml.com/doc/ug-editor/topics/huge-file-editor.html
https://www.oxygenxml.com/doc/ug-editor/topics/the-content-completion-tab.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-contextual-menu.html
https://www.oxygenxml.com/doc/ug-editor/topics/author-navigate-document-content.html
https://www.oxygenxml.com/doc/ug-editor/topics/folding-author-mode.html
https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html

Blog | 6 - Miscellaneous | 285

• Editor variables - Certain Oxygen-specific macros can be automatically expanded. For example, a code template that
inserts the current author name can use this editor variable:

<author>${author.name}</author>

or a code template that surrounds the selection inside a <keyword> element:

<keyword>${selection}</keyword>

or a code template that first asks the end user for their name and then inserts it in the document:

<author>${ask('Author Name', generic, 'John Doe')}</author>

Editor variables can also be used when creating new file templates (on page 264). You can read more about the contexts
in which editor variables can appear in this blog post: All About Editor Variables (on page 292).

• Outline Quick find filter - The Outline view contains a filter that can be used to reduce the number of elements displayed
in it (for example, display only the contained topics).

• The Author editing mode is best for editing bidirectional text with Arabic or Hebrew content.
• Editing MS Word and LibreOffice documents in the Author mode.

Preferences:

Oxygen has a lot of global settings that can be configured, I will just list what I consider to be the most important ones:

• Global - Change application language or show memory status.
• Appearance - Change the default color theme in Oxygen (the Graphite theme is quite popular).
• Application Layout - impose custom layout or change editor tabs placement.
• Menu shortcut keys - You can use this preferences page to assign or to see the shortcut for any action available in

Oxygen.
• Fonts - This page allows you to change the default fonts used in the application. You can also see what font can be used

for a certain set of characters.
• Spell check - Customize the spell checker settings, use custom spell check dictionaries.
• External tools - Define various command line tools that you can launch from Oxygen.
• Editor / Content Completion / Annotations - Disable the tooltips which appear when hovering over various elements

(useful if you have a small screen).
• Editor / Save - Settings to automatically save, recover content data on computer crash or to check for errors before saving

the file.

CSS-based PDF Publishing

The embedded Chemistry engine can be used to publish any XML document to PDF using CSS to style the published output.
There is a new transformation type XML to PDF transformation using CSS which can be used for this. The CSS Inspector
view can be used to see what CSS styles get applied.

Tools

The Tools main menu is worth exploring. You can:

• Invoke XML refactoring actions.
• Open the SVG Viewer.
• Find various JSON-related tools.

Import - Convert

• The File menu offers the possibility to import HTML, CSV, Excel files, or database content as XML.
• For some XML frameworks like DITA, TEI, DocBook and XHTML you can use the smart paste functionality.
• The Batch convertor add-on allows you to convert multiple HTML, Markdown, Excel files to DITA.

https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-global.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-appearance.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-application-layout.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-menu-shortcut-keys.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-fonts.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-spell-check.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-external-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-content-completion-annotations.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-editor-save.html
https://www.oxygenxml.com/doc/ug-editor/topics/smart-paste-support.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

Blog | 6 - Miscellaneous | 286

Connectivity

Oxygen comes bundled with an SVN client.

You can also work with resources directly from WebDav repositories, Exist and various other databases.

There are also a couple of add-ons which add extra connectivity:

• Git add-on for Oxygen.
• CMIS add-on for Oxygen.
• BaseX add-on for Oxygen.

Add-ons

In the application main menu you can go to the main menu Help->Install new Add-ons and our official add-ons update site
contains a couple of available add-ons. There are also other free add-ons provided by the Oxygen team that can be installed in an
Oxygen standalone version.

I will enumerate some of the most popular interesting add-ons below:

• Git add-on. This plugin adds a side view allowing you to do some common Git operations like pull, commit, push
(mostly 90% of what a regular Git user would do).

• Content Fusion Connector add-on. Collaborate with your peers by sending them links that allow them to give you
feedback on your work using a web browser without the need to pre-install anything on their side.

• Batch convertor add-on. Converts multiple HTML, Markdown, Excel files to DITA.

Keeping in Touch

• Oxygen's Help menu allows you to use the Report problem action to contact us directly.
• The Support Tools->Randomize XML Content action allows you to randomize the content of an XML project before

sending it to us for tests.
• And there are a lot of other ways to get in touch with us or to find various videos or tutorials to read: https://

www.oxygenxml.com/technical_support.html.

Checking Terminology with Oxygen XML Editor

In this blog post, I will offer a general overview about the current possibilities you have available to impose your own language
checking rules when working with Oxygen XML Editor.

Built-in spell checker

Oxygen comes bundled with the popular Hunspell spell checker and, along with the regular bundled dictionaries for English,
German, Spanish, and French, it allows you to install new dictionaries, either for other languages or custom dictionaries (for
example, dictionaries for medical terms) that you can build separately: https://www.oxygenxml.com/doc/ug-editor/topics/spell-
dictionary-Hunspell.html.

Aside from the spell checker, Oxygen also has support for Auto-correct and you can add your own Auto-correct pairs to Oxygen,
but the spell checker is limited to checking individual words.

Oxygen Terminology Checker

In the main application, you can select Install new add-ons from the Help menu, browse the Default update site, and install the
add-on named Terminology Checker. The terminology checker add-on is available for Oxygen version 20.0 or newer.

Once the add-on is installed, it will allow you to highlight matched terms (words or sequences of words) in the Author visual
editing mode.

https://www.oxygenxml.com/doc/ug-editor/topics/webdav-connection.html
https://www.oxygenxml.com/doc/ug-editor/topics/configure-exist.html
https://github.com/oxygenxml/oxygen-git-plugin
https://github.com/oxygenxml/oxygen-cmis-plugin
https://github.com/axxepta/project-argon
https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories
https://github.com/oxygenxml/oxygen-git-plugin
https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html
https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html
https://www.oxygenxml.com/technical_support.html
https://www.oxygenxml.com/technical_support.html
http://hunspell.github.io/
https://www.oxygenxml.com/doc/ug-editor/topics/spell-dictionary-Hunspell.html
https://www.oxygenxml.com/doc/ug-editor/topics/spell-dictionary-Hunspell.html
https://www.oxygenxml.com/doc/ug-editor/topics/autocorrect.html

Blog | 6 - Miscellaneous | 287

First, you need to use the File->New dialog wizard to create a new Terminology File, edit that file, and add mappings between
matched terms and their suggested replacements, as in the following example:

<incorrect-terms>

 <incorrect-term ignorecase="true">
 <match>virtual assistant</match>
 <suggestion>personal digital assistant</suggestion>
 <message>Prefer 'pda' over 'va'</message>
 </incorrect-term>

</incorrect-terms>

Then go to the Preferences->Plugins / Oxygen Terminology Checker page and in the Terminology Folder text field,
reference that folder where your terminology files are located. The incorrect terms that have been previously configured should
now be highlighted in current editor in Author mode.

You can right-click the highlights to access various actions that allow you to replace each individual
highlight with suggestions or to apply the same suggestion in multiple places in the currently open

document.

Commercial alternatives

Acrolinx is a very popular commercial tool for checking content for consistency and terminology. The plugins that Acrolinx
developed for Oxygen standalone, Oxygen Eclipse plugin, and Oxygen Web Author allow you to run the Acrolinx checker
directly from inside the application.

Etteplan HyperSTE is another popular commercial tool for checking content and terminology. They also have a plugin for
Oxygen standalone.

The Congree Language Checker also has an integration for Oxygen standalone.

Open-source alternatives

LanguageTool is an open-source proofreading program for English, French, German, Polish, and more than 20 other languages .
There is an open-source plugin for Oxygen available on GitHub.

The DITA Open Toolkit terminology checker plugin from Doctales contains Schematron rules to check that various words
adhere to the terminology dictionaries that are custom built using DITA.

Building your own terminology checker

The fastest and simplest way to build a simple terminology checker is by using Schematron rules. The Doctales plugin is a good
example for this.

At some point, as the terminology dictionary keeps growing, you may encounter delays and slow-downs when editing the
document and validating it using the custom Schematron rules. So, an alternative to this is by using our Author SDK to build
your own Oxygen plugin, which can use our API to check the content and then add highlights. The LanguageTool open-source
plugin may be a good starting example for this.

https://support.acrolinx.com/hc/en-us
https://www.simplifiedenglish.net/hyperste/
https://documentation.congree.com/display/EDV/Supported+Editors+1
https://www.languagetool.org/
https://github.com/danielnaber/oxygen-languagetool-plugin
https://github.com/doctales/org.doctales.terminology
https://github.com/doctales/org.doctales.terminology
https://www.oxygenxml.com/oxygen_sdk.html
https://www.languagetool.org/

Blog | 6 - Miscellaneous | 288

Opinions about using Oxygen

1. https://jaymanalotoibm.wordpress.com/2013/11/27/breathing-oxygen-xml-in-windows-7/
2. Aaron Thayer https://aaronthayer.wordpress.com/2014/11/02/review-oxygen-xml-editor-powerful-xml-authoring-ditto-

for-dita/
3. Ray Gallon: http://humanistnerd.culturecom.net/2013/04/11/the-humanist-nerd-reviews-oxygen-14-2/http://

humanistnerd.culturecom.net/2015/05/15/the-evolution-of-oxygen-17/
4. Kurt Cagle: https://www.linkedin.com/pulse/praise-oxygen-kurt-cagle?trk=hb_ntf_MEGAPHONE_ARTICLE_POST
5. Doug Morrison: http://www.jks.co.uk/recommendations/choosingxmleditor.html

A set of rules for providing great tech support

I've been doing technical support for more than 10 years and I feel that I've gathered a few ideas about what great tech support
would be. And doing tech support the right way can be great both for product users and for the product developer as it provides
lots of opportunities to further enhance and steer the application.

1. Never say never. Never assume for certain that a feature request will not get implemented. Just register it and wait for
feedback from others. I've had so many cases in which requests which initially seemed not worthy of implementation
became important features in later versions.

2. When asked for a solution to a specific problem, give the solution but also provide a sequence of deductive steps you
took in order to find the solution. So give them the fish but also discuss about how they can fish for themselves. Help
people evolve and you will have less tech support to do.

3. Try to steer conversations as much as possible from private emails to forums and public user lists. These become
repositories of knowledge and you'll avoid explaining the same thing multiple times if there is already a place on the web
explaining it.

4. In order to avoid answering the same question multiple times you have the following constructive options:
◦ Add a topic in the product's User's Manual explaining the problem
◦ Improve the product so that it becomes easier to perform those particular tasks.

5. Some of our users know more and work more with certain aspects of the application than we do. So when certain work-
flows are not appropriate for them, it's important that you listen and possibly change the application accordingly.

6. Whenever an older behavior is changed in the application, even if you consider that the change is for the better, you
will get complaints. And you will need to decide if users just need a time to adjust to the changes or if you've taken the
application in the wrong direction.

7. You may get asked questions which are not particularly related to what the application does. But you might still be able
to give your personal opinion and a few useful links to get your client moving in the right direction.

8. You will gain access to various user samples and work with the application to reproduce certain problems. Various times
while working with the application to reproduce a problem you will also notice other behaviors which can be improved
as well. Contribute all those side-effect suggestions to your issues list as well.

9. Make it as easy as possible for people to report problems or to ask questions about the product. For example in Oxygen
in the Help menu we have a "Report Problem" action which can be used to quickly report to us any issue which may
arise while using the application.

10. Always try to provide a feasible workaround for a bug or for a lack of functionality.

If you have more ideas about this, please share them with me.

A Short Story of Reuse

Give the smartest human in the world a piece of wood and ask him/her to make paper. Give them no prior tools and it will take
years to come up with a decent process which would result in some brown almost usable thick piece of paper.

This blog post is about reuse, not necessarily reuse of tools and materials, but reuse of knowledge. Humanity has evolved not
because each generation is smarter than the last one but because we learned to reuse and pass knowledge to larger and larger
audiences and from one generation to another.

Almost all tools that we use today are made up of quite a complex set of components which interact with each other. There is no
one person in a car assembly factory who still knows all the pieces and how they come together.

https://jaymanalotoibm.wordpress.com/2013/11/27/breathing-oxygen-xml-in-windows-7/
https://aaronthayer.wordpress.com/2014/11/02/review-oxygen-xml-editor-powerful-xml-authoring-ditto-for-dita/
https://aaronthayer.wordpress.com/2014/11/02/review-oxygen-xml-editor-powerful-xml-authoring-ditto-for-dita/
http://humanistnerd.culturecom.net/2013/04/11/the-humanist-nerd-reviews-oxygen-14-2/
http://humanistnerd.culturecom.net/2015/05/15/the-evolution-of-oxygen-17/
http://humanistnerd.culturecom.net/2015/05/15/the-evolution-of-oxygen-17/
https://www.linkedin.com/pulse/praise-oxygen-kurt-cagle?trk=hb_ntf_MEGAPHONE_ARTICLE_POST
http://www.jks.co.uk/recommendations/choosingxmleditor.html

Blog | 6 - Miscellaneous | 289

Although using the tool is easier than interacting with all components which make it up, you still need knowledge to operate it
and in this day and age having enough people to teach how a certain tool can be used is no longer an option. You need to pass
knowledge in other forms, on paper or in some kind of digital form. So I would define technical communication as a means
of passing knowledge about using tools to a larger audience.

Reuse in technical communication can be structured on many levels:

• Reuse written content by publishing it to more than one format (PDF, HTML, EPUB, MS Word).

It turns out that XML is perfect for publishing content in more than one format. XML is not designed to be consumed
directly by end users and its benefit lies directly in this. Your XML content should contain all the data necessary for
obtaining all the output formats. So if you are using XML in your technical content, no matter what standard or
custom vocabulary, you can safely check the first and most important level of reuse.

• Create larger publications from existing ones.

Either using an XML standard like XInclude or using standards with their own diverse and powerful methods of reuse
like DITA, or by performing custom techniques you can merge XML content in larger publications.

• Reuse content written for a certain tool to document the functionality and behavior of a very similar tool.

In most mature XML standards like DITA and Docbook there is this implemented concept of profiling which allows
you to dynamically filter at publishing time content marked with certain attributes from your original XML project. In
this way from the same XML content you can publish documentation for multiple similar tools.

• Reuse smaller pieces of common content in more than one publication.

Again, using XML standards like XInclude or DITA specific standards like content references you can create and
maintain small libraries of reusable XML content, then reuse these components across various publications.

• Reuse images and other binary resources in multiple publications.

Because XML content does not embed binary resources, these resources are stored separately and thus they can be
reused in multiple places.

So these are what I consider to be the main selling points for using XML in technical documentation. As usual any feedback is
welcomed.

Sharing Application Settings

There are various ways in the Oxygen standalone version through which a team of writers can share and use a set of common
settings. Below I will try to list each of these possibilities along with useful links:

• Save the settings at project level and have all users use the same project "projectName.xpr" file in the Project view
when editing. Most of the Oxygen Preference pages have a switch radio button which allows you to pass the settings
to Project level and save them in the current project configuration file opened in the Project view. If you commit that
Project configuration file to a version control system like GIT or SVN, all writers can open and use that project when
working with the repository content.

For example, when we work on the Oxygen User's Manual using our common GitHub repository, we all open in
the Project view the "userguide.xpr" project which comes with various fixed options (eg: enabling automatic spell
checking):https://github.com/oxygenxml/userguide

You can find out more details about sharing projects here: https://www.oxygenxml.com/doc/ug-editor/#topics/sharing-
projects.html.

• Create and then provide a default options XML document to others. When placed in a specific place in the Oxygen
installation or referenced via a specific property in the application startup script, this default options XML document will

https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/doc/ug-editor/#topics/sharing-projects.html
https://www.oxygenxml.com/doc/ug-editor/#topics/sharing-projects.html

Blog | 6 - Miscellaneous | 290

be used by the application to provide default values for certain settings. You can find out more about how default options
work here:https://www.oxygenxml.com/doc/ug-editor/#topics/default-options.html.

• Have others manually import an options XML document which you exported from Oxygen:https://
www.oxygenxml.com/doc/ug-editor/#topics/import-export-preferences.html.

• An Oxygen plugin could use our Java API to impose fixed options when the application starts using the API method:
PluginWorkspaceProvider.getPluginWorkspace().setGlobalObjectProperty(key, value). In our Maven-based SDK
we have a sample plugin called ImposeOptions which imposes a fixed set of options when the application starts.

If you want to share document type configurations (for editing certain XML vocabulary) you can find more details in this older
blog post: Document Type Extension Sharing (on page 261).

Collaboration for Documenting a Software Product using DITA

Besides working on an XML Editor with lots of DITA editing functionality we also use DITA internally for editing the Oxygen
User's Guide.

In this article I will try to give you an overview of our entire workflow as evidence that DITA does work and that it can be used
and implemented without expensive solutions.

First here's an overview of our needs:

• Offline Help which is available inside the installed application. Oxygen is a multi-platform application so we need to
generate both HTML Help (CHM) for Windows and JavaHelp for the Mac OSX and Linux installations. Also for the
Oxygen Eclipse Plugin we need to generate Eclipse Help.

• Online Help which is available as WebHelp with Feedback on our web site and allows users to add comments to each
topic. Those comments can then be used by us to rephrase and improve our documentation.

• PDF containing the entire contents of the user's manual. Nowadays most our users use the online WebHelp because it
can be used much easier for finding certain topics so in our case at least the PDF output is not popular anymore along
users.

We have two main distributions (Standalone and Eclipse plugin) and three main products (Editor, Developer and Author). So
we need to produce about six (6) different publications from the same DITA content depending on the shipped product.

And here's an overview of the tools we use:

Oxygen XML Editor

This may not come as a surprise but we use our own product to edit DITA content, partly because it's ours and partly because it
is a very good tool. During the last couple of years this has been a good opportunity to improve our product based on our own
feedback (feedback coming from our technical writers).

Oxygen is used in two ways:

1. By the technical writers to write DITA content.
2. By the reviewers to review documented issues by adding comments, making changes with change tracking enabled.

DITA Open Toolkit + WebHelp plugin

We use the DITA Open Toolkit to publish DITA content to the outputs we are interested in. The WebHelp and WebHelp with
Feedback outputs are our own additions to the DITA Open Toolkit. But we do not use any special customizations for the other
outputs.

Jenkins integration server

We have an automated script which builds all the user manual outputs every night.

Automated DITA Content Validation There is a script which runs on a test server and does three types of checks on the DITA
content:

https://www.oxygenxml.com/doc/ug-editor/#topics/default-options.html
https://www.oxygenxml.com/doc/ug-editor/#topics/import-export-preferences.html
https://www.oxygenxml.com/doc/ug-editor/#topics/import-export-preferences.html
https://www.oxygenxml.com/oxygen_sdk.html
https://www.oxygenxml.com/doc/ug-oxygen/

Blog | 6 - Miscellaneous | 291

1. Validate and check for completeness, check for broken links, images, broken web links and so on.
2. Check and report topics, resources and images which are no longer referenced anywhere.
3. Spell check the entire DITA content.

Git as a version control system

For a long time we used Subversion for version control. Recently we moved our DITA content to a private GitHub repository
and we also made a public GitHub repository containing a copy of our user manual's DITA content:https://github.com/
oxygenxml/userguide. We use the SourceTree application to work with Git and we are quite happy with it.

Atlassian Jira for workflow

We use Atlassian Jira to provide a workflow both for the issues which are related directly to our software product and for the
issues which are related exclusively with our user's manual. The JIRA is integrated with both our SVN and GIT repositories so it
shows for a certain issue all resources which have been modified to fix it.

More details about how with work with DITA can be found in these slides I presented at DITA Europe 2014:https://
www.oxygenxml.com/forum/files/usingDitaForOxygenUsersManual.odp.

Video demonstration showing how collaboration on a technical publication with Subversion can be achieved: https://
www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html.

Collaboration (Teams working on a common XML project)

Sometimes I get the feeling that there are still many users who collaborate on XML projects using shared network drives. We
got this question yesterday from one of our users:

“ I am just curious if housing and working off a network drive is possible, and if so, what are the risks

involved?”

In my opinion having multiple writers edit documents from a common shared network location is dangerous because
you may end up overwriting the content that someone else has been writing on. You also have no history of who made
what modification and no redundancy of content. If somehow the network drive fails because of a hardware problem or
files get corrupted you have no copy of your repository to start over. My advice is to start using a free and open source
version system like Subversion (SVN), CVS or GIT. For example Oxygen comes with an embedded SVN Client and
for writing our user manual which is DITA-based we collaborate using a subversion server installed on a Linux machine.
We made a small video demonstration showing how this collaboration is done:https://www.oxygenxml.com/demo/
Collaborative_Authoring_Using_Subversion.html The advantage to using version systems is immense:

1. We know the history of each resource.
2. We know who made what change.
3. We can create tags and branches for marking certain versions of the documentation.
4. Each user has his own local copy of the repository and if the server fails we have the same content duplicated in many

other places.

Other approaches: Use a WebDav repository. When Oxygen opens an XML document from a WebDav repository, it locks
the XML document and thus prevents other users from saving changes to it while still allowing them to open the document.
Use a Commercial CMS which in addition to an open source version system will bring more workflow related tools and
lots of ways to keep your content valid. And there are quite a few CMSs which have an integration with Oxygen:https://
www.oxygenxml.com/partners.html#solutionpartners%28cms%29

Here's a very nice post by Eliot Kimber about implementing DITA without a CSM:http://drmacros-xml-rants.blogspot.com/
#4627052924135934849

https://github.com/oxygenxml/userguide
https://github.com/oxygenxml/userguide
https://www.oxygenxml.com/forum/files/usingDitaForOxygenUsersManual.odp
https://www.oxygenxml.com/forum/files/usingDitaForOxygenUsersManual.odp
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
https://www.oxygenxml.com/partners.html#solutionpartners%28cms%29
https://www.oxygenxml.com/partners.html#solutionpartners%28cms%29
http://drmacros-xml-rants.blogspot.com/#4627052924135934849
http://drmacros-xml-rants.blogspot.com/#4627052924135934849

Blog | 6 - Miscellaneous | 292

Enable massive contributions with oXygen XML Web Author and GitHub

Early in 2016 a new product was added to the oXygen XML set of tools - the oXygen XML Web Author. This leverages the
power of oXygen XML Author - which basically runs on the server side - and provides access to XML authoring from any
modern device that supports a browser capable of rendering HTML5+JavaScript, including desktops and mobile devices, like
your smart phone or tablet!

The real power of web-based XML authoring can be seen when it is integrated as part of a workflow, simplifying it by reducing a
large number of steps to a few - and this is what the GitHub connector provides!

If you have XML content on GitHub then you can provide a link that will open a file for editing in the oXygen XML Web Author
and anyone will be able to review or update that just by accessing the link and saving - a GitHub account is of course required.

When you save a file, assuming you do not have commit access on that repository, the GitHub connector will automatically

• fork the project into your account, if you do not have a fork already
• create a new branch from the edited branch
• commit your changes on this newly created branch
• create a pull request from your newly created branch to the originally edited branch
• switch the editor to your branch, so further save operations will just add new commits to your branch, thus updating the

pull request with new changes

This is a great simplification of the contribution process, a contributor just follows a link and saves the file, and all the magic
happens automatically to create the pull request.

If the XML source is published then it is possible to include an “Edit this page” link on the published format that will
allow immediate access to the editor. An example of such access is provided for the DITA-OT documentation project. The
development branch is published at http://www.dita-ot.org/dev/ and every page contains at the bottom an “Edit this page” link
that gives immediate access to the DITA topic that page is generated from. For example, the https://www.dita-ot.org/dev/ home
page has an Edit this page button will get you to edit the topic in the WebAuthor.

Edit, then save, and a pull request with your changes will be automatically generated - contribution cannot be easier than this!

Next we plan to have the Edit this page option for the oXygen documentation, which is also hosted on GitHub at https://
github.com/oxygenxml/userguide.

Hope you find this useful!

George

All About Editor Variables

In various places in the Oxygen XML Editor application there is support for expanding variables. These variables/macros usually
take the form ${variableName} and are expanded by the application dynamically when necessary. A list with all supported
editor variables can be found in the user's manual: https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html. I will
enumerate below all major contexts in which using such editor variables may prove useful:

Transformation Scenarios

Most transformation scenario types have lists of parameters and fields where you can configure the place where the output should
be saved. You can use editor variables in these places to make the transformation scenario portable and thus to be able to share it
with your colleagues. Here are some examples:

XML with XSLT based transformation scenario types

If you edit such a scenario and go to the Output tab you can specify the Save as field to use editor variables like
this ${cfd}/${cfn}.html which will get expanded to use the current XML document folder and file name but with
a different extension when the output of the transformation gets saved on disk. You can also use editor variables
like ${date()} to save the output file name using the current date: ${cfd}/${cfn}-${date(yyyy-MM-dd)}.html.

https://www.oxygenxml.com/webauthor/
https://github.com/dita-ot/docs
http://www.dita-ot.org/dev/
https://www.dita-ot.org/dev/
https://github.com/oxygenxml/userguide
https://github.com/oxygenxml/userguide
https://twitter.com/georgebina
https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html

Blog | 6 - Miscellaneous | 293

The XSLT tab already uses the ${currentFileURL} editor variable in order to be applied on any XML document
opened in the editor area. The Parameters list allows you to specify XSLT parameters with values which may
contain editor variables which will be expanded by the application before the transformation is run. For example
as value for a parameter you can use an ${ask()} editor variable which will end up requesting the value from the
end user when the transformation is started: ${ask('New Parameter Value', generic, 'default')}.

ANT based transformation scenario types

In the Parameters tab you can add new parameters which will be passed to the ANT build file. Values for such
parameters can also contain editor variables. You can add for example a parameter called currentXMLDocument
with value ${pd}/specificFileName.xml if you want a path to a specific XML file in the current XML project
to be passed to the ANT build file as a variable. Again you can use ${ask()} editor variable which will end up
requesting the value from the end user when the transformation is started.

DITA Open Toolkit transformation scenario types

DITA Open Toolkit transformation scenarios are based on ANT so the previous tips apply. In addition you can
use the ${rootMapFile} related editor variables which gets expanded to the current root map. For example in the
Filters tab I can specify the reference to the DITAVAL file like this: ${rootMapDir}/filter.ditaval to refer to
the filter relative to the folder where the current root map is published.

You can also extract the root DITA Map file name using the ${xpath_eval()} editor variable:
${xpath_eval(tokenize('${rootMapURL}', '/')[last()])}.

New File Templates

You can create your own new file templates and have them use when the Oxygen XML Editor File->New dialog wizard is used
to create new documents: Sharing New Custom File Templates for a Specific Vocabulary (on page 264).

The content of these new file templates can have inside editor variables which are automatically expanded when a new XML
document is created. For example a new file template like this:

<topic id="topic_${id}">
 <title>${caret}</title>
 <prolog>
 <author>${ask('Author Name?', generic, 'default')}</author>
 </prolog>
 <body>
 <p></p>
 </body>
</topic>

makes use of multiple editor variables:

• The ${id} editor variable expands to an unique short ID value containing alphanumerical characters. You can also use the
${uuid} editor variable to generate a truly unique but longer ID value.

• The ${caret} editor variable marks the position where the caret will be placed after the XML document created from the
new file template is initially opened.

• The ${ask} editor variable will ask the end user to provide the name of the author and will get expanded in the XML
content. You can also use ${answer} editor variables to use the same answer to the ${ask} editor variable in multiple
places.

Code Templates

Oxygen XML Editor's code templates support allows you to define small pieces of XML content which can later be inserted
by pressing the Ctrl-Space keyboard shortcut (or ENTER in the Author visual editing mode). Code templates can also contain
editor variables which get expanded when the code template is used. Examples:

• You can use the ${selection} editor variable to surround the current selected content in the main editing area inside the
code template:

${selection}

• The ${caret} editor variable allows you to precisely choose a place for the caret after the code template is inserted:

https://www.oxygenxml.com/doc/ug-editor/topics/code-templates-x-editing2.html

Blog | 6 - Miscellaneous | 294

<ph keyref="oxygen"/>${caret}

In the example above the caret will be placed after the inserted element when the code template is chosen.
• The ${ask} editor variable will trigger the application to ask for a value to insert in a particular place of the code

template:

<problem reason="${ask('Reason?', radio, ('lost':'lost';'illegible':'illegible';'omitted':'omitted';),
 'lost')}"/>

In the example above when the code template is chosen, the end user will need to choose the reason in a dialog showing
a combo box of possible choices and the chosen reason will be expanded in the code template before being inserted in
the XML content.

Custom Author Actions

Oxygen XML Editor framework configurations allow defining custom actions for the Author visual editing mode and then
contributing these actions to framework-specific toolbars and menus. An example of implementing such a custom action can be
found here: Implementing a Custom Author Action to Split a Table (on page 267).

In some of the default operations that you can use in a custom Author action (for example in the InsertFragmentOperation) you
can use editor variables.

External Tools

You can run external command line scripts from Oxygen XML Editor by configuring external tools in the Preferences page. The
defined external tools allow using editor variables like ${pd} to access the current project folder and the editor variables will be
automatically expanded before the external tool is invoked.

Custom Editor Variables

You can define your custom editor variables in the application Custom Editor Variables preferences page. A custom editor
variable can contain as values other editor variables and can be used in all places where a predefined editor variable is.

You can use Oxygen XML Editor's API to provide custom editor variables and their expanded values using custom Java or
Javascript code. For example this plugin adds support for a new ${clipboard} editor variable.

XSLT Training

Putting together a list of resources (courses, books, training) valuable for learning XSLT:

• Michael Kay's "XSLT 2.0 and XPath 2.0", especially Part I: Foundations.
• XSLT Frequently Asked Questions maintained by Dave Pauson.
• XSLT training courses by Liam Quinn.
• XSLT training by Tomos Hillman.
• An Udemy course by Ken Holman containing also some free lectures.
• XSLT Training courses by Dimitre Novatchev on PluralSight.
• XSLT consulting by Mulberry Technologies.
• Our Oxygen XML training partners.

Log4Shell - Oxygen XML Vulnerability Analysis FAQ

NIST has announced a vulnerability (CVE-2021-44228 code-named Log4Shell) in the Apache Log4j library. Syncro Soft has
released a new critical security advisory CVE-2021-44228 and prepared this page containing frequently asked questions and
answers related to this vulnerability and its impact on our software products.

In the following days, more vulnerabilities (with far lower impact on Oxygen products) were discovered on the Log4j library:
CVE-2021-45046, CVE-2021-45105, CVE-2021-44832.

https://www.oxygenxml.com/doc/ug-editor/topics/dg-default-author-operations.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-external-tools.html
https://www.oxygenxml.com/doc/ug-editor/topics/preferences-custom-editor-variables.html
https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/customEditorVariables
https://www.amazon.com/XSLT-2-0-XPath-Programmers-Reference/dp/0470192747
https://www.delightfulcomputing.com/xslfaq/xsl/
https://www.delightfulcomputing.com/
http://expertml.com/tom.html
https://www.udemy.com/course/practical-transformation-using-xslt-and-xpath
https://www.pluralsight.com/authors/dimitre-novatchev
http://www.mulberrytech.com/xsl/
https://www.oxygenxml.com/partners.html#trainingpartners
https://nvd.nist.gov/vuln/detail/CVE-2021-44228
https://logging.apache.org/log4j/2.x/index.html
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://www.oxygenxml.com/security/advisory/CVE-2021-45046.html
https://www.oxygenxml.com/security/advisory/CVE-2021-45105.html
https://www.oxygenxml.com/security/advisory/CVE-2021-44832.html

Blog | 6 - Miscellaneous | 295

Please subscribe to our Security Advisories mailing list (found on the top of the Security Advisories page), and revisit this page
periodically to get the latest information.

1. How to protect against this vulnerability?
◦ Upgrade to the latest version of our products. We have already released new minor bug fix versions for our

products. For example, for Oxygen XML Editor/Author/Developer versions 24.0, 23.1, and 22.1.
◦ If you cannot upgrade to the latest version, patch or update the Log4j library.

2. How can I patch or update the Log4j library?
◦ If you are using one of these products:

▪ Oxygen XML Editor/Author/Developer standalone installation
▪ Oxygen XML Editor/Author/Developer plugin for Eclipse installation
▪ Oxygen XML Web Author

you can use our free tool (https://github.com/oxygenxml/oxygen-log4j-patcher) to upgrade the Log4j 2.x
libraries or to remove the problematic JndiLookup class from inside them.

The recommended Oxygen versions to apply this tool on range from 16.1 to 22.1 inclusively.

◦ If you are using Oxygen Content Fusion, you can use the Content Fusion Log4j Patcher: https://github.com/
oxygenxml/content-fusion-log4j-patcher.

◦ For other scenarios:
▪ Scan your system for occurrences of the log4j-core JAR file.
▪ Stop your running Java application (e.g. Oxygen XML Editor).
▪ Delete the JndiLookup class from those JAR files. For example, use the following command on a Linux

system:

zip -q -d log4j-core-*.jar org/apache/logging/log4j/core/lookup/JndiLookup.class

3. Am I still vulnerable if I set the -Dlog4j2.formatMsgNoLookups=true system property?
◦ Although our products do not meet the preconditions for CVE-2021-45046, setting this system property is no

longer considered to offer bullet-proof protection.
4. Am I still vulnerable if I set the environment variable: LOG4J_FORMAT_MSG_NO_LOOKUPS="true"?

◦ Although our products do not meet the preconditions for CVE-2021-45046, setting this environment variable is
no longer considered to offer bullet-proof protection.

5. Are there components that may have this problem used by the application outside of the Oxygen installation folder?

◦ Oxygen add-ons may come bundled with Log4j 2.x libraries. Update all your add-ons to their latest version by
using the Help > Check for add-ons updates menu action.

◦ The Oxygen application may have external tools configured in the Preferences > External Tools page. Check
that your external tools do not use Java processes that may have this problem.

◦ You may have configured extra JAR libraries used for validation or transformation scenarios. Check that all of
these separate libraries do not contain the Log4j 2.x libraries.

◦ There may be data sources (for example, for connections to eXist-db servers) created in the Preferences > Data
Sources page that have references to Log4j 2.x libraries. If this is the case, update your connection libraries to
the latest ones provided for the latest server installation.

◦ You may run DITA publishing using an external DITA Open Toolkit publishing engine that has older versions
for the bundled Log4j 2.x libraries provided by the Oxygen-specific publishing plugins. Update the Oxygen
plugins used by the custom DITA Open Toolkit to the latest versions available on our website.

6. I am using the Oxygen SDK and cannot upgrade. How can I upgrade just the Log4j library?
◦ Make sure that you do not have the version of Log4j hard-coded in your pom.xml file.
◦ You can control the version of Log4j to be included by adding the following configuration in the
dependencyManagement section of the pom.xml file of your project:

<dependency>
 <groupId>org.apache.logging.log4j</groupId>
 <artifactId>log4j-bom</artifactId>
 <version>2.17.1</version>
 <type>pom</type>
 <scope>import</scope>
</dependency>

https://www.oxygenxml.com/security/advisories.html
https://github.com/oxygenxml/oxygen-log4j-patcher
https://github.com/oxygenxml/content-fusion-log4j-patcher
https://github.com/oxygenxml/content-fusion-log4j-patcher
https://www.oxygenxml.com/security/advisory/CVE-2021-45046.html
https://www.oxygenxml.com/security/advisory/CVE-2021-45046.html

Blog | 6 - Miscellaneous | 296

◦ To test which version of Log4j your Maven project uses, run: mvn dependency:list
-DincludeGroupIds=org.apache.logging.log4j -U.

◦ If you are using the web-author-component artifact, you can use a Maven WAR Overlay to replace the packaged
Log4j library distributed with a newer version.

7. Am I still vulnerable if I block all outbound traffic?
◦ If you block ALL the outbound traffic, you may be safe, but:

▪ Be sure to block also DNS traffic, as it can exfiltrate data such as environment variables.
▪ Be sure to re-assess which servers are trusted - maybe some trusted servers had the same vulnerability

and were exploited.
◦ Regardless, it is a very good idea to restrict outbound traffic from Oxygen tools. This will protect you against

various types of vulnerabilities.
8. Am I still vulnerable if I use a new version of Java?

◦ The vulnerability is known to exist with the latest versions of Java (e.g. > 1.8u191) if you are also using Apache
Tomcat or Websphere. If you are not using those servers, you may still be vulnerable, but we are not aware of
any exploits.

9. Should I remove the JndiLookup class?
◦ Yes. Removing it will remove the vulnerable code. We have high confidence that other problems will not be

generated.
10. Should I set firewall rules based on HTTP headers or URLs to block attacks?

◦ These kind of rules do not offer full protection. The URLs that exploit the vulnerability can be written in various
ways and are not recognized by common WAF rules that you might find.

11. How to test if I am vulnerable?
◦ If you did not apply any mitigation, you can assume you are.

12. Should I do anything if the affected server is deployed inside the intranet?
◦ Yes. The attack can be triggered from another server that was exploited or by one of the employees when they

follow a link in a phishing email.
13. Should I upgrade to the latest version of your products?

◦ Yes. New maintenance builds that avoid this vulnerability are available for versions that are in the maintenance
period.

14. Is this vulnerability related to Java being insecure?
◦ No. It is caused by an open-source component called Log4j that had a vulnerability. This component is widely

used in the Java ecosystem.
15. How is Syncro Soft addressing the problem?

◦ We patched all our public servers against this vulnerability.
◦ We provided a security advisory with current solutions (https://www.oxygenxml.com/security/advisory/

CVE-2021-44228.html) and we produced maintenance builds that remove the vulnerable version of Log4j for all
product versions that are under maintenance. We are working on solutions for older versions.

◦ We analyzed and updated our internal servers to make sure they are not vulnerable.
◦ We scanned the logs of the services we use or provide to look for the pattern that triggers the vulnerability.

Related information
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://msrc-blog.microsoft.com/2021/12/11/microsofts-response-to-cve-2021-44228-apache-log4j2/
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html

Using Oxygen XML Editor in a Web Browser (Experimental)

The JetBrains Projector is a technology for rendering Swing applications over the network and is an interesting way to run
and access these apps remotely. Some of its use cases are listed here: https://jetbrains.github.io/projector-client/mkdocs/latest/
ij_user_guide/jetbrains/#use-cases.

Since Oxygen XML Editor is a Java Swing-based application, this blog post explains how Oxygen XML Editor could be
accessed remotely and used from a web browser.

https://maven.apache.org/plugins/maven-war-plugin/overlays.html
https://github.com/veracode-research/rogue-jndi
https://github.com/veracode-research/rogue-jndi
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://www.lunasec.io/docs/blog/log4j-zero-day/
https://msrc-blog.microsoft.com/2021/12/11/microsofts-response-to-cve-2021-44228-apache-log4j2/
https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html
https://jetbrains.github.io/projector-client/mkdocs/latest/ij_user_guide/jetbrains/
https://jetbrains.github.io/projector-client/mkdocs/latest/ij_user_guide/jetbrains/#use-cases
https://jetbrains.github.io/projector-client/mkdocs/latest/ij_user_guide/jetbrains/#use-cases

Blog | 6 - Miscellaneous | 297

Figure 2. Oxygen XML Editor Running in the Safari Web Browser Using JetBrains Projector

To prepare an Oxygen XML Editor installation on the server side for running in a web browser:

1. Download an All Platforms version of the Oxygen XML Editor installation kit (oxygen.tar.gz): https://
www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other.

2. Unpack it to the oxygen folder.
3. Download the Jetbrains projector server and unzip it in the Oxygen installation folder (the folder path should be

something like: oxygen/projector-server-1.5.0).
4. Download the Jetbrains Java 11 runtime enviroment and unpack it to the oxygen/jbr folder.
5. Create a start-projector-oxygen.bat script in the oxygen installation folder so that it adds the JetBrains

libraries to the classpath and runs the JetBrains server giving it the name of the main class as a parameter to run it with
the contents:

@echo off
SET
 CP="%~dp0;%~dp0/classes;%~dp0/lib/oxygen-basic-utilities.jar;%~dp0/lib/oxygen.jar;%~dp0/projector-ser
ver-1.5.0/lib/*"

%~dp0\jbr\bin\java.exe %OXYGEN_JAVA_OPTIONS%
 -Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -cp
 %CP% -Dorg.jetbrains.projector.server.classToLaunch=ro.sync.exml.Oxygen
 org.jetbrains.projector.server.ProjectorLauncher %*

6. Run the start-projector-oxygen.bat script, which will start an HTTP server on port 8887 by default.
7. Connect to the localhost:8887 port from the same computer or from another computer using a web browser.

Result: You should be able to use Oxygen XML Editor in a web browser and have full access to the server-side resources.

https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other
https://github.com/JetBrains/projector-server/releases
https://github.com/JetBrains/JetBrainsRuntime/releases

Blog | 6 - Miscellaneous | 298

Oxygen XML Blog 2022 Retrospective

So here we are at the end of 2022 and I figured it's a good time to go through some of the improvements we made and posts we
added in the Oxygen XML Blog. A short summary of our activity on the Oxygen XML Blog can be found below:

Statistics

As an overview of the most read articles on the blog, we found out that articles about conversions from various
formats (especially MS Word) to DITA XML, articles about learning DITA XML, and general tips and tricks
articles were the most read. Also, I think we provided some good quality content covering these aspects in 2022.
In total, we provided about 30 new articles to the blog in 2022.

Collaborators

This year, we had a lot more internal collaborators with contributors to the Oxygen XML Blog. Our web
designers Mihai and Luci created a new color theme for the blog. My colleagues Cosmin Duna, George Bina,
and Alex Smarandache contributed various interesting and useful articles to the blog. Our external collaborator
Chris Papademetrious also submitted an article about enhancing DITA Open Toolkit project files.

Moving the product forward

The blog also served as a place to experiment with ideas that were later incorporated into Oxygen. For example,
based on articles written in the blog, we added to Oxygen the capability to convert OpenAPI documents to
DITA XML or to generate Google Structured Data content when publishing DITA XML content to WebHelp
Responsive Output.

We hope you found the articles we added to the Oxygen XML Blog this year useful. If you have ideas about possible future
articles that we could add to the blog, we are always open to suggestions, or you can also contribute articles yourselves: How
You can Contribute to the Oxygen XML Editor Blog. (on page 5)

A more detailed list of contributions to the blog can be found below:

Colors and Layout Redesign

My colleagues Mihai and Luci (who maintain and design our web site) have had time this year to do a full redesign of the
Oxygen WebHelp publishing template we are using to publish our blog's DITA XML content to WebHelp.

So thanks to their work the entire layout of the blog looks better now!

We also changed the WebHelp feedback authentication available on each page of the blog to the Oxygen XML organization so
that with the same authentication, you can leave us feedback either on the Oxygen Users Guide Web pages or on the Oxygen
XML Blog.

Migrating Word and Unstructured FrameMaker to DITA XML

Our colleague Cosmin Duna submitted two interesting migration related articles:

• Migrating MS Word to DITA using the Batch Documents Converter (on page 249)
• Migrating Unstructured Adobe FrameMaker Content to DITA (on page 255)

DITA Publishing

In 2022, I wrote quite a few small articles based on my experiences with various DITA publishing customizations and they are all
linked in this overview post: Publishing Customizations (on page 97).

I also wrote an article about the various ways that we support the DITA Open Toolkit open source engine: Supporting the DITA
OT Project as a Commercial Company (on page 168).

My colleague Alexandru Smarandache submitted his first article about creating learning content for the Google Chatbot from
DITA XML content (on page 216).

Our client and friend Chris Papademetrious also submitted an article about enhancing DITA Open Toolkit project files:
Preprocessing DITA-OT Project Files (on page 182).

Blog | 6 - Miscellaneous | 299

These articles were also presented at the DITA Open Toolkit Day 2022 along other interesting talks: https://
www.oxygenxml.com/events/2022/dita-ot_day.html.

DITA Perspectives

Our boss and colleague George Bina contributed an article and a GitHub project with his experiments creating automatic graphs
showing the hierarchy of DITA elements in the DITA specification: DITA Perspectives (on page 18).

Short Clips - DITA Editing

We started a series of small articles presenting various features of DITA XML editing with Oxygen using small videos:

• Short Clips - Insert Image References (on page 9)
• Short Clips - Insert Links (on page 11)
• Short Clips - Reuse Content (on page 16)

https://www.oxygenxml.com/events/2022/dita-ot_day.html
https://www.oxygenxml.com/events/2022/dita-ot_day.html

Chapter 7. Contributors
Everybody can contribute interesting XML and publishing-related articles to the Oxygen XML Blog: How You can Contribute to
the Oxygen XML Editor Blog. (on page 5) All contributors to the Oxygen XML Blog are listed below.

Table 3. List of contributors to the Oxygen XML Blog

Author Name Details

Alex Jitianu Project Manager, DITA/Authoring team. Oxygen XML Editor

Chris Papademetrious Senior Technical Writer, Synopsys Inc.

Cosmin Duna Senior Software Developer. Oxygen XML Editor

Cristi Talau Project Manager, Web Authoring team. Oxygen XML Editor

George Bina Owner, DITA XML Expert. Oxygen XML Editor

Mihaela Calotescu Senior software developer, Web Authoring team. Oxygen XML Editor

Radu Coravu Helping people with XML-related technologies since the start of this century. Oxygen XML
Editor

Steven Higgs Senior Technical Writer. Oxygen XML Editor

Alex Smarandache Software Developer. Oxygen XML Editor

https://github.com/raducoravu

Index
A

Add-ons
artificial intelligence
 230

AI Positron Assistant
 230

a

	Blog
	Contents
	Chapter 1. Welcome!
	Follow us!
	History of the Oxygen XML Editor Blog
	How the Oxygen XML Editor Blog Works
	How You can Contribute to the Oxygen XML Editor Blog.
	Technologies Used to Store, Build and Publish the Oxygen XML Blog

	Chapter 2. Frequently Asked Questions
	How do I register to receive notifications for new blog posts?
	Can I contribute articles to the Oxygen XML Blog?
	How do I learn DITA XML with Oxygen?
	How do I convert various output formats to DITA XML?
	Are there any productivity tips and tricks?

	Chapter 3. DITA
	Learning
	Resources for learning DITA with Oxygen
	Resources for editing DITA with Oxygen:
	Resources for learning DITA:
	Resources for customizing the DITA output formats
	Courses for learning DITA with Oxygen XML Editor
	DITA Trivia
	Community
	Learn DITA Editing with Oxygen with Small Clips
	Short Clips - Insert Image References
	Use Toolbar Action to Insert a Figure with an Image Reference
	Drag and Drop to Insert an Image Reference
	Copy/Paste to Insert an Image Reference
	Configure DITA Reusable Components/Media Tab Working Sets and Insert an Image Reference

	Short Clips - Insert Links
	Use Toolbar Action to Insert a Cross Reference to Another Topic
	Use Toolbar Action to Insert a Cross Reference to a Table
	Drag and Drop to Insert a Cross Reference
	Copy/Paste to Insert a Cross Reference
	Copy Paste to Insert a Cross Reference To a Table
	Use Toolbar Action to Insert a Related Link to Another Topic
	Use Toolbar Action to Insert a Link to a Web Site
	Use Toolbar Action to Insert a Link to a PDF

	Short Clips - Reuse Content
	Define a Key for a Product Name and Use It
	Use an Already Defined Key for a Product Name Using The Toolbar Action
	Add a Content Reference to a Reusable Note Using the Toolbar Actions
	Add a Content Reference Using Copy/Special Paste Operations
	Add a Content Reference Using the DITA Reusable Components View

	DITA Perspectives
	Overview of DITA
	DITA Shells
	DITA Modules
	DITA Elements
	Elements Split by Map and Topic Base
	Topic Elements
	Map Elements

	bookmap
	learningSummary
	learningPlan
	learningOverview
	learningContent
	learningObjectMap
	learningBase
	learningGroupMap
	learningAssessment
	troubleshooting
	reference
	task
	glossentry
	glossgroup
	concept
	subjectScheme
	DITA Domains
	DITA Learning Interaction Base 2 Domain
	DITA Learning Map Domain
	DITA Learning Interaction Base Domain
	DITA Learning Metadata Domain
	DITA Learning Domain
	DITA Learning 2 Domain
	DITA Abbreviated Form Domain
	DITA Markup Name Mention Next v Domain
	DITA MathML Domain
	DITA SVG
	DITA User ADD Domain
	DITA Equation Domain
	DITA Task Requirements Domain
	DITA Programming Domain
	DITA XML Construct Domain
	DITA Glossary Reference Domain
	DITA Software Domain
	DITA Release Management Domain
	DITA XNAL Domain
	DITAVAL Reference Domain
	DITA Delay Resolution Domain
	DITA Indexing Domain
	DITA Hazard Statement Domain
	DITA Highlight Domain
	DITA Map Group Domain
	DITA Utilities Domain
	DITA Subject Classification Domain

	Taking Advantage of DITA Element Hierarchy
	Element Selection During Editing
	Automatic Markup Detection
	Soft Generalization

	Exchanging DITA Documents

	Using DITA to Document a Software Product
	Git as a Version Control System
	Oxygen XML Author
	Oxygen Content Fusion
	Oxygen Publishing Engine
	Jenkins integration server
	Automated DITA Content Validation
	Atlassian Jira for Ticketing and Workflow

	Guided DITA Authoring Solution Overview
	Learning to Work with DITA and Oxygen
	Migrating to DITA
	Restricting the Visual Editing Experience
	Implementing Your own Style Guide
	Imposing Controlled Attribute Values
	Imposing Business Rules and Structure Restrictions to the DITA Content
	Running Batch Validation Checks on all of Your DITA Content
	Sharing DITA Editing Customizations with Your Team
	Sharing Global Application Settings with Your Team
	Collaboration, Content Management, and Version Tracking
	Allowing Subject Matter Experts to Review Content

	Maintaining a Healthy DITA Project
	How should a Happy and Healthy Documentation Project Look Like?
	Do you have a Healthy Project?
	Why do big companies use the DITA standard?
	DITA Doc Project Aspects
	Storage
	Version Control
	Working with the storage system
	Collaboration and Workflow
	Workflow
	Issue tracking
	Issue Tracking Examples
	Issue tracking – Simple Documentation Workflow
	Issue tracking – Development and Documentation Workflow
	Issue Tracking and Storage Integration
	Involving Subject Matter Experts
	How can end users collaborate with us?
	Contribution Consistency
	Sharing common settings between writers
	Custom Style Guide
	Automating Style Guide Rules
	Using the same terminology rules
	DITA Project Structure
	File and folder naming/organization conventions
	Managing Content Reuse
	Managing Links
	Project-wide refactor operations
	Translation
	Optimizing for translation
	Publishing
	Producing the deliverables
	Useful links
	Conclusions

	DITA Linking Strategies
	Map-Level Linking
	Chunking
	Topic-Level Linking
	In-Content Links
	Related Links
	Defining Related Links using Relationship Tables
	Indirect Links (Key References)
	Auto-Generated Links
	Conditional Links in Distinct Publications
	Conditional Links in the Same Publication
	Link Text
	Should I Link or Should I Reuse?
	Conclusions

	DITA 1.3 Branch Filtering - Next Generation of Reuse
	Case 1 - Combine Two Profiles in the Same Publication
	Case 2 - Reusing Common Topics with Different Product Names

	DITA 1.3 Key Scopes - Next Generation of Reuse
	DITA Reuse Strategies
	Introduction
	Version Control and Reuse
	Converting XML content to various output formats
	Create larger publications from existing ones
	Reuse content for similar products
	1. Use multiple Root Maps.
	Publication maps for phone models X1000 and X2000 using almost similar content except Blue-tooth chapter which appears in only one of them.
	2. Use a single Root Map.

	Reuse fragments of content
	Content References
	Small example of content referencing

	Content Key References
	Small example of content key referencing

	Content Reference Ranges
	Small example of content key reference with ranges

	Content Reuse Tips and Tricks
	Pushing Content
	Pushing Content to an existing sequence of steps

	Key References (Variables)
	Reusing keywords

	DITA 1.3 Contributions to Reuse
	Reuse with Key Scopes
	Reuse using key scopes

	Reuse with Branch Filtering
	Creating a Phones Catalogues publication

	Reuse non-DITA resources
	Conclusions

	Cross-Book Links
	DITA XML vs Markdown Syntax and Capabilities Comparison

	Publishing Customizations
	DITA Project Overview
	Embed Latex Equations in DITA Topics
	Embed PlantUML/Mermaid Diagrams in DITA Topics
	DITA Task Steps Presentation Alternatives
	Generate Google Structured Data Content from DITA Content
	Present Consecutive Elements as Tabs in HTML Output
	Convert OpenAPI Content to DITA
	Various Applications for DITA to Markdown Publishing
	DITA Prolog Customizations
	Marking DITA Topics with Labels for the HTML-based Output
	Generating Content for Google Chatbot
	Externally Contributed Articles
	DITA WebHelp Publishing Solution Advantages
	PDF
	DITA OT PDF Customization - Table with Alternate Row Background Colors
	Possibilities to obtain PDF from DITA
	DITA PDF publishing - Force page breaks between two block elements

	Embedding Diagrams in DITA topics using PlantUML
	Embedding Diagrams in DITA Topics Using Mermaid
	Presenting DITA Task Steps as Diagrams
	Show Consecutive DITA Code Blocks in Separate Tabs
	Show DITA Task Steps in Separate Tabs
	Converting OpenAPI to DITA XML and Publishing to WebHelp (Experimental)
	DITA to Confluence
	Publish DITA to Microsoft Word and import in Confluence
	Publish DITA to HTML5 and import in Confluence
	Publish DITA to HTML5 and paste from Web Browser to Confluence
	Creating a special DITA to Confluence-like HTML publishing flow

	Generating a list of changes between releases
	DITA Publishing Customization Overview
	DITA Open Toolkit Overview
	Publishing Customizations (Before you begin)
	Customizing the XHTML-based outputs
	Customizing the Oxygen WebHelp-based output
	Customizing the PDF Classic output
	Customizing the DITA + CSS to PDF output

	DITA Open Toolkit Frequently Asked Questions (FAQ)
	What is the DITA Open Toolkit?
	How do I use the DITA Open Toolkit?
	What version of DITA Open Toolkit should I use?
	What outputs can I obtain using the DITA Open Toolkit?
	What is the general architecture of the DITA Open Toolkit?
	What is a DITA Open Toolkit plugin?
	How do I customize the HTML-based outputs?
	How do I customize the PDF output?

	Enhancing DITA Publishing With Plugins
	Plugin that Converts DITA Maps to PDF Using CSS 3 [Bundled]
	DITA Metrics Report [Bundled]
	Export DITA Map Plugin [Bundled]
	Publish DITA Content with References to Video and Audio Resources. [Bundled]
	Plugin That Adds Edit Links in HTML or PDF-based Outputs [Bundled]
	Create Single Merged XML Document From Entire DITA Project [Bundled]
	Dynamically Publish Excel Content as DITA
	Dynamically Use JSON Content in DITA Topics
	Embed HTML Content in DITA Topics [Bundled]
	Embed LateX Equations in DITA Content
	Embed UML Diagrams in DITA Content
	Float Images in HTML and PDF Outputs
	Embed Referenced MathML and SVGZ Images in HTML Output
	Dynamically Convert DITA Tables to Graphs
	Show Oxygen Change Tracking Information in the PDF Output [Bundled]
	Sample Customization Plugin for Classic PDF Output
	PDF - Generate Numbers Before Topic's Title
	PDF Plugin That Presents Chapters With Landscape Orientation

	Adding support for embedding LaTeX equations in DITA content
	Useful DITA OT Plugins
	DITA to MS Word
	Convert MS Word to DITA
	DITA to EPUB
	Use Markdown content directly in DITA Maps
	Embed video and audio resources in DITA topics
	Publish RelaxNG-based DITA topics
	Present Oxygen track changes in the PDF output
	Publish DITA to PDF using CSS

	Creating a simple DITA Open Toolkit plugin to customize published HTML and PDF content
	Using Git client-side hooks to run DITA publishing pipelines
	Prerequisites
	What is a Git hook?
	Using a client side hook with a DITA project
	Installing a pre-commit hook

	Creating Link Graphs From DITA Maps
	Publishing DITA Content Using the MKDocs Web Site Generator
	Creating PowerPoint Slides from DITA Content
	Adding Labels to Topics in the WebHelp Responsive Output
	Inserting Labels
	Factoring Labels When Publishing

	Displaying prolog details (author, creation date, read time)
	Dynamically publishing a list with the most recent topics
	Dynamically Generating an RSS Feed
	Using the RSS Feed With Follow.it to Receive New Posts by Email

	Generating Google Structured Data from your DITA tasks
	Generating Google Structured Data from your DITA frequently asked questions

	Editing Customizations
	Startup DITA Project
	Project Structure
	Settings Saved at Project Level
	Framework Customizations
	Renaming/Moving Topics and Other Resources
	Terminology Checking
	Publishing

	Customizing the DITA Visual Editing Experience
	Customizing the DITA Framework Using a Framework Extension Script
	Creating the Framework Extension Script
	Customizing the New Document Templates
	Changing the Author Mode Rendering With a New CSS File
	Removing the Bold, Italic, Underline Actions From the Author Mode
	Adding the Insert Note Action to the Toolbar

	Controlled Attribute Values for your DITA Project
	Controlled Attribute Values (Part 2 - Advanced)
	The configuration file
	The XSLT script

	Converting Subject Scheme Map Values to a DITAVAL
	Converting .xpr Profiling Conditions to Standard DITA Files
	Profiling Conditions in the Oxygen .xpr Project File
	Profiling Conditions in Standard DITA Files
	What Are DITA Subject Scheme Files?
	Converting .xpr Profiling Conditions With Refactoring

	Other
	DITA For Small Technical Documentation Teams
	Overview of Tools Proposed for the Solution
	Learning DITA
	Project Storage - Using GitHub
	Creating and Modifying Content in the Repository
	Using Oxygen XML Author to Create/Modify Content in the Repository
	Organizing Your Project Structure using the Master Files Support
	Overall management of the DITA project
	Sharing Common Settings using the Project
	Manual Publishing
	Working with Branches
	Establishing a Workflow
	Adding Custom Validation Checks to the Project
	Adding Custom Actions
	Dynamic Publishing using an Integration Server
	Translating your content

	Using Git For Technical Writing
	Advantages of Using Git
	Disadvantages of Using Git
	Useful Resources
	Learning Git
	Workflows and Collaboration

	Applications for Working with Git
	Server-side solutions
	Client-side applications

	Typical Editing Session
	Commit Message
	Micro Commits
	Handling Simple Conflicts

	Validation
	Common Workflows
	Centralized Workflow
	Cherry Pick

	Feature Branches
	Branches For All Changes
	Release Branches
	Our Attempt at the Centralized Workflow
	The Release Branch Workflow
	The Branch-Merging Perl Script

	GitFlow

	Propose Changes
	Handling Translations
	Sharing Common Settings
	Publishing Content From Git

	Supporting the DITA OT Project as a Commercial Company
	Overview
	History and Context
	Implementing Plugins for the DITA Open Toolkit
	Helping with Publishing-related Questions
	DITA Open Toolkit Publishing-related Articles
	Registering and Analyzing Issues, Opening Pull Requests
	Contributing with Improvement Ideas to the DITA Open Toolkit Project
	Contributions to the DITA Open Toolkit Documentation
	The DITA Open Toolkit Day

	DITA Map Metrics Evolution
	Oxygen XML Editor DITA Editing solution strong points.
	DITA Oriented Tips And Tricks
	Add-ons
	Project-related Functionality:
	Navigation:
	Find/Replace Functionality
	DITA Maps Manager
	Editing in the Author Visual Editing Mode
	DITA-specific Editing in the Author Visual Editing Mode
	Preferences:
	Tools
	Import
	Other Views and Toolbars:
	Other Small Tips:
	Keeping in Touch

	DITA Project Enhancements
	Publishing
	Editing the DITA Project
	Adding the DITA Project in the "Master Files" folder
	Using the DITA Project information for editing
	Using the DITA Project for the "Validate and check for completeness" action
	DITA Project extensibility

	Translating your DITA Project
	Choosing a Translation Agency
	Optimizing Content for Translation
	General DITA Project Structure
	General Translation Workflow when the Translation agency accept DITA documents
	Translation Workflow when the Translation agency accepts XLIFF files
	Publishing your Translated Content
	Liability

	DITA Map Validate and Check for Completeness Overview
	Schematron Checks to help Technical Writing
	Implementing your own Style Guide
	Custom "Style Guide" toolbar button
	Link to Style Guide for each element in the content completion window
	Impose controlled attribute values
	Show validation errors or warning when guidelines are breached
	Bringing all of this together

	Preprocessing DITA-OT Project Files
	Quick Overview of Project Files
	Limitation – Specify Per-Deliverable PDF File Names (#3682)
	Limitation – Consider DITAVAL in Both <context> and <publication> (#3690)
	Using Preprocessing to Work Around the Limitations
	Exploring How the XSLT Transformation Works

	Re: 10 reasons for moving away from DITA
	DITA 2.0 Specification Support Cheat Sheet
	Refactoring
	Sorting Glossary Lists in a DITA Bookmap
	Replacing Direct Image References with Key References in a DITA Project.
	Deleting Elements in a Refactoring Operation
	Resolving DITA Cross-References in Refactoring Operations
	The Missing Piece - Resolving a @keyref
	Resolving Cross-References in Refactoring Operations
	Example Test Case

	Inserting and Reformatting Content in Refactoring Operations
	Re-indenting XML After Content Updates
	Considering Content Models During Content Insertion
	Example Test Case

	Surveys
	Small Problems with the DITA Standard
	DITA Linking Usage Survey
	DITA Inheritance Hierarchy
	DITA Usage Survey
	GIT is on a roll
	PDF is still the most popular output format
	Indirect addressing is becoming the main way of reusing content
	DITA 1.3 features
	Popular image formats
	Major DITA frustrations

	Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML content
	Using ChatGPT in a DITA XML Project
	Advice About DITA XML Standard Use
	Generate New Content
	Simple Conversions
	Writing Style
	Statistics
	Custom Validation (Schematron-based)

	Oxygen AI Positron Assistant Add-on
	Overview
	Manual Installation
	Connecting to the Oxygen AI Positron Service
	AI Server Requests and Credits
	Generating and Refining Content
	AI Positron Assistant View
	AI Refactoring
	AI Positron Assistant Preferences Page
	Validation Quick Fixes
	Creating Custom Actions
	Create Custom Prompts/Actions by Recording Changes
	Custom Validation Rules
	Resources

	Similarities Between Technical Doc Writers and Software Engineers

	Chapter 4. Migrate
	Migrating to a Structured Standards-based Documentation Solution
	Migrating Various Document Formats to DITA
	Migrating DocBook Content to DITA.
	Migrating Microsoft Word Content to DITA
	Migrating Excel Content to DITA
	Migrating LibreOffice Content to DITA
	Migrating Google Docs to DITA
	Migrating Markdown Content to DITA
	Migrating HTML Content to DITA
	Migrating Unstructured FrameMaker to DITA
	Migrating MadCap Content to DITA
	Migrating Confluence Content to DITA
	Migrating AsciiDoc to DITA
	Migrating reStructuredText to DITA
	Migrating LaTex to DITA
	Migrating Other Formats to DITA

	How to Migrate from Word to DITA
	Oxygen Batch Documents Converter add-on
	Smart Paste
	Word to HTML to DITA
	Word to DocBook to DITA
	Word to DITA using DITA For Publishers
	Migrating MS Word to DITA using the Batch Documents Converter
	Preparing Word Document for Migration
	Converting the Word Document
	Configuring Word styles mapping
	Configuring the Maximum Heading Level for Creating Topics
	Converting the document

	Post-processing the DITA Content Converted from Word
	Word to DITA Conversion FAQ
	How can I fix unrecognized style warnings?
	How can I configure the styles mapping when the wanted element doesn't exist in HTML?
	How can I configure the styles mapping for paragraphs styled as code blocks?
	How can I preserve the Word shapes?

	Batch converting HTML to XHTML
	Migrating Unstructured Adobe FrameMaker Content to DITA
	Using a FrameMaker Plugin
	Using FrameMaker Conversion Table
	Unstructured FrameMaker to HTML to DITA

	Automation - Using DITA XML Topic Titles to Generate File Names

	Chapter 5. SDK Development (Plugins, Frameworks)
	Customizing Oxygen XML Editor (Overview)
	Add support for editing a specific XML vocabulary
	Customize the existing support for a specific XML vocabulary
	Provide custom settings
	Modify the application appearance or behavior using plugins

	Document Type Extension Sharing
	Sharing Schematron Validation Rules
	Public hosted Oxygen Plugin and Framework Projects
	Sharing New Custom File Templates for a Specific Vocabulary
	Composing Author Actions
	Implementing a Custom Author Action to Split a Table
	Adding a Custom Author Action to the Content Completion Window
	How Special Paste works in Oxygen
	The Oxygen SDK (Part 1: Plugins)
	Plugins:

	The Oxygen SDK (Part 2: Frameworks)
	Your First Oxygen Add-on
	Oxygen Add-ons Overview
	Short History of Frameworks Support in Oxygen XML Editor
	Short History of Plugin Support in Oxygen XML Editor
	Public Hosted Plugins and Frameworks
	Private Hosted Plugins and Frameworks
	Why are we (the Oxygen XML Editor team) working on add-ons?
	Plugins and Frameworks Developed by Oxygen XML Editor
	Using Frameworks and Plugins in the WebAuthor in-browser editor
	Where can we go from here?

	Adding CALS-table related functionality to your custom Oxygen framework
	Convert Code Templates to External Author Actions

	Chapter 6. Miscellaneous
	Oxygen XML Ecosystem
	Add-ons For Technical Documentation
	Tips And Tricks
	General Layout - Views and Toolbars:
	Side Views You Probably Never Used
	Project-related Functionality:
	Navigation:
	Find/Replace Functionality
	Text Editing:
	Huge File Editing
	Grid editing mode:
	Editing in the Author Visual Editing Mode
	Preferences:
	CSS-based PDF Publishing
	Tools
	Import - Convert
	Connectivity
	Add-ons
	Keeping in Touch

	Checking Terminology with Oxygen XML Editor
	Built-in spell checker
	Oxygen Terminology Checker
	Commercial alternatives
	Open-source alternatives
	Building your own terminology checker

	Opinions about using Oxygen
	A set of rules for providing great tech support
	A Short Story of Reuse
	Sharing Application Settings
	Collaboration for Documenting a Software Product using DITA
	Oxygen XML Editor
	DITA Open Toolkit + WebHelp plugin
	Jenkins integration server
	Git as a version control system
	Atlassian Jira for workflow

	Collaboration (Teams working on a common XML project)
	Enable massive contributions with oXygen XML Web Author and GitHub
	All About Editor Variables
	Transformation Scenarios
	New File Templates
	Code Templates
	Custom Author Actions
	External Tools
	Custom Editor Variables

	XSLT Training
	Log4Shell - Oxygen XML Vulnerability Analysis FAQ
	Using Oxygen XML Editor in a Web Browser (Experimental)
	Oxygen XML Blog 2022 Retrospective
	Colors and Layout Redesign
	Migrating Word and Unstructured FrameMaker to DITA XML
	DITA Publishing
	DITA Perspectives
	Short Clips - DITA Editing

	Chapter 7. Contributors
	Index

